veichta's picture
Upload folder using huggingface_hub
205a7af verified
raw
history blame
11.1 kB
import logging
from copy import deepcopy
from typing import Tuple
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from torch.nn import Identity
from siclib.geometry.camera import SimpleRadial
from siclib.geometry.gravity import Gravity
from siclib.models.base_model import BaseModel
from siclib.models.utils.metrics import dist_error, pitch_error, roll_error, vfov_error
from siclib.models.utils.modules import _DenseBlock, _Transition
from siclib.utils.conversions import deg2rad, pitch2rho, rho2pitch
logger = logging.getLogger(__name__)
# flake8: noqa
# mypy: ignore-errors
def get_centers_and_edges(min: float, max: float, num_bins: int) -> Tuple[np.ndarray, torch.Tensor]:
centers = torch.linspace(min, max + ((max - min) / (num_bins - 1)), num_bins + 1).float()
edges = centers.detach() - ((centers.detach()[1] - centers[0]) / 2.0)
return centers, edges
class DeepCalib(BaseModel):
default_conf = {
"name": "densenet",
"model": "densenet161",
"loss": "NLL",
"num_bins": 256,
"freeze_batch_normalization": False,
"model": "densenet161",
"pretrained": True, # whether to use ImageNet weights
"heads": ["roll", "rho", "vfov", "k1_hat"],
"flip": [], # keys of predictions to flip the sign of
"rpf_scales": [1, 1, 1],
"bounds": {
"roll": [-45, 45],
"rho": [-1, 1],
"vfov": [20, 105],
"k1_hat": [-0.7, 0.7],
},
"use_softamax": False,
}
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
strict_conf = False
required_data_keys = ["image", "image_size"]
def _init(self, conf):
self.is_classification = True if self.conf.loss in ["NLL"] else False
self.num_bins = conf.num_bins
self.roll_centers, self.roll_edges = get_centers_and_edges(
deg2rad(conf.bounds.roll[0]), deg2rad(conf.bounds.roll[1]), self.num_bins
)
self.rho_centers, self.rho_edges = get_centers_and_edges(
conf.bounds.rho[0], conf.bounds.rho[1], self.num_bins
)
self.fov_centers, self.fov_edges = get_centers_and_edges(
deg2rad(conf.bounds.vfov[0]), deg2rad(conf.bounds.vfov[1]), self.num_bins
)
self.k1_hat_centers, self.k1_hat_edges = get_centers_and_edges(
conf.bounds.k1_hat[0], conf.bounds.k1_hat[1], self.num_bins
)
Model = getattr(torchvision.models, conf.model)
weights = "DEFAULT" if self.conf.pretrained else None
self.model = Model(weights=weights)
layers = []
# 2208 for 161 layers. 1024 for 121
num_features = self.model.classifier.in_features
head_layers = 3
layers.append(_Transition(num_features, num_features // 2))
num_features = num_features // 2
growth_rate = 32
layers.append(
_DenseBlock(
num_layers=head_layers,
num_input_features=num_features,
growth_rate=growth_rate,
bn_size=4,
drop_rate=0,
)
)
layers.append(nn.BatchNorm2d(num_features + head_layers * growth_rate))
layers.append(nn.ReLU())
layers.append(nn.AdaptiveAvgPool2d((1, 1)))
layers.append(nn.Flatten())
layers.append(nn.Linear(num_features + head_layers * growth_rate, 512))
layers.append(nn.ReLU())
self.model.classifier = Identity()
self.model.features.norm5 = Identity()
if self.is_classification:
layers.append(nn.Linear(512, self.num_bins))
layers.append(nn.LogSoftmax(dim=1))
else:
layers.append(nn.Linear(512, 1))
layers.append(nn.Tanh())
self.roll_head = nn.Sequential(*deepcopy(layers))
self.rho_head = nn.Sequential(*deepcopy(layers))
self.vfov_head = nn.Sequential(*deepcopy(layers))
self.k1_hat_head = nn.Sequential(*deepcopy(layers))
def bins_to_val(self, centers, pred):
if centers.device != pred.device:
centers = centers.to(pred.device)
if not self.conf.use_softamax:
return centers[pred.argmax(1)]
beta = 1e-0
pred_softmax = F.softmax(pred / beta, dim=1)
weighted_centers = centers[:-1].unsqueeze(0) * pred_softmax
val = weighted_centers.sum(dim=1)
return val
def _forward(self, data):
image = data["image"]
mean, std = image.new_tensor(self.mean), image.new_tensor(self.std)
image = (image - mean[:, None, None]) / std[:, None, None]
shared_features = self.model.features(image)
pred = {}
if "roll" in self.conf.heads:
pred["roll"] = self.roll_head(shared_features)
if "rho" in self.conf.heads:
pred["rho"] = self.rho_head(shared_features)
if "vfov" in self.conf.heads:
pred["vfov"] = self.vfov_head(shared_features)
if "vfov" in self.conf.flip:
pred["vfov"] = pred["vfov"] * -1
if "k1_hat" in self.conf.heads:
pred["k1_hat"] = self.k1_hat_head(shared_features)
size = data["image_size"]
w, h = size[:, 0], size[:, 1]
if self.is_classification:
parameters = {
"roll": self.bins_to_val(self.roll_centers, pred["roll"]),
"rho": self.bins_to_val(self.rho_centers, pred["rho"]),
"vfov": self.bins_to_val(self.fov_centers, pred["vfov"]),
"k1_hat": self.bins_to_val(self.k1_hat_centers, pred["k1_hat"]),
"width": w,
"height": h,
}
for k in self.conf.flip:
parameters[k] = parameters[k] * -1
for i, k in enumerate(["roll", "rho", "vfov"]):
parameters[k] = parameters[k] * self.conf.rpf_scales[i]
camera = SimpleRadial.from_dict(parameters)
roll, pitch = parameters["roll"], rho2pitch(parameters["rho"], camera.f[..., 1], h)
gravity = Gravity.from_rp(roll, pitch)
else: # regression
if "roll" in self.conf.heads:
pred["roll"] = pred["roll"] * deg2rad(45)
if "vfov" in self.conf.heads:
pred["vfov"] = (pred["vfov"] + 1) * deg2rad((105 - 20) / 2 + 20)
camera = SimpleRadial.from_dict(pred | {"width": w, "height": h})
gravity = Gravity.from_rp(pred["roll"], pred["pitch"])
return pred | {"camera": camera, "gravity": gravity}
def loss(self, pred, data):
loss = {"total": 0}
if self.conf.loss == "Huber":
loss_fn = nn.HuberLoss(reduction="none")
elif self.conf.loss == "L1":
loss_fn = nn.L1Loss(reduction="none")
elif self.conf.loss == "L2":
loss_fn = nn.MSELoss(reduction="none")
elif self.conf.loss == "NLL":
loss_fn = nn.NLLLoss(reduction="none")
gt_cam = data["camera"]
if "roll" in self.conf.heads:
# nbins softmax values if classification, else scalar value
gt_roll = data["gravity"].roll.float()
pred_roll = pred["roll"].float()
if gt_roll.device != self.roll_edges.device:
self.roll_edges = self.roll_edges.to(gt_roll.device)
self.roll_centers = self.roll_centers.to(gt_roll.device)
if self.is_classification:
gt_roll = (
torch.bucketize(gt_roll.contiguous(), self.roll_edges) - 1
) # converted to class
assert (gt_roll >= 0).all(), gt_roll
assert (gt_roll < self.num_bins).all(), gt_roll
else:
assert pred_roll.dim() == gt_roll.dim()
loss_roll = loss_fn(pred_roll, gt_roll)
loss["roll"] = loss_roll
loss["total"] += loss_roll
if "rho" in self.conf.heads:
gt_rho = pitch2rho(data["gravity"].pitch, gt_cam.f[..., 1], gt_cam.size[..., 1]).float()
pred_rho = pred["rho"].float()
if gt_rho.device != self.rho_edges.device:
self.rho_edges = self.rho_edges.to(gt_rho.device)
self.rho_centers = self.rho_centers.to(gt_rho.device)
if self.is_classification:
gt_rho = torch.bucketize(gt_rho.contiguous(), self.rho_edges) - 1
assert (gt_rho >= 0).all(), gt_rho
assert (gt_rho < self.num_bins).all(), gt_rho
else:
assert pred_rho.dim() == gt_rho.dim()
# print(f"Rho: {gt_rho.shape}, {pred_rho.shape}")
loss_rho = loss_fn(pred_rho, gt_rho)
loss["rho"] = loss_rho
loss["total"] += loss_rho
if "vfov" in self.conf.heads:
gt_vfov = gt_cam.vfov.float()
pred_vfov = pred["vfov"].float()
if gt_vfov.device != self.fov_edges.device:
self.fov_edges = self.fov_edges.to(gt_vfov.device)
self.fov_centers = self.fov_centers.to(gt_vfov.device)
if self.is_classification:
gt_vfov = torch.bucketize(gt_vfov.contiguous(), self.fov_edges) - 1
assert (gt_vfov >= 0).all(), gt_vfov
assert (gt_vfov < self.num_bins).all(), gt_vfov
else:
min_vfov = deg2rad(self.conf.bounds.vfov[0])
max_vfov = deg2rad(self.conf.bounds.vfov[1])
gt_vfov = (2 * (gt_vfov - min_vfov) / (max_vfov - min_vfov)) - 1
assert pred_vfov.dim() == gt_vfov.dim()
loss_vfov = loss_fn(pred_vfov, gt_vfov)
loss["vfov"] = loss_vfov
loss["total"] += loss_vfov
if "k1_hat" in self.conf.heads:
gt_k1_hat = data["camera"].k1_hat.float()
pred_k1_hat = pred["k1_hat"].float()
if gt_k1_hat.device != self.k1_hat_edges.device:
self.k1_hat_edges = self.k1_hat_edges.to(gt_k1_hat.device)
self.k1_hat_centers = self.k1_hat_centers.to(gt_k1_hat.device)
if self.is_classification:
gt_k1_hat = torch.bucketize(gt_k1_hat.contiguous(), self.k1_hat_edges) - 1
assert (gt_k1_hat >= 0).all(), gt_k1_hat
assert (gt_k1_hat < self.num_bins).all(), gt_k1_hat
else:
assert pred_k1_hat.dim() == gt_k1_hat.dim()
loss_k1_hat = loss_fn(pred_k1_hat, gt_k1_hat)
loss["k1_hat"] = loss_k1_hat
loss["total"] += loss_k1_hat
return loss, self.metrics(pred, data)
def metrics(self, pred, data):
pred_cam, gt_cam = pred["camera"], data["camera"]
pred_gravity, gt_gravity = pred["gravity"], data["gravity"]
return {
"roll_error": roll_error(pred_gravity, gt_gravity),
"pitch_error": pitch_error(pred_gravity, gt_gravity),
"vfov_error": vfov_error(pred_cam, gt_cam),
"k1_error": dist_error(pred_cam, gt_cam),
}