GeoCalib / geocalib /interactive_demo.py
veichta's picture
Upload folder using huggingface_hub
205a7af verified
import argparse
import logging
import queue
import threading
import time
from time import time
import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
from geocalib.extractor import GeoCalib
from geocalib.perspective_fields import get_perspective_field
from geocalib.utils import get_device, rad2deg
# flake8: noqa
# mypy: ignore-errors
description = """
-------------------------
GeoCalib Interactive Demo
-------------------------
This script is an interactive demo for GeoCalib. It will open a window showing the camera feed and
the calibration results.
Arguments:
- '--camera_id': Camera ID to use. If none, will ask for ip of droidcam (https://droidcam.app)
You can toggle different features using the following keys:
- 'h': Toggle horizon line
- 'u': Toggle up vector field
- 'l': Toggle latitude heatmap
- 'c': Toggle confidence heatmap
- 'd': Toggle undistorted image
- 'g': Toggle grid of points
- 'b': Toggle box object
You can also change the camera model using the following keys:
- '1': Pinhole
- '2': Simple Radial
- '3': Simple Divisional
Press 'q' to quit the demo.
"""
# Custom VideoCapture class to get the most recent frame instead FIFO
class VideoCapture:
def __init__(self, name):
self.cap = cv2.VideoCapture(name)
self.q = queue.Queue()
t = threading.Thread(target=self._reader)
t.daemon = True
t.start()
# read frames as soon as they are available, keeping only most recent one
def _reader(self):
while True:
ret, frame = self.cap.read()
if not ret:
break
if not self.q.empty():
try:
self.q.get_nowait() # discard previous (unprocessed) frame
except queue.Empty:
pass
self.q.put(frame)
def read(self):
return 1, self.q.get()
def isOpened(self):
return self.cap.isOpened()
def add_text(frame, text, align_left=True, align_top=True):
"""Add text to a plot."""
h, w = frame.shape[:2]
sc = min(h / 640.0, 2.0)
Ht = int(40 * sc) # text height
for i, l in enumerate(text.split("\n")):
max_line = len(max([l for l in text.split("\n")], key=len))
x = int(8 * sc if align_left else w - (max_line) * sc * 18)
y = Ht * (i + 1) if align_top else h - Ht * (len(text.split("\n")) - i - 1) - int(8 * sc)
c_back, c_front = (0, 0, 0), (255, 255, 255)
font, style = cv2.FONT_HERSHEY_DUPLEX, cv2.LINE_AA
cv2.putText(frame, l, (x, y), font, 1.0 * sc, c_back, int(6 * sc), style)
cv2.putText(frame, l, (x, y), font, 1.0 * sc, c_front, int(1 * sc), style)
return frame
def is_corner(p, h, w):
"""Check if a point is a corner."""
return p in [(0, 0), (0, h - 1), (w - 1, 0), (w - 1, h - 1)]
def plot_latitude(frame, latitude):
"""Plot latitude heatmap."""
if not isinstance(latitude, np.ndarray):
latitude = latitude.cpu().numpy()
cmap = plt.get_cmap("seismic")
h, w = frame.shape[0], frame.shape[1]
sc = min(h / 640.0, 2.0)
vmin, vmax = -90, 90
latitude = (latitude - vmin) / (vmax - vmin)
colors = (cmap(latitude)[..., :3] * 255).astype(np.uint8)[..., ::-1]
frame = cv2.addWeighted(frame, 1 - 0.4, colors, 0.4, 0)
for contour_line in np.linspace(vmin, vmax, 15):
contour_line = (contour_line - vmin) / (vmax - vmin)
mask = (latitude > contour_line).astype(np.uint8)
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours:
color = (np.array(cmap(contour_line))[:3] * 255).astype(np.uint8)[::-1]
# remove corners
contour = [p for p in contour if not is_corner(tuple(p[0]), h, w)]
for index, item in enumerate(contour[:-1]):
cv2.line(frame, item[0], contour[index + 1][0], color.tolist(), int(5 * sc))
return frame
def draw_horizon_line(frame, heatmap):
"""Draw a horizon line."""
if not isinstance(heatmap, np.ndarray):
heatmap = heatmap.cpu().numpy()
h, w = frame.shape[0], frame.shape[1]
sc = min(h / 640.0, 2.0)
color = (0, 255, 255)
vmin, vmax = -90, 90
heatmap = (heatmap - vmin) / (vmax - vmin)
contours, _ = cv2.findContours(
(heatmap > 0.5).astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
if contours:
contour = [p for p in contours[0] if not is_corner(tuple(p[0]), h, w)]
for index, item in enumerate(contour[:-1]):
cv2.line(frame, item[0], contour[index + 1][0], color, int(5 * sc))
return frame
def plot_confidence(frame, confidence):
"""Plot confidence heatmap."""
if not isinstance(confidence, np.ndarray):
confidence = confidence.cpu().numpy()
confidence = np.log10(confidence.clip(1e-6)).clip(-4)
confidence = (confidence - confidence.min()) / (confidence.max() - confidence.min())
cmap = plt.get_cmap("turbo")
colors = (cmap(confidence)[..., :3] * 255).astype(np.uint8)[..., ::-1]
return cv2.addWeighted(frame, 1 - 0.4, colors, 0.4, 0)
def plot_vector_field(frame, vector_field):
"""Plot a vector field."""
if not isinstance(vector_field, np.ndarray):
vector_field = vector_field.cpu().numpy()
H, W = frame.shape[:2]
sc = min(H / 640.0, 2.0)
subsample = min(W, H) // 10
offset_x = ((W % subsample) + subsample) // 2
samples_x = np.arange(offset_x, W, subsample)
samples_y = np.arange(int(subsample * 0.9), H, subsample)
vec_len = 40 * sc
x_grid, y_grid = np.meshgrid(samples_x, samples_y)
x, y = vector_field[:, samples_y][:, :, samples_x]
for xi, yi, xi_dir, yi_dir in zip(x_grid.ravel(), y_grid.ravel(), x.ravel(), y.ravel()):
start = (xi, yi)
end = (int(xi + xi_dir * vec_len), int(yi + yi_dir * vec_len))
cv2.arrowedLine(
frame, start, end, (0, 255, 0), int(5 * sc), line_type=cv2.LINE_AA, tipLength=0.3
)
return frame
def plot_box(frame, gravity, camera):
"""Plot a box object."""
pts = np.array(
[[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1]]
)
pts = pts - np.array([0.5, 1, 0.5])
rotation_vec = cv2.Rodrigues(gravity.R.numpy()[0])[0]
t = np.array([0, 0, 1], dtype=float)
K = camera.K[0].cpu().numpy().astype(float)
dist = np.zeros(4, dtype=float)
axis_points, _ = cv2.projectPoints(
0.1 * pts.reshape(-1, 3).astype(float), rotation_vec, t, K, dist
)
h = frame.shape[0]
sc = min(h / 640.0, 2.0)
color = (85, 108, 228)
for p in axis_points:
center = tuple((int(p[0][0]), int(p[0][1])))
frame = cv2.circle(frame, center, 10, color, -1, cv2.LINE_AA)
for i in range(0, 4):
p1 = axis_points[i].astype(int)
p2 = axis_points[i + 4].astype(int)
frame = cv2.line(frame, tuple(p1[0]), tuple(p2[0]), color, int(5 * sc), cv2.LINE_AA)
p1 = axis_points[i].astype(int)
p2 = axis_points[(i + 1) % 4].astype(int)
frame = cv2.line(frame, tuple(p1[0]), tuple(p2[0]), color, int(5 * sc), cv2.LINE_AA)
p1 = axis_points[i + 4].astype(int)
p2 = axis_points[(i + 1) % 4 + 4].astype(int)
frame = cv2.line(frame, tuple(p1[0]), tuple(p2[0]), color, int(5 * sc), cv2.LINE_AA)
return frame
def plot_grid(frame, gravity, camera, grid_size=0.2, num_points=5):
"""Plot a grid of points."""
h = frame.shape[0]
sc = min(h / 640.0, 2.0)
samples = np.linspace(-grid_size, grid_size, num_points)
xz = np.meshgrid(samples, samples)
pts = np.stack((xz[0].ravel(), np.zeros_like(xz[0].ravel()), xz[1].ravel()), axis=-1)
# project points
rotation_vec = cv2.Rodrigues(gravity.R.numpy()[0])[0]
t = np.array([0, 0, 1], dtype=float)
K = camera.K[0].cpu().numpy().astype(float)
dist = np.zeros(4, dtype=float)
axis_points, _ = cv2.projectPoints(pts.reshape(-1, 3).astype(float), rotation_vec, t, K, dist)
color = (192, 77, 58)
# draw points
for p in axis_points:
center = tuple((int(p[0][0]), int(p[0][1])))
frame = cv2.circle(frame, center, 10, color, -1, cv2.LINE_AA)
# draw lines
for i in range(num_points):
for j in range(num_points - 1):
p1 = axis_points[i * num_points + j].astype(int)
p2 = axis_points[i * num_points + j + 1].astype(int)
frame = cv2.line(frame, tuple(p1[0]), tuple(p2[0]), color, int(5 * sc), cv2.LINE_AA)
p1 = axis_points[j * num_points + i].astype(int)
p2 = axis_points[(j + 1) * num_points + i].astype(int)
frame = cv2.line(frame, tuple(p1[0]), tuple(p2[0]), color, int(5 * sc), cv2.LINE_AA)
return frame
def undistort_image(img, camera, padding=0.3):
"""Undistort an image."""
W, H = camera.size.unbind(-1)
H, W = H.int().item(), W.int().item()
pad_h, pad_w = int(H * padding), int(W * padding)
x, y = torch.meshgrid(torch.arange(0, W + pad_w), torch.arange(0, H + pad_h), indexing="xy")
coords = torch.stack((x, y), dim=-1).reshape(-1, 2) - torch.tensor([pad_w / 2, pad_h / 2])
p3d, _ = camera.pinhole().image2world(coords.to(camera.device).to(camera.dtype))
p2d, _ = camera.world2image(p3d)
p2d = p2d.float().numpy().reshape(H + pad_h, W + pad_w, 2)
img = cv2.remap(img, p2d[..., 0], p2d[..., 1], cv2.INTER_LINEAR, borderValue=(254, 254, 254))
return cv2.resize(img, (W, H))
class InteractiveDemo:
def __init__(self, capture: VideoCapture, device: str) -> None:
self.cap = capture
self.device = torch.device(device)
self.model = GeoCalib().to(device)
self.up_toggle = False
self.lat_toggle = False
self.conf_toggle = False
self.hl_toggle = False
self.grid_toggle = False
self.box_toggle = False
self.undist_toggle = False
self.camera_model = "pinhole"
def render_frame(self, frame, calibration):
"""Render the frame with the calibration results."""
camera, gravity = calibration["camera"].cpu(), calibration["gravity"].cpu()
if self.undist_toggle:
return undistort_image(frame, camera)
up, lat = get_perspective_field(camera, gravity)
if gravity.pitch[0] > 0:
frame = plot_box(frame, gravity, camera) if self.box_toggle else frame
frame = plot_grid(frame, gravity, camera) if self.grid_toggle else frame
else:
frame = plot_grid(frame, gravity, camera) if self.grid_toggle else frame
frame = plot_box(frame, gravity, camera) if self.box_toggle else frame
frame = draw_horizon_line(frame, lat[0, 0]) if self.hl_toggle else frame
if self.conf_toggle and self.up_toggle:
frame = plot_confidence(frame, calibration["up_confidence"][0])
frame = plot_vector_field(frame, up[0]) if self.up_toggle else frame
if self.conf_toggle and self.lat_toggle:
frame = plot_confidence(frame, calibration["latitude_confidence"][0])
frame = plot_latitude(frame, rad2deg(lat)[0, 0]) if self.lat_toggle else frame
return frame
def format_results(self, calibration):
"""Format the calibration results."""
camera, gravity = calibration["camera"].cpu(), calibration["gravity"].cpu()
vfov, focal = camera.vfov[0].item(), camera.f[0, 0].item()
fov_unc = rad2deg(calibration["vfov_uncertainty"].item())
f_unc = calibration["focal_uncertainty"].item()
roll, pitch = gravity.rp[0].unbind(-1)
roll, pitch, vfov = rad2deg(roll), rad2deg(pitch), rad2deg(vfov)
roll_unc = rad2deg(calibration["roll_uncertainty"].item())
pitch_unc = rad2deg(calibration["pitch_uncertainty"].item())
text = f"{self.camera_model.replace('_', ' ').title()}\n"
text += f"Roll: {roll:.2f} (+- {roll_unc:.2f})\n"
text += f"Pitch: {pitch:.2f} (+- {pitch_unc:.2f})\n"
text += f"vFoV: {vfov:.2f} (+- {fov_unc:.2f})\n"
text += f"Focal: {focal:.2f} (+- {f_unc:.2f})"
if hasattr(camera, "k1"):
text += f"\nK1: {camera.k1[0].item():.2f}"
return text
def update_toggles(self):
"""Update the toggles."""
key = cv2.waitKey(100) & 0xFF
if key == ord("h"):
self.hl_toggle = not self.hl_toggle
elif key == ord("u"):
self.up_toggle = not self.up_toggle
elif key == ord("l"):
self.lat_toggle = not self.lat_toggle
elif key == ord("c"):
self.conf_toggle = not self.conf_toggle
elif key == ord("d"):
self.undist_toggle = not self.undist_toggle
elif key == ord("g"):
self.grid_toggle = not self.grid_toggle
elif key == ord("b"):
self.box_toggle = not self.box_toggle
elif key == ord("1"):
self.camera_model = "pinhole"
elif key == ord("2"):
self.camera_model = "simple_radial"
elif key == ord("3"):
self.camera_model = "simple_divisional"
elif key == ord("q"):
return True
return False
def run(self):
"""Run the interactive demo."""
while True:
start = time()
ret, frame = self.cap.read()
if not ret:
print("Error: Failed to retrieve frame.")
break
# create tensor from frame
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img = torch.tensor(img).permute(2, 0, 1) / 255.0
calibration = self.model.calibrate(img.to(self.device), camera_model=self.camera_model)
# render results to the frame
frame = self.render_frame(frame, calibration)
frame = add_text(frame, self.format_results(calibration))
end = time()
frame = add_text(
frame, f"FPS: {1 / (end - start):04.1f}", align_left=False, align_top=False
)
cv2.imshow("GeoCalib Demo", frame)
if self.update_toggles():
break
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--camera_id",
type=int,
default=None,
help="Camera ID to use. If none, will ask for ip of droidcam.",
)
args = parser.parse_args()
print(description)
device = get_device()
print(f"Running on: {device}")
# setup video capture
if args.camera_id is not None:
cap = VideoCapture(args.camera_id)
else:
ip = input("Enter the IP address of the camera: ")
cap = VideoCapture(f"http://{ip}:4747/video/force/1920x1080")
if not cap.isOpened():
raise ValueError("Error: Could not open camera.")
demo = InteractiveDemo(cap, device)
demo.run()
if __name__ == "__main__":
main()