"""Simple interface for GeoCalib model.""" from pathlib import Path from typing import Dict, Optional import torch import torch.nn as nn from torch.nn.functional import interpolate from geocalib.camera import BaseCamera from geocalib.geocalib import GeoCalib as Model from geocalib.utils import ImagePreprocessor, load_image class GeoCalib(nn.Module): """Simple interface for GeoCalib model.""" def __init__(self, weights: str = "pinhole"): """Initialize the model with optional config overrides. Args: weights (str): trained variant, "pinhole" (default) or "distorted". """ super().__init__() if weights == "pinhole": url = "https://github.com/cvg/GeoCalib/releases/download/v1.0/geocalib-pinhole.tar" elif weights == "distorted": url = ( "https://github.com/cvg/GeoCalib/releases/download/v1.0/geocalib-simple_radial.tar" ) else: raise ValueError(f"Unknown weights: {weights}") # load checkpoint model_dir = f"{torch.hub.get_dir()}/geocalib" state_dict = torch.hub.load_state_dict_from_url( url, model_dir, map_location="cpu", file_name=f"{weights}.tar" ) self.model = Model() self.model.flexible_load(state_dict["model"]) self.model.eval() self.image_processor = ImagePreprocessor({"resize": 320, "edge_divisible_by": 32}) def load_image(self, path: Path) -> torch.Tensor: """Load image from path.""" return load_image(path) def _post_process( self, camera: BaseCamera, img_data: dict[str, torch.Tensor], out: dict[str, torch.Tensor] ) -> tuple[BaseCamera, dict[str, torch.Tensor]]: """Post-process model output by undoing scaling and cropping.""" camera = camera.undo_scale_crop(img_data) w, h = camera.size.unbind(-1) h = h[0].round().int().item() w = w[0].round().int().item() for k in ["latitude_field", "up_field"]: out[k] = interpolate(out[k], size=(h, w), mode="bilinear") for k in ["up_confidence", "latitude_confidence"]: out[k] = interpolate(out[k][:, None], size=(h, w), mode="bilinear")[:, 0] inverse_scales = 1.0 / img_data["scales"] zero = camera.new_zeros(camera.f.shape[0]) out["focal_uncertainty"] = out.get("focal_uncertainty", zero) * inverse_scales[1] return camera, out @torch.no_grad() def calibrate( self, img: torch.Tensor, camera_model: str = "pinhole", priors: Optional[Dict[str, torch.Tensor]] = None, shared_intrinsics: bool = False, ) -> Dict[str, torch.Tensor]: """Perform calibration with online resizing. Assumes input image is in range [0, 1] and in RGB format. Args: img (torch.Tensor): Input image, shape (C, H, W) or (1, C, H, W) camera_model (str, optional): Camera model. Defaults to "pinhole". priors (Dict[str, torch.Tensor], optional): Prior parameters. Defaults to {}. shared_intrinsics (bool, optional): Whether to share intrinsics. Defaults to False. Returns: Dict[str, torch.Tensor]: camera and gravity vectors and uncertainties. """ if len(img.shape) == 3: img = img[None] # add batch dim if not shared_intrinsics: assert len(img.shape) == 4 and img.shape[0] == 1 img_data = self.image_processor(img) if priors is None: priors = {} prior_values = {} if prior_focal := priors.get("focal"): prior_focal = prior_focal[None] if len(prior_focal.shape) == 0 else prior_focal prior_values["prior_focal"] = prior_focal * img_data["scales"][1] if "gravity" in priors: prior_gravity = priors["gravity"] prior_gravity = prior_gravity[None] if len(prior_gravity.shape) == 0 else prior_gravity prior_values["prior_gravity"] = prior_gravity self.model.optimizer.set_camera_model(camera_model) self.model.optimizer.shared_intrinsics = shared_intrinsics out = self.model(img_data | prior_values) camera, gravity = out["camera"], out["gravity"] camera, out = self._post_process(camera, img_data, out) return { "camera": camera, "gravity": gravity, "covariance": out["covariance"], **{k: out[k] for k in out.keys() if "field" in k}, **{k: out[k] for k in out.keys() if "confidence" in k}, **{k: out[k] for k in out.keys() if "uncertainty" in k}, }