"""Perspective field utilities. Adapted from https://github.com/jinlinyi/PerspectiveFields """ import torch from siclib.utils.conversions import deg2rad, rad2deg def encode_up_bin(vector_field: torch.Tensor, num_bin: int) -> torch.Tensor: """Encode vector field into classification bins. Args: vector_field (torch.Tensor): gravity field of shape (2, h, w), with channel 0 cos(theta) and 1 sin(theta) num_bin (int): number of classification bins Returns: torch.Tensor: encoded bin indices of shape (1, h, w) """ angle = ( torch.atan2(vector_field[1, :, :], vector_field[0, :, :]) / torch.pi * 180 + 180 ) % 360 # [0,360) angle_bin = torch.round(torch.div(angle, (360 / (num_bin - 1)))).long() angle_bin[angle_bin == num_bin - 1] = 0 invalid = (vector_field == 0).sum(0) == vector_field.size(0) angle_bin[invalid] = num_bin - 1 return deg2rad(angle_bin.type(torch.LongTensor)) def decode_up_bin(angle_bin: torch.Tensor, num_bin: int) -> torch.Tensor: """Decode classification bins into vector field. Args: angle_bin (torch.Tensor): bin indices of shape (1, h, w) num_bin (int): number of classification bins Returns: torch.Tensor: decoded vector field of shape (2, h, w) """ angle = (angle_bin * (360 / (num_bin - 1)) - 180) / 180 * torch.pi cos = torch.cos(angle) sin = torch.sin(angle) vector_field = torch.stack((cos, sin), dim=1) invalid = angle_bin == num_bin - 1 invalid = invalid.unsqueeze(1).repeat(1, 2, 1, 1) vector_field[invalid] = 0 return vector_field def encode_bin_latitude(latimap: torch.Tensor, num_classes: int) -> torch.Tensor: """Encode latitude map into classification bins. Args: latimap (torch.Tensor): latitude map of shape (h, w) with values in [-90, 90] num_classes (int): number of classes Returns: torch.Tensor: encoded latitude bin indices """ boundaries = torch.arange(-90, 90, 180 / num_classes)[1:] binmap = torch.bucketize(rad2deg(latimap), boundaries) return binmap.type(torch.LongTensor) def decode_bin_latitude(binmap: torch.Tensor, num_classes: int) -> torch.Tensor: """Decode classification bins to latitude map. Args: binmap (torch.Tensor): encoded classification bins num_classes (int): number of classes Returns: torch.Tensor: latitude map of shape (h, w) """ bin_size = 180 / num_classes bin_centers = torch.arange(-90, 90, bin_size) + bin_size / 2 bin_centers = bin_centers.to(binmap.device) latimap = bin_centers[binmap] return deg2rad(latimap)