Spaces:
Running
Running
Commit
·
3254df2
1
Parent(s):
a514d75
fix: changes
Browse files
app.py
CHANGED
@@ -1,76 +1,67 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
-
from transformers import pipeline
|
4 |
-
import time
|
5 |
import matplotlib.pyplot as plt
|
6 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
|
|
|
|
|
|
8 |
st.title("Sentiment Analysis App")
|
9 |
-
st.write("Upload a CSV or Excel file containing text data for sentiment analysis.")
|
10 |
|
11 |
-
# File
|
12 |
uploaded_file = st.file_uploader("Upload a CSV or Excel file", type=["csv", "xlsx"])
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
"sentiment-analysis",
|
18 |
-
model="distilbert-base-uncased-finetuned-sst-2-english"
|
19 |
-
)
|
20 |
-
st.success("Sentiment analysis model loaded successfully!")
|
21 |
-
except Exception as e:
|
22 |
-
st.error(f"Error loading model: {e}")
|
23 |
-
st.stop()
|
24 |
-
|
25 |
-
if uploaded_file:
|
26 |
-
# Check file type
|
27 |
-
if uploaded_file.name.endswith('.csv'):
|
28 |
df = pd.read_csv(uploaded_file)
|
29 |
-
elif uploaded_file.name.endswith('.xlsx'):
|
30 |
-
df = pd.read_excel(uploaded_file)
|
31 |
else:
|
32 |
-
|
33 |
-
st.stop()
|
34 |
-
|
35 |
-
st.write("Data Preview:", df.head())
|
36 |
|
37 |
-
# Check
|
38 |
if 'text' not in df.columns:
|
39 |
-
|
40 |
-
|
41 |
-
st.error(f"Column '{text_column}' not found in the file.")
|
42 |
-
st.stop()
|
43 |
-
else:
|
44 |
-
df.rename(columns={text_column: 'text'}, inplace=True)
|
45 |
else:
|
46 |
text_column = 'text'
|
47 |
|
48 |
-
if
|
49 |
-
#
|
50 |
-
|
|
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
sentiments.append(result['label'])
|
57 |
-
except Exception as e:
|
58 |
-
sentiments.append("Error")
|
59 |
-
st.error(f"Error processing text at row {i + 1}: {e}")
|
60 |
|
61 |
-
|
62 |
-
|
|
|
|
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
# Pie chart
|
68 |
-
sentiment_counts = df['Sentiment'].value_counts()
|
69 |
-
fig, ax = plt.subplots()
|
70 |
-
ax.pie(sentiment_counts, labels=sentiment_counts.index, autopct='%1.1f%%', startangle=90)
|
71 |
-
ax.axis('equal')
|
72 |
-
st.pyplot(fig)
|
73 |
-
|
74 |
-
# Clear progress bar
|
75 |
-
progress_bar.empty()
|
76 |
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
+
from transformers import pipeline
|
|
|
4 |
import matplotlib.pyplot as plt
|
5 |
+
import time
|
6 |
+
|
7 |
+
# Load the sentiment analysis model
|
8 |
+
sentiment_model = pipeline("sentiment-analysis", model="tabularisai/multilingual-sentiment-analysis")
|
9 |
+
|
10 |
+
# Function to perform sentiment analysis
|
11 |
+
def perform_sentiment_analysis(texts):
|
12 |
+
sentiments = sentiment_model(texts)
|
13 |
+
return sentiments
|
14 |
+
|
15 |
+
# Function to plot the sentiment analysis results
|
16 |
+
def plot_sentiment_analysis(sentiments):
|
17 |
+
labels = [item['label'] for item in sentiments]
|
18 |
+
label_counts = pd.Series(labels).value_counts()
|
19 |
+
|
20 |
+
fig, ax = plt.subplots()
|
21 |
+
ax.pie(label_counts, labels=label_counts.index, autopct='%1.1f%%', startangle=90)
|
22 |
+
ax.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
|
23 |
|
24 |
+
st.pyplot(fig)
|
25 |
+
|
26 |
+
# Streamlit UI
|
27 |
st.title("Sentiment Analysis App")
|
|
|
28 |
|
29 |
+
# File upload
|
30 |
uploaded_file = st.file_uploader("Upload a CSV or Excel file", type=["csv", "xlsx"])
|
31 |
|
32 |
+
if uploaded_file is not None:
|
33 |
+
# Read the file
|
34 |
+
if uploaded_file.name.endswith(".csv"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
df = pd.read_csv(uploaded_file)
|
|
|
|
|
36 |
else:
|
37 |
+
df = pd.read_excel(uploaded_file, engine='openpyxl')
|
|
|
|
|
|
|
38 |
|
39 |
+
# Check if 'text' column exists
|
40 |
if 'text' not in df.columns:
|
41 |
+
st.warning("Column 'text' not found. Please enter the column name containing the text values.")
|
42 |
+
text_column = st.text_input("Enter the column name containing the text values")
|
|
|
|
|
|
|
|
|
43 |
else:
|
44 |
text_column = 'text'
|
45 |
|
46 |
+
if text_column in df.columns:
|
47 |
+
# Display the first few rows of the dataframe
|
48 |
+
st.write("First few rows of the uploaded file:")
|
49 |
+
st.write(df.head())
|
50 |
|
51 |
+
# Perform sentiment analysis
|
52 |
+
if st.button("Run Sentiment Analysis"):
|
53 |
+
texts = df[text_column].tolist()
|
54 |
+
progress_bar = st.progress(0)
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
# Simulate progress
|
57 |
+
for i in range(100):
|
58 |
+
time.sleep(0.05)
|
59 |
+
progress_bar.progress(i + 1)
|
60 |
|
61 |
+
sentiments = perform_sentiment_analysis(texts)
|
62 |
+
st.success("Sentiment analysis completed!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
# Plot the sentiment analysis results
|
65 |
+
plot_sentiment_analysis(sentiments)
|
66 |
+
else:
|
67 |
+
st.error("The specified column does not exist in the uploaded file.")
|