Spaces:
Runtime error
Runtime error
File size: 12,516 Bytes
99f1917 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
import os
from pathlib import Path
import torch
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, logging
from utils import load_embedding_bin, set_timesteps, latents_to_pil
from loss import blue_loss, cosine_loss
from matplotlib import pyplot as plt
from pathlib import Path
torch.manual_seed(11)
logging.set_verbosity_error()
# Set device
torch_device = (
"cuda"
if torch.cuda.is_available()
else "mps"
if torch.backends.mps.is_available()
else "cpu"
)
if "mps" == torch_device:
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
# Style embeddings
STYLE_EMBEDDINGS = {
"illustration-style": "illustration_style.bin",
"line-art": "line-art.bin",
"hitokomoru-style": "hitokomoru-style.bin",
"midjourney-style": "midjourney-style.bin",
"hanfu-anime-style": "hanfu-anime-style.bin",
"birb-style": "birb-style.bin",
"style-of-marc-allante": "Marc Allante.bin",
}
LOSS = {"blue_loss": blue_loss,
"cosine_loss": cosine_loss}
STYLE_SEEDS = [11, 56, 110, 65, 5, 29, 47]
# Load the autoencoder model which will be used to decode the latents into image space.
vae = AutoencoderKL.from_pretrained(
"CompVis/stable-diffusion-v1-4", subfolder="vae"
).to(torch_device)
#
# # Load the tokenizer and text encoder to tokenize and encode the text.
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14").to(
torch_device
)
#
# # The UNet model for generating the latents.
unet = UNet2DConditionModel.from_pretrained(
"CompVis/stable-diffusion-v1-4", subfolder="unet"
).to(torch_device)
#
# # The noise scheduler
scheduler = LMSDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
)
# vae = vae
# text_encoder = text_encoder.to(torch_device)
unet = unet
token_emb_layer = text_encoder.text_model.embeddings.token_embedding
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77]
position_embeddings = pos_emb_layer(position_ids)
def build_causal_attention_mask(bsz, seq_len, dtype):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype)
mask.fill_(torch.tensor(torch.finfo(dtype).min))
mask.triu_(1) # zero out the lower diagonal
mask = mask.unsqueeze(1) # expand mask
return mask
def get_output_embeds(input_embeddings):
# CLIP's text model uses causal mask, so we prepare it here:
bsz, seq_len = input_embeddings.shape[:2]
causal_attention_mask = build_causal_attention_mask(
bsz, seq_len, dtype=input_embeddings.dtype
)
# Getting the output embeddings involves calling the model with passing output_hidden_states=True
# so that it doesn't just return the pooled final predictions:
encoder_outputs = text_encoder.text_model.encoder(
inputs_embeds=input_embeddings,
attention_mask=None, # We aren't using an attention mask so that can be None
causal_attention_mask=causal_attention_mask.to(torch_device),
output_attentions=None,
output_hidden_states=True, # We want the output embs not the final output
return_dict=None,
)
# We're interested in the output hidden state only
output = encoder_outputs[0]
# There is a final layer norm we need to pass these through
output = text_encoder.text_model.final_layer_norm(output)
# And now they're ready!
return output
# Generating an image with these modified embeddings
def generate_with_embs(text_embeddings, seed, max_length):
height = 512 # default height of Stable Diffusion
width = 512 # default width of Stable Diffusion
num_inference_steps = 30 # Number of denoising steps
guidance_scale = 7.5 # Scale for classifier-free guidance
generator = torch.manual_seed(seed)
batch_size = 1
# tokenizer
uncond_input = tokenizer(
[""] * batch_size,
padding="max_length",
max_length=max_length,
return_tensors="pt",
)
with torch.no_grad():
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# Prep Scheduler
set_timesteps(scheduler, num_inference_steps)
# Prep latents
# step = " prep_latents "
latents = torch.randn(
(batch_size, unet.in_channels, height // 8, width // 8),
generator=generator,
)
latents = latents.to(torch_device)
latents = latents * scheduler.init_noise_sigma
# Loop
for i, t in tqdm(enumerate(scheduler.timesteps),
total=len(scheduler.timesteps)):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
with torch.no_grad():
noise_pred = unet(
latent_model_input, t, encoder_hidden_states=text_embeddings
)["sample"]
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, t, latents).prev_sample
return latents_to_pil(latents)[0]
def generate_image_from_embeddings(
mod_output_embeddings, seed, max_length,
loss_selection, additional_prompt):
height = 512
width = 512
num_inference_steps = 50
guidance_scale = 8
generator = torch.manual_seed(seed)
batch_size = 1
if loss_selection == "blue_loss":
loss_fn = LOSS["blue_loss"]
loss_scale = 120
else:
loss_fn = LOSS["cosine_loss"](additional_prompt)
loss_scale = 20
# Use the modified_output_embeddings directly
text_embeddings = mod_output_embeddings
uncond_input = tokenizer(
[""] * batch_size,
padding="max_length",
max_length=max_length,
return_tensors="pt",
)
with torch.no_grad():
uncond_embeddings = text_encoder(
uncond_input.input_ids.to(torch_device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# Prep Scheduler
set_timesteps(scheduler, num_inference_steps)
# Prep latents
latents = torch.randn(
(batch_size, unet.config.in_channels, height // 8, width // 8),
generator=generator,
)
latents = latents.to(torch_device)
latents = latents * scheduler.init_noise_sigma
# Loop
for i, t in tqdm(enumerate(scheduler.timesteps),
total=len(scheduler.timesteps)):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
sigma = scheduler.sigmas[i]
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
with torch.no_grad():
noise_pred = unet(
latent_model_input, t, encoder_hidden_states=text_embeddings
)["sample"]
# perform CFG
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
#### ADDITIONAL GUIDANCE ###
if i % 2 == 0:
# Requires grad on the latents
latents = latents.detach().requires_grad_()
# Get the predicted x0:
# latents_x0 = latents - sigma * noise_pred
latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample
scheduler._step_index -= 1
# Decode to image space
denoised_images = (
vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5
) # range (0, 1)
# Calculate loss
loss = loss_fn(denoised_images) * loss_scale
# Occasionally print it out
if i % 10 == 0:
print(i, "loss:", loss.item())
# Get gradient
cond_grad = torch.autograd.grad(loss, latents)[0]
# Modify the latents based on this gradient
latents = latents.detach() - cond_grad * sigma**2
# Now step with scheduler
latents = scheduler.step(noise_pred, t, latents).prev_sample
return latents_to_pil(latents)[0]
def generate_image_per_style(prompt, style_embed, style_seed, style_embedding_key):
modified_output_embeddings = None
gen_out_style_image = None
max_length = 0
# Tokenize
text_input = tokenizer(
prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
input_ids = text_input.input_ids.to(torch_device)
# Get token embeddings
token_embeddings = token_emb_layer(input_ids)
replacement_token_embedding = style_embed[style_embedding_key]
# Insert this into the token embeddings
token_embeddings[
0, torch.where(input_ids[0] == 6829)[0]
] = replacement_token_embedding.to(torch_device)
# Combine with pos embs
input_embeddings = token_embeddings + position_embeddings
# Feed through to get final output embs
modified_output_embeddings = get_output_embeds(input_embeddings)
# And generate an image with this:
max_length = text_input.input_ids.shape[-1]
gen_out_style_image = generate_with_embs(
modified_output_embeddings, style_seed, max_length
)
return gen_out_style_image
def generate_image_per_loss(
prompt, style_embed, style_seed, style_embedding_key,
loss, additional_prompt
):
gen_out_loss_image = None
# Tokenize
text_input = tokenizer(
prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
input_ids = text_input.input_ids.to(torch_device)
# Get token embeddings
token_embeddings = token_emb_layer(input_ids)
replacement_token_embedding = style_embed[style_embedding_key].to(torch_device)
# Insert this into the token embeddings
token_embeddings[
0, torch.where(input_ids[0] == 6829)[0]
] = replacement_token_embedding
# Combine with pos embs
input_embeddings = token_embeddings + position_embeddings
modified_output_embeddings = get_output_embeds(input_embeddings)
# max_length = tokenizer.model_max_length
max_length = text_input.input_ids.shape[-1]
gen_out_loss_image = generate_image_from_embeddings(
modified_output_embeddings, style_seed, max_length,
loss, additional_prompt
)
return gen_out_loss_image
def generate_image_per_prompt_style(text_in, style_in,
loss, additional_prompt):
gen_style_image = None
gen_loss_image = None
STYLE_KEYS = []
style_key = ""
if style_in not in STYLE_EMBEDDINGS:
raise ValueError(
f"Unknown style: {style_in}. Available styles are: {', '.join(STYLE_EMBEDDINGS.keys())}"
)
STYLE_SEEDS = [32, 64, 128, 16, 8, 96]
STYLE_KEYS = list(STYLE_EMBEDDINGS.keys())
print(f"prompt: {text_in}")
print(f"style: {style_in}")
idx = STYLE_KEYS.index(style_in)
style_file = STYLE_EMBEDDINGS[style_in]
print(f"style_file: {style_file}")
prompt = text_in
style_seed = STYLE_SEEDS[idx]
style_key = Path(style_file).stem
style_key = style_key.replace("_", "-")
print(style_key, STYLE_KEYS, style_file)
file_path = os.path.join(os.getcwd(), style_file)
embedding = load_embedding_bin(file_path)
style_key = f"<{style_key}>"
gen_style_image = generate_image_per_style(prompt, embedding, style_seed, style_key)
gen_loss_image = generate_image_per_loss(prompt, embedding, style_seed, style_key, loss, additional_prompt)
return [gen_style_image, gen_loss_image]
|