Spaces:
Runtime error
Runtime error
device fix
Browse files- image_generator.py +4 -10
- utils.py +12 -1
image_generator.py
CHANGED
@@ -7,8 +7,6 @@ from transformers import CLIPTextModel, CLIPTokenizer, logging
|
|
7 |
|
8 |
from utils import load_embedding_bin, set_timesteps, latents_to_pil
|
9 |
from loss import blue_loss, cosine_loss
|
10 |
-
from matplotlib import pyplot as plt
|
11 |
-
from pathlib import Path
|
12 |
|
13 |
torch.manual_seed(11)
|
14 |
logging.set_verbosity_error()
|
@@ -43,10 +41,9 @@ vae = AutoencoderKL.from_pretrained(
|
|
43 |
#
|
44 |
# # Load the tokenizer and text encoder to tokenize and encode the text.
|
45 |
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
|
46 |
-
text_encoder = CLIPTextModel.from_pretrained(
|
47 |
-
torch_device
|
48 |
-
|
49 |
-
#
|
50 |
# # The UNet model for generating the latents.
|
51 |
unet = UNet2DConditionModel.from_pretrained(
|
52 |
"CompVis/stable-diffusion-v1-4", subfolder="unet"
|
@@ -60,9 +57,6 @@ scheduler = LMSDiscreteScheduler(
|
|
60 |
num_train_timesteps=1000,
|
61 |
)
|
62 |
|
63 |
-
# vae = vae
|
64 |
-
# text_encoder = text_encoder.to(torch_device)
|
65 |
-
unet = unet
|
66 |
token_emb_layer = text_encoder.text_model.embeddings.token_embedding
|
67 |
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
|
68 |
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77]
|
@@ -227,7 +221,7 @@ def generate_image_from_embeddings(
|
|
227 |
)
|
228 |
|
229 |
#### ADDITIONAL GUIDANCE ###
|
230 |
-
if i %
|
231 |
# Requires grad on the latents
|
232 |
latents = latents.detach().requires_grad_()
|
233 |
|
|
|
7 |
|
8 |
from utils import load_embedding_bin, set_timesteps, latents_to_pil
|
9 |
from loss import blue_loss, cosine_loss
|
|
|
|
|
10 |
|
11 |
torch.manual_seed(11)
|
12 |
logging.set_verbosity_error()
|
|
|
41 |
#
|
42 |
# # Load the tokenizer and text encoder to tokenize and encode the text.
|
43 |
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
|
44 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
45 |
+
"openai/clip-vit-large-patch14").to(torch_device)
|
46 |
+
|
|
|
47 |
# # The UNet model for generating the latents.
|
48 |
unet = UNet2DConditionModel.from_pretrained(
|
49 |
"CompVis/stable-diffusion-v1-4", subfolder="unet"
|
|
|
57 |
num_train_timesteps=1000,
|
58 |
)
|
59 |
|
|
|
|
|
|
|
60 |
token_emb_layer = text_encoder.text_model.embeddings.token_embedding
|
61 |
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
|
62 |
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77]
|
|
|
221 |
)
|
222 |
|
223 |
#### ADDITIONAL GUIDANCE ###
|
224 |
+
if i % 5 == 0:
|
225 |
# Requires grad on the latents
|
226 |
latents = latents.detach().requires_grad_()
|
227 |
|
utils.py
CHANGED
@@ -1,8 +1,19 @@
|
|
|
|
1 |
import torch
|
2 |
from PIL import Image
|
3 |
from diffusers import AutoencoderKL
|
4 |
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
def pil_to_latent(input_im):
|
8 |
# Single image -> single latent in a batch (so size 1, 4, 64, 64)
|
|
|
1 |
+
import os
|
2 |
import torch
|
3 |
from PIL import Image
|
4 |
from diffusers import AutoencoderKL
|
5 |
|
6 |
+
torch_device = (
|
7 |
+
"cuda"
|
8 |
+
if torch.cuda.is_available()
|
9 |
+
else "mps"
|
10 |
+
if torch.backends.mps.is_available()
|
11 |
+
else "cpu"
|
12 |
+
)
|
13 |
+
if "mps" == torch_device:
|
14 |
+
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
15 |
+
|
16 |
+
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae").to(torch_device)
|
17 |
|
18 |
def pil_to_latent(input_im):
|
19 |
# Single image -> single latent in a batch (so size 1, 4, 64, 64)
|