from torchvision import datasets import albumentations as A from albumentations.pytorch import ToTensorV2 NORM_DATA_MEAN = (0.49139968, 0.48215841, 0.44653091) NORM_DATA_STD = (0.24703223, 0.24348513, 0.26158784) CIFAR_CLASS_LABELS = [ 'airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck' ] TRAIN_TRANSFORM = A.Compose([ A.Normalize( mean=NORM_DATA_MEAN, std=NORM_DATA_STD, ), A.HorizontalFlip(), A.Compose([ A.PadIfNeeded(min_height=40, min_width=40, p=1.0), A.CoarseDropout(max_holes=1, max_height=16, max_width=16, min_holes=1, min_height=16, min_width=16, fill_value=NORM_DATA_MEAN, mask_fill_value=None, p=1.0), A.RandomCrop(p=1.0, height=32, width=32) ]), ToTensorV2(), ]) TEST_TRANSFORM = A.Compose([ A.Normalize( mean=NORM_DATA_MEAN, std=NORM_DATA_STD, ), ToTensorV2(), ]) class CifarAlbumentationsDataset(datasets.CIFAR10): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def __getitem__(self, idx): img, target = self.data[idx], self.targets[idx] if self.transform: augmented = self.transform(image=img) image = augmented['image'] return image, target