venkatasg commited on
Commit
91c44b6
·
1 Parent(s): ca6b0e0

mean and stdev

Browse files
Files changed (1) hide show
  1. gleu.py +10 -7
gleu.py CHANGED
@@ -18,6 +18,7 @@ import datasets
18
  from collections import Counter
19
  from math import log, exp
20
  from random import seed, randint
 
21
 
22
 
23
  # TODO: Add BibTeX citation
@@ -49,7 +50,8 @@ Args:
49
  references: Reference for each prediction. Each reference should be a string with tokens separated by spaces.
50
  predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces.
51
  Returns:
52
- gleu_score: Average gleu_score over all predictions.
 
53
 
54
  Examples:
55
 
@@ -57,15 +59,15 @@ Examples:
57
  >>> references=["We may in actual fact be communicating with a hoax Facebook acccount of a cyberfriend , which we assume to be real but in reality , it is a fake account ."]
58
  >>> results = my_new_module.compute(references=references, predictions=["We may of actual fact communicating with a hoax Facebook acccount of a cyber friend , which we assumed to be real but in reality , it is a fake account ."])
59
  >>> print(results)
60
- {'gleu_score': 0.6}
61
 
62
  >>> results = my_new_module.compute(references=references, predictions=["We may be in actual fact communicating with a hoax Facebook acccount of a cyber friend , we assume to be real but in reality , it is a fake account ."])
63
  >>> print(results)
64
- {'gleu_score': 0.62}
65
 
66
  >>> results = my_new_module.compute(references=references, predictions=["We may in actual fact communicating with a hoax Facebook account of a cyber friend , which we assume to be real but in reality , it is a fake accounts ."])
67
  >>> print(results)
68
- {'gleu_score': 0.64}
69
 
70
  """
71
 
@@ -239,6 +241,7 @@ class gleu(evaluate.Metric):
239
 
240
  iter_stats[j] = [sum(scores) for scores in zip(iter_stats[j], this_stats)]
241
 
242
- final_gleu_score = get_gleu_stats([gleu_calculator.compute_gleu(stats)
243
- for stats in iter_stats ])[0]
244
- return {"gleu_score": final_gleu_score}
 
 
18
  from collections import Counter
19
  from math import log, exp
20
  from random import seed, randint
21
+ from numpy import mean, std, round
22
 
23
 
24
  # TODO: Add BibTeX citation
 
50
  references: Reference for each prediction. Each reference should be a string with tokens separated by spaces.
51
  predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces.
52
  Returns:
53
+ mean_gleu_score: Average gleu_score over all predictions.
54
+ SD: standard deviation
55
 
56
  Examples:
57
 
 
59
  >>> references=["We may in actual fact be communicating with a hoax Facebook acccount of a cyberfriend , which we assume to be real but in reality , it is a fake account ."]
60
  >>> results = my_new_module.compute(references=references, predictions=["We may of actual fact communicating with a hoax Facebook acccount of a cyber friend , which we assumed to be real but in reality , it is a fake account ."])
61
  >>> print(results)
62
+ {'mean_gleu_score': 0.6}
63
 
64
  >>> results = my_new_module.compute(references=references, predictions=["We may be in actual fact communicating with a hoax Facebook acccount of a cyber friend , we assume to be real but in reality , it is a fake account ."])
65
  >>> print(results)
66
+ {'mean_gleu_score': 0.62}
67
 
68
  >>> results = my_new_module.compute(references=references, predictions=["We may in actual fact communicating with a hoax Facebook account of a cyber friend , which we assume to be real but in reality , it is a fake accounts ."])
69
  >>> print(results)
70
+ {'mean_gleu_score': 0.64}
71
 
72
  """
73
 
 
241
 
242
  iter_stats[j] = [sum(scores) for scores in zip(iter_stats[j], this_stats)]
243
 
244
+ sent_scores = [gleu_calculator.compute_gleu(stats) for stats in iter_stats]
245
+ mean_score = round(mean(sent_scores),2)
246
+ std_score = round(std(sent_scores),2)
247
+ return {"mean_gleu_score": mean_score, 'SD': std_score}