import os from langchain_core.prompts import ChatPromptTemplate from langchain_google_genai import ChatGoogleGenerativeAI from langchain_core.prompts import MessagesPlaceholder from langchain.memory import ConversationBufferWindowMemory from operator import itemgetter from langchain_core.runnables import RunnableLambda,RunnablePassthrough import streamlit as st genai_key = os.getenv("gen_key") model = ChatGoogleGenerativeAI(temperature=0,model='gemini-1.5-pro',max_output_tokens=150,convert_system_message_to_human=True,google_api_key=genai_key) prompt=ChatPromptTemplate.from_messages([ ("system","you are a good assistant that give information about mentioned topic."), MessagesPlaceholder(variable_name="history"), ("human","{input}")]) # Initialize memory in session state if 'memory' not in st.session_state: st.session_state.memory = ConversationBufferWindowMemory(k=10, return_messages=True) # Define the chain chain = (RunnablePassthrough.assign(history=RunnableLambda(st.session_state.memory.load_memory_variables) | itemgetter("history")) | prompt | model) # Streamlit app st.title("Interactive Chatbot") # Initialize session state for user input if 'user_input' not in st.session_state: st.session_state.user_input = "" # Input from user user_input = st.text_area("User: ", st.session_state.user_input, height=100) if st.button("Submit"): response = chain.invoke({"input": user_input}) st.write(f"Assistant: {response.content}") st.session_state.memory.save_context({"input": user_input}, {"output": response.content}) st.session_state.user_input = "" # Clear the input box # Display chat history if st.checkbox("Show Chat History"): chat_history = st.session_state.memory.load_memory_variables({}) st.write(chat_history)