Spaces:
Sleeping
Sleeping
File size: 15,579 Bytes
cdd0177 1eabbd4 cdd0177 1eabbd4 cdd0177 1eabbd4 cdd0177 1eabbd4 cdd0177 1eabbd4 cdd0177 1eabbd4 cdd0177 1eabbd4 cdd0177 1eabbd4 cdd0177 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import streamlit as st
import numpy as np
import plotly.figure_factory as ff
import plotly.express as px
import pandas as pd
import plotly.graph_objects as go
import os
import argparse
from st_aggrid import GridOptionsBuilder, AgGrid, GridUpdateMode, DataReturnMode
from PIL import Image
from streamlit_extras.stylable_container import stylable_container
from streamlit_extras.metric_cards import style_metric_cards
import pickle
def check_and_download_file(file_path, url):
if os.path.exists(file_path):
print(f"The file '{file_path}' already exists.")
else:
print(f"The file '{file_path}' does not exist. Downloading...")
try:
response = requests.get(url)
response.raise_for_status() # Check if the request was successful
with open(file_path, 'wb') as file:
file.write(response.content)
print(f"File downloaded successfully and saved as '{file_path}'.")
except requests.exceptions.RequestException as e:
print(f"An error occurred while downloading the file: {e}")
# Implement AND condition when downloading data
st.set_page_config(layout="wide")
color = {'Black or African American': '#2993A3', 'White':'#666766', 'Native American':'#f4b780', 'Hispanic':'#a0cd7c', 'Pacific Islander':'#a680ba', 'Unknown/Other':'#3a393a','Asian':'#f37e85'}
file = open("login_state.pkl",'rb')
st.session_state['logged_in'] = pickle.load(file)
file.close()
#print(st.session_state.get("logged_in"))
#----------------------------NavBar-------------------------#
hide_menu_style = """
<style>
#MainMenu {visibility: hidden;}
header {visibility: hidden;}
</style>
"""
st.markdown(hide_menu_style, unsafe_allow_html=True)
# print(st.session_state.get("logged_in"))
if st.session_state.get("logged_in") == False or st.session_state.get("logged_in") == None:
st.switch_page("app.py")
st.markdown('<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css" integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm" crossorigin="anonymous">', unsafe_allow_html=True)
st.markdown("""
<nav class="navbar fixed-top navbar-expand-lg navbar-dark" style="background-color: #3498DB;background-image:url('/Users/shaashwatagrawal/Documents/SF County/dashboard/Background.jpeg');">
<a class="navbar-brand" href="https://www.ipr.northwestern.edu/who-we-are/faculty-experts/redbird.html" target="_blank">RJA Dashboard</a>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarNav" aria-controls="navbarNav" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div class="collapse navbar-collapse" id="navbarNav">
<ul class="navbar-nav">
<li class="nav-item">
<a class="nav-link disabled" href="https://sanbernardinorja.streamlit.app/page_0" target="_self">Arrest Summary</a>
</li>
<li class="nav-item active">
<a class="nav-link" href="https://sanbernardinorja.streamlit.app/page_1" target="_self">Charge By Race<span class="sr-only">(current)</span></a>
</li>
<li class="nav-item">
<a class="nav-link" href="https://sanbernardinorja.streamlit.app/page_2" target="_self">Download Data</a>
</li>
</ul>
<ul class="navbar-nav ml-auto">
<li class="nav-item mr-auto" style="padding-left:5px;padding-right:5px;outline-color:#f0f2f5;border: 2px solid white;border-radius:10px;">
<a class="nav-link" href="https://sanbernardinorja.streamlit.app/" target="_self" >Logout</a>
</li>
</ul>
</div>
</nav>
""", unsafe_allow_html=True)
#---------------------------- Page 2 ----------------------------#
cols = st.columns(2)
Page2 = stylable_container(key="Page2", css_styles=""" {box-shadow: rgba(0, 0, 0, 0.24) 0px 3px 15px;}""")
cols = Page2.columns([4,3,3])
cols[1].header("Charges By Race", anchor = 'section-2', help = 'Understanding Disparity at different stages of a criminal proceeding (i.e. Arrest, Charging and Sentencing).')
# parser = argparse.ArgumentParser()
# parser.add_argument('--charge', type=str, default='187A')
# args = parser.parse_args()
with open("list_of_charges.pkl", "rb") as fp: # Unpickling
charges = pickle.load(fp)
col = Page2.columns([0.5, 9, 0.5])
PC = col[1].multiselect('Select Type of Charge', tuple(charges), default='459')#index=list(charges).index(args.charge))
file_path = "Population.csv"
url = 'https://rja-sanbernardino.s3.us-east-1.amazonaws.com/dashboard/Population.csv?response-content-disposition=inline&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEM%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJGMEQCIFmSNoakzC4hQlNV2NcIpccGqt1lJiw7dumO58Kv5HHaAiBCHRkYbyL09%2BOEofcZF%2Bns9A09PO6x%2B0OxiYD2hpoX9SrkAghnEAAaDDg5MTM3NzEzNDQwMCIMZmel5gOdx72MuskSKsECTeZ5%2BcyfkQg%2B%2B3A7JvIv%2BC1gROoz%2FDXmPWbU%2FSAZeVnNm52uZ%2BqIMs%2BwWYZetz3c6yCs4jAoaTtG5m%2BQUFHX0y8bA131w1uOZUPrG8vFPXNHWSgPIc2G%2BZoXdzeipp2WUaTIGlCwyWXDI0XfP9qVjd6Xq4HLnggPA4oSEu1YwgK%2B47jO0XM%2BucrzhxuqSmi6wVGtzHp93KmPFT6jVAyM%2Bl6kb3apdWTa8YHjAzVRSLF7Zz%2Fp%2BMqMHJu4rqCAxFjNHzYu6iNqfLa17QRksNm6ceMouz8Hmv3npsckPC47fZLRmUn1RHdT0lNBOq%2BqiQzrSDxhGIpVUsH9S8rVkSMsGKupUo8Hj18GsuAsTeqtIICu9QrV%2F0yEnkpMbv4YBkbIP06fCLDbvEOFYkR6E8%2BCNduIk2IsaFdCuA%2FrBojQ9DSdMLCbo7MGOrQCUO2zBp8Ayj4ia9p0LjRwbGHDNtKhAQzxdILs%2BTn%2BTREt231CGQ119MkAhv4MeK685Da%2F8VOpav58HESVRdNqcYh%2B3AYuXsCwnC2WHYIpsgz5VssWUvwH%2BvPMwkzzIgXcdwNVBNS4m67c5pcya%2BQIVR3ShsBOv4BiTESmnjwUlxORB%2ByYvdfTz5gkVx3IA97wri%2FEKTH5prAsLR80ue2ayQDYnciX8awXYavJ7ypQa4nXgiyzOoy8ZJ5eA5yDeGiZG9rGkopMkjLVgrZeDfK7LH87Vetx3Jcxrwwwh7NVIvXQ0rnf5nJEweuW7EcgRSEeyB11pMUsSZC3f4NCRFt%2B6FcwqpJsY%2FxJBLgtroXp3XBHcZlH4pmx6hcHqFRAYav6ZSUdjfavsbSA5gaarEscJfaQrdk%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20240611T224039Z&X-Amz-SignedHeaders=host&X-Amz-Expires=43200&X-Amz-Credential=ASIA47CRXVNAOF2MQFR4%2F20240611%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=96c7384f7b881f1b201abc0689608231042ce46b076fdf75e2c3e009efc26cb7'
check_and_download_file(file_path, url)
# Reading and Processing Data
pop = pd.read_csv("Population.csv")
file_path = "Arrest_page1.csv"
url = 'https://rja-sanbernardino.s3.us-east-1.amazonaws.com/dashboard/Arrest_page1.csv?response-content-disposition=inline&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEM%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJGMEQCIFmSNoakzC4hQlNV2NcIpccGqt1lJiw7dumO58Kv5HHaAiBCHRkYbyL09%2BOEofcZF%2Bns9A09PO6x%2B0OxiYD2hpoX9SrkAghnEAAaDDg5MTM3NzEzNDQwMCIMZmel5gOdx72MuskSKsECTeZ5%2BcyfkQg%2B%2B3A7JvIv%2BC1gROoz%2FDXmPWbU%2FSAZeVnNm52uZ%2BqIMs%2BwWYZetz3c6yCs4jAoaTtG5m%2BQUFHX0y8bA131w1uOZUPrG8vFPXNHWSgPIc2G%2BZoXdzeipp2WUaTIGlCwyWXDI0XfP9qVjd6Xq4HLnggPA4oSEu1YwgK%2B47jO0XM%2BucrzhxuqSmi6wVGtzHp93KmPFT6jVAyM%2Bl6kb3apdWTa8YHjAzVRSLF7Zz%2Fp%2BMqMHJu4rqCAxFjNHzYu6iNqfLa17QRksNm6ceMouz8Hmv3npsckPC47fZLRmUn1RHdT0lNBOq%2BqiQzrSDxhGIpVUsH9S8rVkSMsGKupUo8Hj18GsuAsTeqtIICu9QrV%2F0yEnkpMbv4YBkbIP06fCLDbvEOFYkR6E8%2BCNduIk2IsaFdCuA%2FrBojQ9DSdMLCbo7MGOrQCUO2zBp8Ayj4ia9p0LjRwbGHDNtKhAQzxdILs%2BTn%2BTREt231CGQ119MkAhv4MeK685Da%2F8VOpav58HESVRdNqcYh%2B3AYuXsCwnC2WHYIpsgz5VssWUvwH%2BvPMwkzzIgXcdwNVBNS4m67c5pcya%2BQIVR3ShsBOv4BiTESmnjwUlxORB%2ByYvdfTz5gkVx3IA97wri%2FEKTH5prAsLR80ue2ayQDYnciX8awXYavJ7ypQa4nXgiyzOoy8ZJ5eA5yDeGiZG9rGkopMkjLVgrZeDfK7LH87Vetx3Jcxrwwwh7NVIvXQ0rnf5nJEweuW7EcgRSEeyB11pMUsSZC3f4NCRFt%2B6FcwqpJsY%2FxJBLgtroXp3XBHcZlH4pmx6hcHqFRAYav6ZSUdjfavsbSA5gaarEscJfaQrdk%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20240611T225817Z&X-Amz-SignedHeaders=host&X-Amz-Expires=43200&X-Amz-Credential=ASIA47CRXVNAOF2MQFR4%2F20240611%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=a702152a4b591ee74c315cbe38efc60b9487eaeeaad8a50fd98812fadc68c232'
check_and_download_file(file_path, url)
df = pd.read_csv("Arrest_page1.csv")
#df = df[df['Charges'].str.contains('|'.join(PC))]
file_path = "Court_page1.csv"
url = 'https://rja-sanbernardino.s3.us-east-1.amazonaws.com/dashboard/Court_page1.csv?response-content-disposition=inline&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEM%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJGMEQCIFmSNoakzC4hQlNV2NcIpccGqt1lJiw7dumO58Kv5HHaAiBCHRkYbyL09%2BOEofcZF%2Bns9A09PO6x%2B0OxiYD2hpoX9SrkAghnEAAaDDg5MTM3NzEzNDQwMCIMZmel5gOdx72MuskSKsECTeZ5%2BcyfkQg%2B%2B3A7JvIv%2BC1gROoz%2FDXmPWbU%2FSAZeVnNm52uZ%2BqIMs%2BwWYZetz3c6yCs4jAoaTtG5m%2BQUFHX0y8bA131w1uOZUPrG8vFPXNHWSgPIc2G%2BZoXdzeipp2WUaTIGlCwyWXDI0XfP9qVjd6Xq4HLnggPA4oSEu1YwgK%2B47jO0XM%2BucrzhxuqSmi6wVGtzHp93KmPFT6jVAyM%2Bl6kb3apdWTa8YHjAzVRSLF7Zz%2Fp%2BMqMHJu4rqCAxFjNHzYu6iNqfLa17QRksNm6ceMouz8Hmv3npsckPC47fZLRmUn1RHdT0lNBOq%2BqiQzrSDxhGIpVUsH9S8rVkSMsGKupUo8Hj18GsuAsTeqtIICu9QrV%2F0yEnkpMbv4YBkbIP06fCLDbvEOFYkR6E8%2BCNduIk2IsaFdCuA%2FrBojQ9DSdMLCbo7MGOrQCUO2zBp8Ayj4ia9p0LjRwbGHDNtKhAQzxdILs%2BTn%2BTREt231CGQ119MkAhv4MeK685Da%2F8VOpav58HESVRdNqcYh%2B3AYuXsCwnC2WHYIpsgz5VssWUvwH%2BvPMwkzzIgXcdwNVBNS4m67c5pcya%2BQIVR3ShsBOv4BiTESmnjwUlxORB%2ByYvdfTz5gkVx3IA97wri%2FEKTH5prAsLR80ue2ayQDYnciX8awXYavJ7ypQa4nXgiyzOoy8ZJ5eA5yDeGiZG9rGkopMkjLVgrZeDfK7LH87Vetx3Jcxrwwwh7NVIvXQ0rnf5nJEweuW7EcgRSEeyB11pMUsSZC3f4NCRFt%2B6FcwqpJsY%2FxJBLgtroXp3XBHcZlH4pmx6hcHqFRAYav6ZSUdjfavsbSA5gaarEscJfaQrdk%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20240611T225908Z&X-Amz-SignedHeaders=host&X-Amz-Expires=43200&X-Amz-Credential=ASIA47CRXVNAOF2MQFR4%2F20240611%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=edf0d1114a2fe7f5917b855a2e350d58c6de7d4373b99d69ec723f637be52512'
check_and_download_file(file_path, url)
dfr = pd.read_csv("Court_page1.csv")
#print(PC)
#dfr = dfr[dfr['Charges'].str.contains('|'.join(PC))]
#print(dfr)
file_path = "Sentence_page1.csv"
url = 'https://rja-sanbernardino.s3.us-east-1.amazonaws.com/dashboard/Sentence_page1.csv?response-content-disposition=inline&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEM%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJGMEQCIFmSNoakzC4hQlNV2NcIpccGqt1lJiw7dumO58Kv5HHaAiBCHRkYbyL09%2BOEofcZF%2Bns9A09PO6x%2B0OxiYD2hpoX9SrkAghnEAAaDDg5MTM3NzEzNDQwMCIMZmel5gOdx72MuskSKsECTeZ5%2BcyfkQg%2B%2B3A7JvIv%2BC1gROoz%2FDXmPWbU%2FSAZeVnNm52uZ%2BqIMs%2BwWYZetz3c6yCs4jAoaTtG5m%2BQUFHX0y8bA131w1uOZUPrG8vFPXNHWSgPIc2G%2BZoXdzeipp2WUaTIGlCwyWXDI0XfP9qVjd6Xq4HLnggPA4oSEu1YwgK%2B47jO0XM%2BucrzhxuqSmi6wVGtzHp93KmPFT6jVAyM%2Bl6kb3apdWTa8YHjAzVRSLF7Zz%2Fp%2BMqMHJu4rqCAxFjNHzYu6iNqfLa17QRksNm6ceMouz8Hmv3npsckPC47fZLRmUn1RHdT0lNBOq%2BqiQzrSDxhGIpVUsH9S8rVkSMsGKupUo8Hj18GsuAsTeqtIICu9QrV%2F0yEnkpMbv4YBkbIP06fCLDbvEOFYkR6E8%2BCNduIk2IsaFdCuA%2FrBojQ9DSdMLCbo7MGOrQCUO2zBp8Ayj4ia9p0LjRwbGHDNtKhAQzxdILs%2BTn%2BTREt231CGQ119MkAhv4MeK685Da%2F8VOpav58HESVRdNqcYh%2B3AYuXsCwnC2WHYIpsgz5VssWUvwH%2BvPMwkzzIgXcdwNVBNS4m67c5pcya%2BQIVR3ShsBOv4BiTESmnjwUlxORB%2ByYvdfTz5gkVx3IA97wri%2FEKTH5prAsLR80ue2ayQDYnciX8awXYavJ7ypQa4nXgiyzOoy8ZJ5eA5yDeGiZG9rGkopMkjLVgrZeDfK7LH87Vetx3Jcxrwwwh7NVIvXQ0rnf5nJEweuW7EcgRSEeyB11pMUsSZC3f4NCRFt%2B6FcwqpJsY%2FxJBLgtroXp3XBHcZlH4pmx6hcHqFRAYav6ZSUdjfavsbSA5gaarEscJfaQrdk%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20240611T230008Z&X-Amz-SignedHeaders=host&X-Amz-Expires=43200&X-Amz-Credential=ASIA47CRXVNAOF2MQFR4%2F20240611%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=6acd3bc1c06a9071237e68a86bf5efe504338d9c243a1879c0e7ee7745dc0ebc'
check_and_download_file(file_path, url)
dfd = pd.read_csv("Sentence_page1.csv")
#dfd = dfd[dfd['Charges'].str.contains('|'.join(PC))]
cols = Page2.columns([0.5,2.25,2.25,0.5,2.5,1.5,0.5])
#cols[1].subheader("Offence by Race")
st.markdown("""
<style>
.stSlider [data-baseweb=slider]{
width: 100%;
}
</style>
""",unsafe_allow_html=True)
timeline = cols[2].slider('Select Timeline for Cases', 1990, 2024, (2015,2023))
perCap = cols[1].selectbox("Display Graph Per Capita", ("No", "Yes"), index=1)
cols[4].subheader("Charge Percentage Ratio")
c1, c2, c3, c4, c5 = Page2.columns([4.5, 0.5, 0.5, 4, 0.5])
with c1:
df = pd.concat([dfd, dfr, df], ignore_index=True, axis=0)
df = df[df['Charges'].str.fullmatch('|'.join(PC), na=False)]
df = df[(df['year'] >= timeline[0]) & (df['year'] <= timeline[1])]
df = df[df['Race'] != 'Unknown/Other']
df = df[['Charge Type', 'Race', 'Charges', 'count', 'normalized_vals']].groupby(['Charge Type','Race']).agg({'count':'sum', 'normalized_vals':'sum'}).reset_index()
custom_dict = {'Booking Charge': 0, 'Filed Charge': 1, 'Conviction Charge': 2}
df = df.sort_values(by=['Charge Type'], key=lambda x: x.map(custom_dict), ascending=False)
xaxs = 'count' if perCap == "No" else "normalized_vals"
fig = px.bar(df, y='Charge Type', x=xaxs,color_discrete_map=color, color='Race', orientation='h')
fig.update_layout(width=700, height=600,)
fig.update_layout(xaxis_title="Number of Cases", yaxis_title="")
fig.update_layout(legend=dict(yanchor="bottom", y=1.0, xanchor="left", x=-0.17, orientation='h', entrywidth=150))
fig.update_layout(font=dict(family="Myriad Pro",size=14))
fig.update_yaxes(tickangle=270, automargin= True)
st.plotly_chart(fig, theme=None)
with c4:
sel_col = 'count' if perCap == "No" else "normalized_vals"
cc1, cc2 = st.columns(2)
with cc1:
PCRace = st.selectbox('Select Race to Compare with', tuple(set(list(df['Race'].unique()) + list(dfr['Race'].unique()))))
with cc2:
st.header(" / White")
r1 = df[(df['Race'] == PCRace) & (df['Charge Type'] == 'Booking Charge')][sel_col].sum()*(10000000)
r2 = df[(df['Race'] == 'White') & (df['Charge Type'] == 'Booking Charge')][sel_col].sum()*(10000000)
if r2 != 0:
val = '%0.2f'%(r1/r2)+'/1'
else:
val = '%0.2f'%(r1)+'/'+str(r2)
new_title = '<p style="font-family:Myriad Pro; color:Black; font-size: 20px;display: inline;vertical-align: top;">'+PCRace+' rate of arrests by the white rate of arrests: '+val+'</p>'
#st.markdown(new_title, unsafe_allow_html=True)
#st.markdown('####')
#st.markdown('####')
st.metric(label= PCRace+' rate of arrests by the white rate of arrests:' , value=val, delta=None)
style_metric_cards()
r1 = df[(df['Race'] == PCRace) & (df['Charge Type'] == 'Filed Charge')][sel_col].sum()*(10000000)
r2 = df[(df['Race'] == 'White') & (df['Charge Type'] == 'Filed Charge')][sel_col].sum()*(10000000)
if r2 != 0:
val = '%0.2f'%(r1/r2)+'/1'
else:
val = '%0.2f'%(r1)+'/'+str(r2)
new_title = '<p style="font-family:Myriad Pro; color:Black; font-size: 20px;display: inline;vertical-align: top;">'+PCRace+' rate of charging by the white rate of charging is: '+val+'</p>'
# st.markdown(new_title, unsafe_allow_html=True)
# st.markdown('####')
# st.markdown('####')
st.metric(label=PCRace+' rate of charging by the white rate of charging is: ', value=val, delta=None)
style_metric_cards()
r1 = (df[(df['Race'] == PCRace) & (df['Charge Type'] == 'Conviction Charge')][sel_col].sum()*(10000000))
r2 = (df[(df['Race'] == 'White') & (df['Charge Type'] == 'Conviction Charge')][sel_col].sum()*(10000000))
#st.text(PCRace3+" rate of being sentenced by the white rate of being sentenced")
if r2 != 0:
val = '%0.2f'%(r1/r2)+'/1'
else:
val = '%0.2f'%(r1)+'/'+str(r2)
new_title = '<p style="font-family:Myriad Pro; color:Black; font-size: 20px;display: inline;vertical-align: top;">'+PCRace+' rate of being sentenced by the white rate of being sentenced is: '+val+'</p>'
# st.markdown(new_title, unsafe_allow_html=True)
st.metric(label=PCRace+' rate of being sentenced by the white rate of being sentenced is: ', value=val, delta=None)
style_metric_cards()
|