File size: 15,579 Bytes
cdd0177
 
 
 
 
 
 
 
 
 
 
 
 
 
1eabbd4
 
 
 
 
 
 
 
 
 
 
 
 
 
cdd0177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1eabbd4
 
 
 
cdd0177
 
1eabbd4
 
cdd0177
1eabbd4
cdd0177
 
1eabbd4
 
cdd0177
1eabbd4
cdd0177
 
 
 
1eabbd4
 
cdd0177
1eabbd4
cdd0177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import streamlit as st
import numpy as np
import plotly.figure_factory as ff
import plotly.express as px
import pandas as pd
import plotly.graph_objects as go
import os
import argparse
from st_aggrid import GridOptionsBuilder, AgGrid, GridUpdateMode, DataReturnMode
from PIL import Image
from streamlit_extras.stylable_container import stylable_container 
from streamlit_extras.metric_cards import style_metric_cards
import pickle

def check_and_download_file(file_path, url):
    if os.path.exists(file_path):
        print(f"The file '{file_path}' already exists.")
    else:
        print(f"The file '{file_path}' does not exist. Downloading...")
        try:
            response = requests.get(url)
            response.raise_for_status()  # Check if the request was successful
            with open(file_path, 'wb') as file:
                file.write(response.content)
            print(f"File downloaded successfully and saved as '{file_path}'.")
        except requests.exceptions.RequestException as e:
            print(f"An error occurred while downloading the file: {e}")

# Implement AND condition when downloading data
st.set_page_config(layout="wide")
color = {'Black or African American': '#2993A3', 'White':'#666766', 'Native American':'#f4b780', 'Hispanic':'#a0cd7c', 'Pacific Islander':'#a680ba', 'Unknown/Other':'#3a393a','Asian':'#f37e85'}

file = open("login_state.pkl",'rb')
st.session_state['logged_in'] = pickle.load(file)
file.close()
#print(st.session_state.get("logged_in"))


#----------------------------NavBar-------------------------#
hide_menu_style = """
        <style>
        #MainMenu {visibility: hidden;}
        header {visibility: hidden;}
        </style>
        """
st.markdown(hide_menu_style, unsafe_allow_html=True)
# print(st.session_state.get("logged_in"))

if st.session_state.get("logged_in") == False or st.session_state.get("logged_in") == None:
    st.switch_page("app.py")



st.markdown('<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css" integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm" crossorigin="anonymous">', unsafe_allow_html=True)

st.markdown("""
<nav class="navbar fixed-top navbar-expand-lg navbar-dark" style="background-color: #3498DB;background-image:url('/Users/shaashwatagrawal/Documents/SF County/dashboard/Background.jpeg');">
  <a class="navbar-brand" href="https://www.ipr.northwestern.edu/who-we-are/faculty-experts/redbird.html" target="_blank">RJA Dashboard</a>
  <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarNav" aria-controls="navbarNav" aria-expanded="false" aria-label="Toggle navigation">
    <span class="navbar-toggler-icon"></span>
  </button>
  <div class="collapse navbar-collapse" id="navbarNav">
    <ul class="navbar-nav">
      <li class="nav-item">
        <a class="nav-link disabled" href="https://sanbernardinorja.streamlit.app/page_0" target="_self">Arrest Summary</a>
      </li>
      <li class="nav-item active">
        <a class="nav-link" href="https://sanbernardinorja.streamlit.app/page_1" target="_self">Charge By Race<span class="sr-only">(current)</span></a>
      </li>
      <li class="nav-item">
        <a class="nav-link" href="https://sanbernardinorja.streamlit.app/page_2" target="_self">Download Data</a>
      </li>
    </ul>
                  <ul class="navbar-nav ml-auto">
        <li class="nav-item mr-auto" style="padding-left:5px;padding-right:5px;outline-color:#f0f2f5;border: 2px solid white;border-radius:10px;"> 
            <a class="nav-link" href="https://sanbernardinorja.streamlit.app/" target="_self" >Logout</a>
     </li>
    </ul>
  </div>
</nav>
""", unsafe_allow_html=True)


#---------------------------- Page 2 ----------------------------#
cols = st.columns(2)

Page2 = stylable_container(key="Page2", css_styles=""" {box-shadow: rgba(0, 0, 0, 0.24) 0px 3px 15px;}""")
cols = Page2.columns([4,3,3])
cols[1].header("Charges By Race", anchor = 'section-2', help = 'Understanding Disparity at different stages of a criminal proceeding (i.e. Arrest, Charging and Sentencing).')
# parser = argparse.ArgumentParser()
# parser.add_argument('--charge', type=str, default='187A')
# args = parser.parse_args()

with open("list_of_charges.pkl", "rb") as fp:   # Unpickling
  charges = pickle.load(fp)

col = Page2.columns([0.5, 9, 0.5])
PC = col[1].multiselect('Select Type of Charge', tuple(charges), default='459')#index=list(charges).index(args.charge))

file_path = "Population.csv"
url = 'https://rja-sanbernardino.s3.us-east-1.amazonaws.com/dashboard/Population.csv?response-content-disposition=inline&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEM%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJGMEQCIFmSNoakzC4hQlNV2NcIpccGqt1lJiw7dumO58Kv5HHaAiBCHRkYbyL09%2BOEofcZF%2Bns9A09PO6x%2B0OxiYD2hpoX9SrkAghnEAAaDDg5MTM3NzEzNDQwMCIMZmel5gOdx72MuskSKsECTeZ5%2BcyfkQg%2B%2B3A7JvIv%2BC1gROoz%2FDXmPWbU%2FSAZeVnNm52uZ%2BqIMs%2BwWYZetz3c6yCs4jAoaTtG5m%2BQUFHX0y8bA131w1uOZUPrG8vFPXNHWSgPIc2G%2BZoXdzeipp2WUaTIGlCwyWXDI0XfP9qVjd6Xq4HLnggPA4oSEu1YwgK%2B47jO0XM%2BucrzhxuqSmi6wVGtzHp93KmPFT6jVAyM%2Bl6kb3apdWTa8YHjAzVRSLF7Zz%2Fp%2BMqMHJu4rqCAxFjNHzYu6iNqfLa17QRksNm6ceMouz8Hmv3npsckPC47fZLRmUn1RHdT0lNBOq%2BqiQzrSDxhGIpVUsH9S8rVkSMsGKupUo8Hj18GsuAsTeqtIICu9QrV%2F0yEnkpMbv4YBkbIP06fCLDbvEOFYkR6E8%2BCNduIk2IsaFdCuA%2FrBojQ9DSdMLCbo7MGOrQCUO2zBp8Ayj4ia9p0LjRwbGHDNtKhAQzxdILs%2BTn%2BTREt231CGQ119MkAhv4MeK685Da%2F8VOpav58HESVRdNqcYh%2B3AYuXsCwnC2WHYIpsgz5VssWUvwH%2BvPMwkzzIgXcdwNVBNS4m67c5pcya%2BQIVR3ShsBOv4BiTESmnjwUlxORB%2ByYvdfTz5gkVx3IA97wri%2FEKTH5prAsLR80ue2ayQDYnciX8awXYavJ7ypQa4nXgiyzOoy8ZJ5eA5yDeGiZG9rGkopMkjLVgrZeDfK7LH87Vetx3Jcxrwwwh7NVIvXQ0rnf5nJEweuW7EcgRSEeyB11pMUsSZC3f4NCRFt%2B6FcwqpJsY%2FxJBLgtroXp3XBHcZlH4pmx6hcHqFRAYav6ZSUdjfavsbSA5gaarEscJfaQrdk%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20240611T224039Z&X-Amz-SignedHeaders=host&X-Amz-Expires=43200&X-Amz-Credential=ASIA47CRXVNAOF2MQFR4%2F20240611%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=96c7384f7b881f1b201abc0689608231042ce46b076fdf75e2c3e009efc26cb7'

check_and_download_file(file_path, url)
# Reading and Processing Data
pop = pd.read_csv("Population.csv")
file_path = "Arrest_page1.csv"
url = 'https://rja-sanbernardino.s3.us-east-1.amazonaws.com/dashboard/Arrest_page1.csv?response-content-disposition=inline&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEM%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJGMEQCIFmSNoakzC4hQlNV2NcIpccGqt1lJiw7dumO58Kv5HHaAiBCHRkYbyL09%2BOEofcZF%2Bns9A09PO6x%2B0OxiYD2hpoX9SrkAghnEAAaDDg5MTM3NzEzNDQwMCIMZmel5gOdx72MuskSKsECTeZ5%2BcyfkQg%2B%2B3A7JvIv%2BC1gROoz%2FDXmPWbU%2FSAZeVnNm52uZ%2BqIMs%2BwWYZetz3c6yCs4jAoaTtG5m%2BQUFHX0y8bA131w1uOZUPrG8vFPXNHWSgPIc2G%2BZoXdzeipp2WUaTIGlCwyWXDI0XfP9qVjd6Xq4HLnggPA4oSEu1YwgK%2B47jO0XM%2BucrzhxuqSmi6wVGtzHp93KmPFT6jVAyM%2Bl6kb3apdWTa8YHjAzVRSLF7Zz%2Fp%2BMqMHJu4rqCAxFjNHzYu6iNqfLa17QRksNm6ceMouz8Hmv3npsckPC47fZLRmUn1RHdT0lNBOq%2BqiQzrSDxhGIpVUsH9S8rVkSMsGKupUo8Hj18GsuAsTeqtIICu9QrV%2F0yEnkpMbv4YBkbIP06fCLDbvEOFYkR6E8%2BCNduIk2IsaFdCuA%2FrBojQ9DSdMLCbo7MGOrQCUO2zBp8Ayj4ia9p0LjRwbGHDNtKhAQzxdILs%2BTn%2BTREt231CGQ119MkAhv4MeK685Da%2F8VOpav58HESVRdNqcYh%2B3AYuXsCwnC2WHYIpsgz5VssWUvwH%2BvPMwkzzIgXcdwNVBNS4m67c5pcya%2BQIVR3ShsBOv4BiTESmnjwUlxORB%2ByYvdfTz5gkVx3IA97wri%2FEKTH5prAsLR80ue2ayQDYnciX8awXYavJ7ypQa4nXgiyzOoy8ZJ5eA5yDeGiZG9rGkopMkjLVgrZeDfK7LH87Vetx3Jcxrwwwh7NVIvXQ0rnf5nJEweuW7EcgRSEeyB11pMUsSZC3f4NCRFt%2B6FcwqpJsY%2FxJBLgtroXp3XBHcZlH4pmx6hcHqFRAYav6ZSUdjfavsbSA5gaarEscJfaQrdk%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20240611T225817Z&X-Amz-SignedHeaders=host&X-Amz-Expires=43200&X-Amz-Credential=ASIA47CRXVNAOF2MQFR4%2F20240611%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=a702152a4b591ee74c315cbe38efc60b9487eaeeaad8a50fd98812fadc68c232'

check_and_download_file(file_path, url)
df = pd.read_csv("Arrest_page1.csv")
#df = df[df['Charges'].str.contains('|'.join(PC))]
file_path = "Court_page1.csv"
url = 'https://rja-sanbernardino.s3.us-east-1.amazonaws.com/dashboard/Court_page1.csv?response-content-disposition=inline&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEM%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJGMEQCIFmSNoakzC4hQlNV2NcIpccGqt1lJiw7dumO58Kv5HHaAiBCHRkYbyL09%2BOEofcZF%2Bns9A09PO6x%2B0OxiYD2hpoX9SrkAghnEAAaDDg5MTM3NzEzNDQwMCIMZmel5gOdx72MuskSKsECTeZ5%2BcyfkQg%2B%2B3A7JvIv%2BC1gROoz%2FDXmPWbU%2FSAZeVnNm52uZ%2BqIMs%2BwWYZetz3c6yCs4jAoaTtG5m%2BQUFHX0y8bA131w1uOZUPrG8vFPXNHWSgPIc2G%2BZoXdzeipp2WUaTIGlCwyWXDI0XfP9qVjd6Xq4HLnggPA4oSEu1YwgK%2B47jO0XM%2BucrzhxuqSmi6wVGtzHp93KmPFT6jVAyM%2Bl6kb3apdWTa8YHjAzVRSLF7Zz%2Fp%2BMqMHJu4rqCAxFjNHzYu6iNqfLa17QRksNm6ceMouz8Hmv3npsckPC47fZLRmUn1RHdT0lNBOq%2BqiQzrSDxhGIpVUsH9S8rVkSMsGKupUo8Hj18GsuAsTeqtIICu9QrV%2F0yEnkpMbv4YBkbIP06fCLDbvEOFYkR6E8%2BCNduIk2IsaFdCuA%2FrBojQ9DSdMLCbo7MGOrQCUO2zBp8Ayj4ia9p0LjRwbGHDNtKhAQzxdILs%2BTn%2BTREt231CGQ119MkAhv4MeK685Da%2F8VOpav58HESVRdNqcYh%2B3AYuXsCwnC2WHYIpsgz5VssWUvwH%2BvPMwkzzIgXcdwNVBNS4m67c5pcya%2BQIVR3ShsBOv4BiTESmnjwUlxORB%2ByYvdfTz5gkVx3IA97wri%2FEKTH5prAsLR80ue2ayQDYnciX8awXYavJ7ypQa4nXgiyzOoy8ZJ5eA5yDeGiZG9rGkopMkjLVgrZeDfK7LH87Vetx3Jcxrwwwh7NVIvXQ0rnf5nJEweuW7EcgRSEeyB11pMUsSZC3f4NCRFt%2B6FcwqpJsY%2FxJBLgtroXp3XBHcZlH4pmx6hcHqFRAYav6ZSUdjfavsbSA5gaarEscJfaQrdk%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20240611T225908Z&X-Amz-SignedHeaders=host&X-Amz-Expires=43200&X-Amz-Credential=ASIA47CRXVNAOF2MQFR4%2F20240611%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=edf0d1114a2fe7f5917b855a2e350d58c6de7d4373b99d69ec723f637be52512'

check_and_download_file(file_path, url)
dfr = pd.read_csv("Court_page1.csv")
#print(PC)
#dfr = dfr[dfr['Charges'].str.contains('|'.join(PC))]
#print(dfr)
file_path = "Sentence_page1.csv"
url = 'https://rja-sanbernardino.s3.us-east-1.amazonaws.com/dashboard/Sentence_page1.csv?response-content-disposition=inline&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEM%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJGMEQCIFmSNoakzC4hQlNV2NcIpccGqt1lJiw7dumO58Kv5HHaAiBCHRkYbyL09%2BOEofcZF%2Bns9A09PO6x%2B0OxiYD2hpoX9SrkAghnEAAaDDg5MTM3NzEzNDQwMCIMZmel5gOdx72MuskSKsECTeZ5%2BcyfkQg%2B%2B3A7JvIv%2BC1gROoz%2FDXmPWbU%2FSAZeVnNm52uZ%2BqIMs%2BwWYZetz3c6yCs4jAoaTtG5m%2BQUFHX0y8bA131w1uOZUPrG8vFPXNHWSgPIc2G%2BZoXdzeipp2WUaTIGlCwyWXDI0XfP9qVjd6Xq4HLnggPA4oSEu1YwgK%2B47jO0XM%2BucrzhxuqSmi6wVGtzHp93KmPFT6jVAyM%2Bl6kb3apdWTa8YHjAzVRSLF7Zz%2Fp%2BMqMHJu4rqCAxFjNHzYu6iNqfLa17QRksNm6ceMouz8Hmv3npsckPC47fZLRmUn1RHdT0lNBOq%2BqiQzrSDxhGIpVUsH9S8rVkSMsGKupUo8Hj18GsuAsTeqtIICu9QrV%2F0yEnkpMbv4YBkbIP06fCLDbvEOFYkR6E8%2BCNduIk2IsaFdCuA%2FrBojQ9DSdMLCbo7MGOrQCUO2zBp8Ayj4ia9p0LjRwbGHDNtKhAQzxdILs%2BTn%2BTREt231CGQ119MkAhv4MeK685Da%2F8VOpav58HESVRdNqcYh%2B3AYuXsCwnC2WHYIpsgz5VssWUvwH%2BvPMwkzzIgXcdwNVBNS4m67c5pcya%2BQIVR3ShsBOv4BiTESmnjwUlxORB%2ByYvdfTz5gkVx3IA97wri%2FEKTH5prAsLR80ue2ayQDYnciX8awXYavJ7ypQa4nXgiyzOoy8ZJ5eA5yDeGiZG9rGkopMkjLVgrZeDfK7LH87Vetx3Jcxrwwwh7NVIvXQ0rnf5nJEweuW7EcgRSEeyB11pMUsSZC3f4NCRFt%2B6FcwqpJsY%2FxJBLgtroXp3XBHcZlH4pmx6hcHqFRAYav6ZSUdjfavsbSA5gaarEscJfaQrdk%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20240611T230008Z&X-Amz-SignedHeaders=host&X-Amz-Expires=43200&X-Amz-Credential=ASIA47CRXVNAOF2MQFR4%2F20240611%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=6acd3bc1c06a9071237e68a86bf5efe504338d9c243a1879c0e7ee7745dc0ebc'

check_and_download_file(file_path, url)
dfd = pd.read_csv("Sentence_page1.csv")
#dfd = dfd[dfd['Charges'].str.contains('|'.join(PC))]

cols = Page2.columns([0.5,2.25,2.25,0.5,2.5,1.5,0.5])
#cols[1].subheader("Offence by Race")

st.markdown("""
    <style>
    .stSlider [data-baseweb=slider]{
        width: 100%;
    }
    </style>
    """,unsafe_allow_html=True)
timeline = cols[2].slider('Select Timeline for Cases', 1990, 2024, (2015,2023))
perCap = cols[1].selectbox("Display Graph Per Capita", ("No", "Yes"), index=1)
cols[4].subheader("Charge Percentage Ratio")

c1, c2, c3, c4, c5 = Page2.columns([4.5, 0.5, 0.5, 4, 0.5])
with c1:
    df = pd.concat([dfd, dfr, df], ignore_index=True, axis=0)
    df = df[df['Charges'].str.fullmatch('|'.join(PC), na=False)]
    df = df[(df['year'] >= timeline[0]) & (df['year'] <= timeline[1])]
    df = df[df['Race'] != 'Unknown/Other']
    
    df = df[['Charge Type', 'Race', 'Charges', 'count', 'normalized_vals']].groupby(['Charge Type','Race']).agg({'count':'sum', 'normalized_vals':'sum'}).reset_index()
    custom_dict = {'Booking Charge': 0, 'Filed Charge': 1, 'Conviction Charge': 2} 
    
    df = df.sort_values(by=['Charge Type'], key=lambda x: x.map(custom_dict), ascending=False)
    xaxs = 'count' if perCap == "No" else "normalized_vals"
    fig = px.bar(df, y='Charge Type', x=xaxs,color_discrete_map=color, color='Race', orientation='h')
    fig.update_layout(width=700, height=600,)
    fig.update_layout(xaxis_title="Number of Cases", yaxis_title="")
    fig.update_layout(legend=dict(yanchor="bottom", y=1.0, xanchor="left", x=-0.17, orientation='h', entrywidth=150)) 
    fig.update_layout(font=dict(family="Myriad Pro",size=14))
    fig.update_yaxes(tickangle=270, automargin= True)
    st.plotly_chart(fig, theme=None)

with c4:
    sel_col = 'count' if perCap == "No" else "normalized_vals"
    cc1, cc2 = st.columns(2)
    with cc1:
        PCRace = st.selectbox('Select Race to Compare with', tuple(set(list(df['Race'].unique()) + list(dfr['Race'].unique()))))
    with cc2:
        st.header(" / White")
    r1 = df[(df['Race'] == PCRace) & (df['Charge Type'] == 'Booking Charge')][sel_col].sum()*(10000000)
    r2 = df[(df['Race'] == 'White') & (df['Charge Type'] == 'Booking Charge')][sel_col].sum()*(10000000)

    if r2 != 0:
        val = '%0.2f'%(r1/r2)+'/1'
    else:
        val = '%0.2f'%(r1)+'/'+str(r2)
    new_title = '<p style="font-family:Myriad Pro; color:Black; font-size: 20px;display: inline;vertical-align: top;">'+PCRace+' rate of arrests by the white rate of arrests:  '+val+'</p>'
    #st.markdown(new_title, unsafe_allow_html=True)
    #st.markdown('####')
    #st.markdown('####')
    st.metric(label= PCRace+' rate of arrests by the white rate of arrests:' , value=val, delta=None)
    style_metric_cards()


    r1 = df[(df['Race'] == PCRace) & (df['Charge Type'] == 'Filed Charge')][sel_col].sum()*(10000000)
    r2 = df[(df['Race'] == 'White') & (df['Charge Type'] == 'Filed Charge')][sel_col].sum()*(10000000) 

    if r2 != 0:
        val = '%0.2f'%(r1/r2)+'/1'
    else:
        val = '%0.2f'%(r1)+'/'+str(r2)
    new_title = '<p style="font-family:Myriad Pro; color:Black; font-size: 20px;display: inline;vertical-align: top;">'+PCRace+' rate of charging by the white rate of charging is:  '+val+'</p>'
    # st.markdown(new_title, unsafe_allow_html=True)
    # st.markdown('####')
    # st.markdown('####')
    st.metric(label=PCRace+' rate of charging by the white rate of charging is:  ', value=val, delta=None)
    style_metric_cards()

    r1 = (df[(df['Race'] == PCRace) & (df['Charge Type'] == 'Conviction Charge')][sel_col].sum()*(10000000))
    r2 = (df[(df['Race'] == 'White') & (df['Charge Type'] == 'Conviction Charge')][sel_col].sum()*(10000000))

    #st.text(PCRace3+" rate of being sentenced by the white rate of being sentenced")
    if r2 != 0:
        val = '%0.2f'%(r1/r2)+'/1'
    else:
        val = '%0.2f'%(r1)+'/'+str(r2)
    new_title = '<p style="font-family:Myriad Pro; color:Black; font-size: 20px;display: inline;vertical-align: top;">'+PCRace+' rate of being sentenced by the white rate of being sentenced is:  '+val+'</p>'
    # st.markdown(new_title, unsafe_allow_html=True)
    st.metric(label=PCRace+' rate of being sentenced by the white rate of being sentenced is:  ', value=val, delta=None)
    style_metric_cards()