File size: 4,207 Bytes
91c41e8
dc26a5e
 
 
 
 
 
8252478
 
dc26a5e
 
 
8252478
 
dc26a5e
 
 
 
 
 
 
 
 
 
 
 
91c41e8
dc26a5e
91c41e8
 
 
dc26a5e
 
 
 
 
 
 
 
 
 
 
 
 
8252478
dc26a5e
 
91c41e8
8252478
dc26a5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91c41e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc26a5e
 
 
 
91c41e8
dc26a5e
 
 
91c41e8
 
 
dc26a5e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# app.py (with 1024-character limit)
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import json
import os

# Load the CodeGen-2B-mono model and tokenizer from Hugging Face
model_name = "Salesforce/codegen-2B-mono"  # Best version for CPU-friendly performance in code generation
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# Ensure the model runs on CPU (important for Hugging Face Spaces free tier)
device = torch.device("cpu")
model.to(device)

# Cache to store recent prompts and responses with file-based persistence
CACHE_FILE = "cache.json"
cache = {}

# Load cache from file if it exists
if os.path.exists(CACHE_FILE):
    with open(CACHE_FILE, "r") as f:
        cache = json.load(f)

def code_assistant(prompt, language):
    # Input validation with a 1024-character limit
    if not prompt.strip():
        return "⚠️ Error: The input prompt cannot be empty. Please provide a coding question or code snippet."
    if len(prompt) > 1024:
        return "⚠️ Error: The input prompt is too long. Please limit it to 1024 characters."

    # Check if the prompt is in cache
    cache_key = (prompt, language)
    if str(cache_key) in cache:
        return cache[str(cache_key)]

    # Customize the prompt based on language
    if language:
        prompt = f"[{language}] {prompt}"  # Indicate the language for context
    
    # Tokenize the input
    inputs = tokenizer(prompt, return_tensors="pt").to(device)
    
    # Generate response with adjusted parameters for faster CPU response
    outputs = model.generate(
        inputs.input_ids,
        max_length=256,        # Shortened max length for quicker response
        temperature=0.1,       # Lower temperature for focused output
        top_p=0.8,             # Slightly reduced top_p for quicker sampling
        do_sample=True
    )
    
    # Decode the generated output
    generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)

    # Store the response in cache (limit cache size to 10 items)
    if len(cache) >= 10:
        cache.pop(next(iter(cache)))  # Remove the oldest item
    cache[str(cache_key)] = generated_text

    # Write the updated cache to file
    with open(CACHE_FILE, "w") as f:
        json.dump(cache, f)

    return generated_text

# Custom CSS styling for animations and colors
css = """
/* Center-align all text in the input and output boxes */
input, textarea, .output_text {
    text-align: center;
}

/* Style the main title */
h1 {
    color: #1e90ff;
    font-family: 'Arial', sans-serif;
    text-align: center;
    font-weight: bold;
}

/* Style the description */
.description {
    color: #555;
    font-family: 'Arial', sans-serif;
    text-align: center;
    margin-bottom: 20px;
}

/* Output box animation */
.output_text {
    color: #1e90ff;
    animation: fadeIn 2s ease-in-out;
}

/* Add fade-in animation */
@keyframes fadeIn {
    0% { opacity: 0; }
    100% { opacity: 1; }
}

/* Hover effect for the submit button */
button {
    background-color: #1e90ff;
    color: white;
    font-weight: bold;
    border: none;
    padding: 10px 20px;
    border-radius: 5px;
    transition: background-color 0.3s ease;
}

button:hover {
    background-color: #104e8b;
    cursor: pointer;
}
"""

# Enhanced title and description with HTML styling
title_html = """
<h1>💻 CodeBand: AI Code Assistant</h1>
"""

description_html = """
<p class="description">An AI-powered assistant for coding queries, debugging, and code generation. 
Choose a programming language for more tailored responses. Limited to 1024 characters.</p>
"""

# Set up Gradio interface with a dropdown for programming language selection
iface = gr.Interface(
    fn=code_assistant,
    inputs=[
        gr.Textbox(lines=5, placeholder="Ask a coding question or paste your code here...", max_chars=1024),
        gr.Dropdown(choices=["Python", "JavaScript", "Java", "C++", "HTML", "CSS", "SQL", "Other"], label="Programming Language")
    ],
    outputs="text",
    title=title_html,
    description=description_html,
    css=css  # Add custom CSS
)

# Launch the Gradio app
iface.launch()