|
|
|
import gradio as gr |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import json |
|
import os |
|
|
|
|
|
model_name = "Salesforce/codegen-2B-mono" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
|
|
|
|
device = torch.device("cpu") |
|
model.to(device) |
|
|
|
|
|
CACHE_FILE = "cache.json" |
|
cache = {} |
|
|
|
|
|
if os.path.exists(CACHE_FILE): |
|
with open(CACHE_FILE, "r") as f: |
|
cache = json.load(f) |
|
|
|
def code_assistant(prompt, language): |
|
|
|
if not prompt.strip(): |
|
return "Error: The input prompt cannot be empty. Please provide a coding question or code snippet." |
|
if len(prompt) > 256: |
|
return "Error: The input prompt is too long. Please limit it to 256 characters." |
|
|
|
|
|
cache_key = (prompt, language) |
|
if str(cache_key) in cache: |
|
return cache[str(cache_key)] |
|
|
|
|
|
if language: |
|
prompt = f"[{language}] {prompt}" |
|
|
|
|
|
inputs = tokenizer(prompt, return_tensors="pt").to(device) |
|
|
|
|
|
outputs = model.generate( |
|
inputs.input_ids, |
|
max_length=128, |
|
temperature=0.1, |
|
top_p=0.8, |
|
do_sample=True |
|
) |
|
|
|
|
|
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
if len(cache) >= 10: |
|
cache.pop(next(iter(cache))) |
|
cache[str(cache_key)] = generated_text |
|
|
|
|
|
with open(CACHE_FILE, "w") as f: |
|
json.dump(cache, f) |
|
|
|
return generated_text |
|
|
|
|
|
iface = gr.Interface( |
|
fn=code_assistant, |
|
inputs=[ |
|
gr.Textbox(lines=5, placeholder="Ask a coding question or paste your code here..."), |
|
gr.Dropdown(choices=["Python", "JavaScript", "Java", "C++", "HTML", "CSS", "SQL", "Other"], label="Programming Language") |
|
], |
|
outputs="text", |
|
title="CodeBand", |
|
description="An AI code assistant to help you with coding queries, debugging, and code generation. Specify the programming language for more accurate responses." |
|
) |
|
|
|
|
|
iface.launch() |
|
|