Create denoising_model.py
Browse files- denoising_model.py +259 -0
denoising_model.py
ADDED
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from PIL import Image
|
5 |
+
from torch.utils.data import Dataset, DataLoader
|
6 |
+
from torchvision.transforms import ToTensor
|
7 |
+
import time
|
8 |
+
from datetime import datetime
|
9 |
+
import multiprocessing
|
10 |
+
|
11 |
+
def get_optimal_threads():
|
12 |
+
"""Calculate optimal number of threads based on CPU cores"""
|
13 |
+
return max(1, multiprocessing.cpu_count() - 1) # Leave one core free for system
|
14 |
+
|
15 |
+
# Simple UNet-style denoising model
|
16 |
+
class DenoisingModel(nn.Module):
|
17 |
+
def __init__(self):
|
18 |
+
super(DenoisingModel, self).__init__()
|
19 |
+
# Encoder
|
20 |
+
self.enc1 = nn.Sequential(
|
21 |
+
nn.Conv2d(3, 64, 3, padding=1),
|
22 |
+
nn.ReLU(),
|
23 |
+
nn.Conv2d(64, 64, 3, padding=1),
|
24 |
+
nn.ReLU()
|
25 |
+
)
|
26 |
+
self.pool1 = nn.MaxPool2d(2, 2)
|
27 |
+
|
28 |
+
# Decoder
|
29 |
+
self.up1 = nn.ConvTranspose2d(64, 64, 2, stride=2)
|
30 |
+
self.dec1 = nn.Sequential(
|
31 |
+
nn.Conv2d(64, 64, 3, padding=1),
|
32 |
+
nn.ReLU(),
|
33 |
+
nn.Conv2d(64, 3, 3, padding=1)
|
34 |
+
)
|
35 |
+
|
36 |
+
def forward(self, x):
|
37 |
+
# Encoder
|
38 |
+
e1 = self.enc1(x)
|
39 |
+
p1 = self.pool1(e1)
|
40 |
+
|
41 |
+
# Decoder
|
42 |
+
u1 = self.up1(p1)
|
43 |
+
d1 = self.dec1(u1)
|
44 |
+
return d1
|
45 |
+
|
46 |
+
class DenoiseDataset(Dataset):
|
47 |
+
def __init__(self, noisy_folder, target_folder, patch_size=256):
|
48 |
+
self.noisy_folder = noisy_folder
|
49 |
+
self.target_folder = target_folder
|
50 |
+
self.patch_size = patch_size
|
51 |
+
self.image_pairs = [
|
52 |
+
(os.path.join(noisy_folder, f), os.path.join(target_folder, f.replace("_noisy", "_target")))
|
53 |
+
for f in os.listdir(noisy_folder) if "_noisy" in f
|
54 |
+
]
|
55 |
+
self.transform = ToTensor()
|
56 |
+
|
57 |
+
print(f"Dataset initialization:")
|
58 |
+
print(f"- Noisy folder: {noisy_folder}")
|
59 |
+
print(f"- Target folder: {target_folder}")
|
60 |
+
print(f"- Patch size: {patch_size}")
|
61 |
+
print(f"- Found {len(self.image_pairs)} image pairs")
|
62 |
+
|
63 |
+
if not self.image_pairs:
|
64 |
+
raise ValueError("No image pairs found. Check if noisy and target images are correctly named.")
|
65 |
+
|
66 |
+
# Precalculate number of patches per image for better performance
|
67 |
+
self.patches_per_image = {}
|
68 |
+
for noisy_path, _ in self.image_pairs:
|
69 |
+
try:
|
70 |
+
self.patches_per_image[noisy_path] = self._get_num_patches_per_image(noisy_path)
|
71 |
+
except Exception as e:
|
72 |
+
print(f"Error calculating patches for {noisy_path}: {e}. Skipping this image pair.")
|
73 |
+
self.image_pairs = [(n, t) for n, t in self.image_pairs if n != noisy_path]
|
74 |
+
|
75 |
+
self.total_patches = sum(self.patches_per_image.values())
|
76 |
+
|
77 |
+
def __len__(self):
|
78 |
+
return self.total_patches
|
79 |
+
|
80 |
+
def __getitem__(self, idx):
|
81 |
+
image_idx = 0
|
82 |
+
cumulative_patches = 0
|
83 |
+
|
84 |
+
for i, (noisy_path, _) in enumerate(self.image_pairs):
|
85 |
+
num_patches = self.patches_per_image[noisy_path]
|
86 |
+
if cumulative_patches + num_patches > idx:
|
87 |
+
image_idx = i
|
88 |
+
break
|
89 |
+
cumulative_patches += num_patches
|
90 |
+
|
91 |
+
patch_idx = idx - cumulative_patches
|
92 |
+
noisy_path, target_path = self.image_pairs[image_idx]
|
93 |
+
|
94 |
+
try:
|
95 |
+
noisy_image = self._load_image(noisy_path)
|
96 |
+
target_image = self._load_image(target_path)
|
97 |
+
except Exception as e:
|
98 |
+
print(f"Error loading image pair ({noisy_path}, {target_path}): {e}. Returning default values.")
|
99 |
+
return torch.zeros((3, self.patch_size, self.patch_size)), torch.zeros((3, self.patch_size, self.patch_size))
|
100 |
+
|
101 |
+
try:
|
102 |
+
noisy_patch = self._get_patch(noisy_image, patch_idx)
|
103 |
+
target_patch = self._get_patch(target_image, patch_idx)
|
104 |
+
except Exception as e:
|
105 |
+
print(f"Error getting patch from image pair ({noisy_path}, {target_path}): {e}. Returning default values.")
|
106 |
+
return torch.zeros((3, self.patch_size, self.patch_size)), torch.zeros((3, self.patch_size, self.patch_size))
|
107 |
+
|
108 |
+
return noisy_patch, target_patch
|
109 |
+
|
110 |
+
def _load_image(self, image_path):
|
111 |
+
try:
|
112 |
+
image = Image.open(image_path).convert("RGB")
|
113 |
+
return self.transform(image)
|
114 |
+
except Exception as e:
|
115 |
+
raise Exception(f"Error loading image {image_path}: {e}")
|
116 |
+
|
117 |
+
def _get_num_patches_per_image(self, image_path):
|
118 |
+
try:
|
119 |
+
image = Image.open(image_path)
|
120 |
+
width, height = image.size
|
121 |
+
num_patches = (width // self.patch_size) * (height // self.patch_size)
|
122 |
+
return num_patches
|
123 |
+
except Exception as e:
|
124 |
+
raise Exception(f"Error calculating patches for {image_path}: {e}")
|
125 |
+
|
126 |
+
def _get_patch(self, image, patch_idx):
|
127 |
+
width, height = image.shape[2], image.shape[1]
|
128 |
+
patches_per_row = width // self.patch_size
|
129 |
+
row = patch_idx // patches_per_row
|
130 |
+
col = patch_idx % patches_per_row
|
131 |
+
|
132 |
+
x_start = col * self.patch_size
|
133 |
+
y_start = row * self.patch_size
|
134 |
+
return image[:, y_start:y_start+self.patch_size, x_start:x_start+self.patch_size]
|
135 |
+
|
136 |
+
|
137 |
+
def train_model(noisy_dir, target_dir, epochs, batch_size, learning_rate, save_interval, num_workers):
|
138 |
+
# Set up CUDA if available
|
139 |
+
if torch.cuda.is_available():
|
140 |
+
torch.backends.cudnn.benchmark = True # Enable cuDNN auto-tuner
|
141 |
+
device = torch.device("cuda")
|
142 |
+
print(f"\nUsing GPU: {torch.cuda.get_device_name(0)}")
|
143 |
+
print(f"CUDA version: {torch.version.cuda}")
|
144 |
+
else:
|
145 |
+
device = torch.device("cpu")
|
146 |
+
print("\nNo GPU detected, using CPU")
|
147 |
+
|
148 |
+
# Create output directory for models
|
149 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
150 |
+
output_dir = f"model_checkpoints_{timestamp}"
|
151 |
+
os.makedirs(output_dir, exist_ok=True)
|
152 |
+
|
153 |
+
print("\nTraining Configuration:")
|
154 |
+
print(f"- Number of epochs: {epochs}")
|
155 |
+
print(f"- Batch size: {batch_size}")
|
156 |
+
print(f"- Learning rate: {learning_rate}")
|
157 |
+
print(f"- Number of worker threads: {num_workers}")
|
158 |
+
print(f"- Model checkpoint directory: {output_dir}")
|
159 |
+
|
160 |
+
# Initialize dataset and dataloader with specified number of workers
|
161 |
+
dataset = DenoiseDataset(noisy_dir, target_dir)
|
162 |
+
dataloader = DataLoader(
|
163 |
+
dataset,
|
164 |
+
batch_size=batch_size,
|
165 |
+
shuffle=True,
|
166 |
+
num_workers=num_workers,
|
167 |
+
pin_memory=True if torch.cuda.is_available() else False
|
168 |
+
)
|
169 |
+
|
170 |
+
# Initialize model, loss function, and optimizer
|
171 |
+
model = DenoisingModel().to(device)
|
172 |
+
if torch.cuda.device_count() > 1:
|
173 |
+
print(f"Using {torch.cuda.device_count()} GPUs!")
|
174 |
+
model = nn.DataParallel(model)
|
175 |
+
|
176 |
+
criterion = nn.MSELoss()
|
177 |
+
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
|
178 |
+
|
179 |
+
# Training loop
|
180 |
+
total_batches = len(dataloader)
|
181 |
+
start_time = time.time()
|
182 |
+
|
183 |
+
print("\nStarting training...")
|
184 |
+
for epoch in range(epochs):
|
185 |
+
epoch_loss = 0.0
|
186 |
+
for batch_idx, (noisy_patches, target_patches) in enumerate(dataloader):
|
187 |
+
# Move data to device
|
188 |
+
noisy_patches = noisy_patches.to(device, non_blocking=True)
|
189 |
+
target_patches = target_patches.to(device, non_blocking=True)
|
190 |
+
|
191 |
+
# Forward pass
|
192 |
+
outputs = model(noisy_patches)
|
193 |
+
loss = criterion(outputs, target_patches)
|
194 |
+
|
195 |
+
# Backward pass and optimize
|
196 |
+
optimizer.zero_grad()
|
197 |
+
loss.backward()
|
198 |
+
optimizer.step()
|
199 |
+
|
200 |
+
# Update epoch loss
|
201 |
+
epoch_loss += loss.item()
|
202 |
+
|
203 |
+
# Print progress
|
204 |
+
if (batch_idx + 1) % 100 == 0:
|
205 |
+
elapsed_time = time.time() - start_time
|
206 |
+
print(f"Epoch [{epoch+1}/{epochs}], "
|
207 |
+
f"Batch [{batch_idx+1}/{total_batches}], "
|
208 |
+
f"Loss: {loss.item():.6f}, "
|
209 |
+
f"Time: {elapsed_time:.2f}s")
|
210 |
+
|
211 |
+
# Save model checkpoint
|
212 |
+
if (batch_idx + 1) % save_interval == 0:
|
213 |
+
checkpoint_path = os.path.join(output_dir,
|
214 |
+
f"denoising_model_epoch{epoch+1}_batch{batch_idx+1}.pth")
|
215 |
+
torch.save({
|
216 |
+
'epoch': epoch,
|
217 |
+
'batch': batch_idx,
|
218 |
+
'model_state_dict': model.state_dict(),
|
219 |
+
'optimizer_state_dict': optimizer.state_dict(),
|
220 |
+
'loss': loss.item(),
|
221 |
+
}, checkpoint_path)
|
222 |
+
print(f"\nCheckpoint saved: {checkpoint_path}")
|
223 |
+
|
224 |
+
# End of epoch summary
|
225 |
+
avg_epoch_loss = epoch_loss / total_batches
|
226 |
+
print(f"\nEpoch [{epoch+1}/{epochs}] completed. "
|
227 |
+
f"Average loss: {avg_epoch_loss:.6f}")
|
228 |
+
|
229 |
+
# Save epoch checkpoint
|
230 |
+
checkpoint_path = os.path.join(output_dir, f"denoising_model_epoch{epoch+1}.pth")
|
231 |
+
torch.save({
|
232 |
+
'epoch': epoch,
|
233 |
+
'model_state_dict': model.state_dict(),
|
234 |
+
'optimizer_state_dict': optimizer.state_dict(),
|
235 |
+
'loss': avg_epoch_loss,
|
236 |
+
}, checkpoint_path)
|
237 |
+
print(f"Epoch checkpoint saved: {checkpoint_path}")
|
238 |
+
|
239 |
+
print("\nTraining completed!")
|
240 |
+
print(f"Total training time: {time.time() - start_time:.2f} seconds")
|
241 |
+
|
242 |
+
# Save final model
|
243 |
+
final_model_path = os.path.join(output_dir, "denoising_model_final.pth")
|
244 |
+
torch.save(model.state_dict(), final_model_path)
|
245 |
+
print(f"Final model saved: {final_model_path}")
|
246 |
+
|
247 |
+
def main():
|
248 |
+
noisy_dir = 'noisy_images'
|
249 |
+
target_dir = 'target_images'
|
250 |
+
epochs = 10
|
251 |
+
batch_size = 4
|
252 |
+
learning_rate = 0.001
|
253 |
+
save_interval = 1000
|
254 |
+
num_workers = get_optimal_threads()
|
255 |
+
|
256 |
+
train_model(noisy_dir, target_dir, epochs, batch_size, learning_rate, save_interval, num_workers)
|
257 |
+
|
258 |
+
if __name__ == "__main__":
|
259 |
+
main()
|