Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
import py7zr
|
4 |
+
import requests
|
5 |
+
from huggingface_hub import HfApi
|
6 |
+
import torch
|
7 |
+
from torch.utils.data import DataLoader
|
8 |
+
import shutil
|
9 |
+
from pathlib import Path
|
10 |
+
from typing import Optional
|
11 |
+
import sys
|
12 |
+
import io
|
13 |
+
|
14 |
+
# Import the denoising code (assuming it's in a file called denoising_model.py)
|
15 |
+
from denoising_model import DenoisingModel, DenoiseDataset, get_optimal_threads
|
16 |
+
|
17 |
+
class StreamCapture:
|
18 |
+
def __init__(self):
|
19 |
+
self.logs = []
|
20 |
+
|
21 |
+
def write(self, text):
|
22 |
+
self.logs.append(text)
|
23 |
+
st.warning(text)
|
24 |
+
|
25 |
+
def flush(self):
|
26 |
+
pass
|
27 |
+
|
28 |
+
def download_and_extract_7z(url: str, extract_to: str = '.') -> Optional[str]:
|
29 |
+
"""Downloads a 7z file and extracts it"""
|
30 |
+
try:
|
31 |
+
st.warning(f"Downloading file from {url}...")
|
32 |
+
response = requests.get(url, stream=True)
|
33 |
+
response.raise_for_status()
|
34 |
+
|
35 |
+
archive_path = os.path.join(extract_to, 'dataset.7z')
|
36 |
+
with open(archive_path, 'wb') as f:
|
37 |
+
for chunk in response.iter_content(chunk_size=8192):
|
38 |
+
f.write(chunk)
|
39 |
+
|
40 |
+
st.warning("Extracting 7z archive...")
|
41 |
+
with py7zr.SevenZipFile(archive_path, mode='r') as z:
|
42 |
+
z.extractall(extract_to)
|
43 |
+
|
44 |
+
# Handle directory renaming
|
45 |
+
output_images_path = os.path.join(extract_to, 'output_images')
|
46 |
+
if os.path.exists(output_images_path):
|
47 |
+
# Move and rename directories
|
48 |
+
source_noisy = os.path.join(output_images_path, 'images_noisy')
|
49 |
+
source_target = os.path.join(output_images_path, 'images_target')
|
50 |
+
|
51 |
+
if os.path.exists('noisy_images'):
|
52 |
+
shutil.rmtree('noisy_images')
|
53 |
+
if os.path.exists('target_images'):
|
54 |
+
shutil.rmtree('target_images')
|
55 |
+
|
56 |
+
shutil.move(source_noisy, 'noisy_images')
|
57 |
+
shutil.move(source_target, 'target_images')
|
58 |
+
|
59 |
+
# Clean up
|
60 |
+
if os.path.exists(output_images_path):
|
61 |
+
shutil.rmtree(output_images_path)
|
62 |
+
|
63 |
+
os.remove(archive_path)
|
64 |
+
st.warning("Download and extraction completed successfully.")
|
65 |
+
return None
|
66 |
+
|
67 |
+
except Exception as e:
|
68 |
+
return f"Error: {str(e)}"
|
69 |
+
|
70 |
+
def upload_to_huggingface(file_path: str, repo_id: str, path_in_repo: str):
|
71 |
+
"""Uploads a file to Hugging Face"""
|
72 |
+
try:
|
73 |
+
api = HfApi()
|
74 |
+
api.upload_file(
|
75 |
+
path_or_fileobj=file_path,
|
76 |
+
path_in_repo=path_in_repo,
|
77 |
+
repo_id=repo_id,
|
78 |
+
repo_type="space"
|
79 |
+
)
|
80 |
+
st.warning(f"Successfully uploaded {file_path} to {repo_id}")
|
81 |
+
except Exception as e:
|
82 |
+
st.error(f"Error uploading to Hugging Face: {str(e)}")
|
83 |
+
|
84 |
+
def train_model_with_upload(epochs, batch_size, learning_rate, save_interval, num_workers, repo_id):
|
85 |
+
"""Modified training function that uploads checkpoints to Hugging Face"""
|
86 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
87 |
+
st.warning(f"Using device: {device}")
|
88 |
+
|
89 |
+
# Create temporary directory for checkpoints
|
90 |
+
checkpoint_dir = "temp_checkpoints"
|
91 |
+
os.makedirs(checkpoint_dir, exist_ok=True)
|
92 |
+
|
93 |
+
try:
|
94 |
+
dataset = DenoiseDataset('noisy_images', 'target_images')
|
95 |
+
dataloader = DataLoader(
|
96 |
+
dataset,
|
97 |
+
batch_size=batch_size,
|
98 |
+
shuffle=True,
|
99 |
+
num_workers=num_workers,
|
100 |
+
pin_memory=True if torch.cuda.is_available() else False
|
101 |
+
)
|
102 |
+
|
103 |
+
model = DenoisingModel().to(device)
|
104 |
+
criterion = torch.nn.MSELoss()
|
105 |
+
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
|
106 |
+
|
107 |
+
for epoch in range(epochs):
|
108 |
+
st.warning(f"Starting epoch {epoch+1}/{epochs}")
|
109 |
+
for batch_idx, (noisy_patches, target_patches) in enumerate(dataloader):
|
110 |
+
noisy_patches = noisy_patches.to(device)
|
111 |
+
target_patches = target_patches.to(device)
|
112 |
+
|
113 |
+
outputs = model(noisy_patches)
|
114 |
+
loss = criterion(outputs, target_patches)
|
115 |
+
|
116 |
+
optimizer.zero_grad()
|
117 |
+
loss.backward()
|
118 |
+
optimizer.step()
|
119 |
+
|
120 |
+
if (batch_idx + 1) % 10 == 0:
|
121 |
+
st.warning(f"Epoch [{epoch+1}/{epochs}], Batch [{batch_idx+1}], Loss: {loss.item():.6f}")
|
122 |
+
|
123 |
+
if (batch_idx + 1) % save_interval == 0:
|
124 |
+
checkpoint_path = os.path.join(checkpoint_dir, f"checkpoint_epoch{epoch+1}_batch{batch_idx+1}.pth")
|
125 |
+
torch.save(model.state_dict(), checkpoint_path)
|
126 |
+
|
127 |
+
# Upload checkpoint to Hugging Face
|
128 |
+
upload_to_huggingface(
|
129 |
+
checkpoint_path,
|
130 |
+
repo_id,
|
131 |
+
f"checkpoints/checkpoint_epoch{epoch+1}_batch{batch_idx+1}.pth"
|
132 |
+
)
|
133 |
+
|
134 |
+
# Save and upload final model
|
135 |
+
final_model_path = os.path.join(checkpoint_dir, "final_model.pth")
|
136 |
+
torch.save(model.state_dict(), final_model_path)
|
137 |
+
upload_to_huggingface(final_model_path, repo_id, "model/final_model.pth")
|
138 |
+
|
139 |
+
finally:
|
140 |
+
# Clean up temporary directory
|
141 |
+
if os.path.exists(checkpoint_dir):
|
142 |
+
shutil.rmtree(checkpoint_dir)
|
143 |
+
|
144 |
+
def main():
|
145 |
+
st.title("Image Denoising Model Training")
|
146 |
+
|
147 |
+
# Redirect stdout to capture print statements
|
148 |
+
sys.stdout = StreamCapture()
|
149 |
+
|
150 |
+
# Input for Hugging Face token
|
151 |
+
hf_token = st.text_input("Enter your Hugging Face token:", type="password")
|
152 |
+
if hf_token:
|
153 |
+
os.environ["HF_TOKEN"] = hf_token
|
154 |
+
|
155 |
+
# Input for repository ID
|
156 |
+
repo_id = st.text_input("Enter your Hugging Face repository ID (username/repo):")
|
157 |
+
|
158 |
+
# Download and extract dataset button
|
159 |
+
if st.button("Download and Extract Dataset"):
|
160 |
+
url = "https://huggingface.co/spaces/vericudebuget/ok4231/resolve/main/output_images.7z"
|
161 |
+
error = download_and_extract_7z(url)
|
162 |
+
if error:
|
163 |
+
st.error(error)
|
164 |
+
|
165 |
+
# Training parameters
|
166 |
+
col1, col2 = st.columns(2)
|
167 |
+
with col1:
|
168 |
+
epochs = st.number_input("Number of epochs", min_value=1, value=10)
|
169 |
+
batch_size = st.number_input("Batch size", min_value=1, value=4)
|
170 |
+
learning_rate = st.number_input("Learning rate", min_value=0.0001, value=0.001, format="%.4f")
|
171 |
+
|
172 |
+
with col2:
|
173 |
+
save_interval = st.number_input("Save interval (batches)", min_value=1, value=1000)
|
174 |
+
num_workers = st.number_input("Number of workers", min_value=1, value=get_optimal_threads())
|
175 |
+
|
176 |
+
# Start training button
|
177 |
+
if st.button("Start Training"):
|
178 |
+
if not hf_token:
|
179 |
+
st.error("Please enter your Hugging Face token")
|
180 |
+
return
|
181 |
+
if not repo_id:
|
182 |
+
st.error("Please enter your repository ID")
|
183 |
+
return
|
184 |
+
if not os.path.exists("noisy_images") or not os.path.exists("target_images"):
|
185 |
+
st.error("Dataset not found. Please download and extract it first.")
|
186 |
+
return
|
187 |
+
|
188 |
+
train_model_with_upload(epochs, batch_size, learning_rate, save_interval, num_workers, repo_id)
|
189 |
+
|
190 |
+
if __name__ == "__main__":
|
191 |
+
main()
|