File size: 3,335 Bytes
dc800de
 
 
 
 
 
 
 
 
 
 
b45ed63
 
 
 
 
dc800de
b45ed63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc800de
 
 
b45ed63
 
 
dc800de
 
 
 
b45ed63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc800de
b45ed63
 
 
 
dc800de
b45ed63
 
dc800de
b45ed63
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import streamlit as st
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from pydub import AudioSegment
import tempfile
import torch
import os

# Set the device to CPU only
device = "cpu"
torch_dtype = torch.float32

# Initialize session state
if 'transcription_text' not in st.session_state:
    st.session_state.transcription_text = None
if 'srt_content' not in st.session_state:
    st.session_state.srt_content = None

@st.cache_resource
def load_model():
    model_id = "openai/whisper-large-v3-turbo"
    model = AutoModelForSpeechSeq2Seq.from_pretrained(
        model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
    ).to(device)
    processor = AutoProcessor.from_pretrained(model_id)
    pipe = pipeline(
        "automatic-speech-recognition",
        model=model,
        tokenizer=processor.tokenizer,
        feature_extractor=processor.feature_extractor,
        torch_dtype=torch_dtype,
        device=device,
    )
    return pipe

def format_srt_time(seconds):
    hours, remainder = divmod(seconds, 3600)
    minutes, seconds = divmod(remainder, 60)
    milliseconds = int((seconds % 1) * 1000)
    seconds = int(seconds)
    return f"{int(hours):02}:{int(minutes):02}:{seconds:02},{milliseconds:03}"

st.title("Audio/Video Transcription App")

# Load model
pipe = load_model()

# File upload
uploaded_file = st.file_uploader("Upload an audio or video file", type=["mp3", "wav", "mp4", "m4a"])

if uploaded_file is not None:
    with st.spinner("Processing audio..."):
        with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio:
            # If it's a video, extract audio
            if uploaded_file.name.endswith(("mp4", "m4a")):
                audio = AudioSegment.from_file(uploaded_file)
                audio.export(temp_audio.name, format="wav")
            else:
                audio = AudioSegment.from_file(uploaded_file)
                audio.export(temp_audio.name, format="wav")
            
            # Run the transcription
            transcription_result = pipe(temp_audio.name, return_timestamps="word")
            
            # Extract text and timestamps
            st.session_state.transcription_text = transcription_result['text']
            transcription_chunks = transcription_result['chunks']
            
            # Generate SRT content
            srt_content = ""
            for i, chunk in enumerate(transcription_chunks, start=1):
                start_time = chunk["timestamp"][0]
                end_time = chunk["timestamp"][1]
                text = chunk["text"]
                
                srt_content += f"{i}\n"
                srt_content += f"{format_srt_time(start_time)} --> {format_srt_time(end_time)}\n"
                srt_content += f"{text}\n\n"
            
            st.session_state.srt_content = srt_content

# Display transcription
if st.session_state.transcription_text:
    st.subheader("Transcription")
    st.write(st.session_state.transcription_text)

    # Provide download for SRT file
    if st.session_state.srt_content:
        st.subheader("Download SRT File")
        st.download_button(
            label="Download SRT",
            data=st.session_state.srt_content,
            file_name="transcription.srt",
            mime="text/plain"
        )