Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,76 +1,67 @@
|
|
1 |
-
#
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
# # Initialize the number of classes, also the image's height and width
|
7 |
-
# num_classes = 200
|
8 |
-
# IMG_HEIGHT = 300
|
9 |
-
# IMG_WIDTH = 300
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
-
|
|
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
|
18 |
-
# img = tf.image.resize(img, (IMG_HEIGHT, IMG_WIDTH), method='bilinear')
|
19 |
-
# return img
|
20 |
|
21 |
-
#
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
# elif model_name == "InceptionV3":
|
27 |
-
# return tf.keras.models.load_model("model/InceptionV3.h5")
|
28 |
-
# elif model_name == "InceptionResNetV2":
|
29 |
-
# return tf.keras.models.load_model("model/InceptionResNetV2.h5")
|
30 |
-
# elif model_name == "DenseNet201":
|
31 |
-
# return tf.keras.models.load_model("model/DenseNet201.h5")
|
32 |
-
# else:
|
33 |
-
# raise ValueError("Invalid model_name")
|
34 |
|
35 |
-
#
|
36 |
-
|
37 |
-
#
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
#
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
# [
|
55 |
-
# gr.inputs.Image(type='pil'),
|
56 |
-
# gr.inputs.Dropdown(
|
57 |
-
# choices=["Xception","InceptionV3","InceptionResNetV2","DenseNet201"],
|
58 |
-
# type="value",
|
59 |
-
# label="Select a model",
|
60 |
-
# info="Base model that done feature extraction and fine-tuning process"
|
61 |
-
# )
|
62 |
-
# ],
|
63 |
-
# outputs='label'
|
64 |
-
# )
|
65 |
|
66 |
-
#
|
67 |
-
|
68 |
-
|
69 |
-
import gradio as gr
|
70 |
-
|
71 |
-
def greet(name):
|
72 |
-
return "Hello " + name + "!"
|
73 |
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
-
|
|
|
|
1 |
+
# Import libraries
|
2 |
+
import gradio as gr
|
3 |
+
import tensorflow as tf
|
4 |
+
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
# Initialize the number of classes, also the image's height and width
|
7 |
+
num_classes = 200
|
8 |
+
IMG_HEIGHT = 300
|
9 |
+
IMG_WIDTH = 300
|
10 |
|
11 |
+
# Open the classlabel.txt to read the class labels
|
12 |
+
with open("classlabel.txt", 'r') as file:
|
13 |
+
CLASS_LABEL = [x.strip() for x in file.readlines()]
|
|
|
|
|
14 |
|
15 |
+
# Function to normalize the image
|
16 |
+
def normalize_image(img):
|
17 |
+
img = tf.cast(img, tf.float32) / 255.0
|
18 |
+
img = tf.image.resize(img, (IMG_HEIGHT, IMG_WIDTH), method='bilinear')
|
19 |
+
return img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
# Function to select and load the model
|
22 |
+
def load_model(model_name):
|
23 |
+
# Load the model based on the model_name input
|
24 |
+
if model_name == "Xception":
|
25 |
+
return tf.keras.models.load_model("model/Xception.h5")
|
26 |
+
elif model_name == "InceptionV3":
|
27 |
+
return tf.keras.models.load_model("model/InceptionV3.h5")
|
28 |
+
elif model_name == "InceptionResNetV2":
|
29 |
+
return tf.keras.models.load_model("model/InceptionResNetV2.h5")
|
30 |
+
elif model_name == "DenseNet201":
|
31 |
+
return tf.keras.models.load_model("model/DenseNet201.h5")
|
32 |
+
else:
|
33 |
+
raise ValueError("Invalid model_name")
|
34 |
|
35 |
+
# Main function, let the model make the prediction on the image uploaded
|
36 |
+
def predict_top_classes(img, model_name):
|
37 |
+
img = img.convert('RGB')
|
38 |
+
img_data = normalize_image(img)
|
39 |
+
x = np.array(img_data)
|
40 |
+
x = np.expand_dims(x, axis=0)
|
41 |
+
model = load_model(model_name)
|
42 |
+
temp = model.predict(x)
|
43 |
|
44 |
+
idx = np.argsort(np.squeeze(temp))[::-1]
|
45 |
+
top5_value = np.asarray([temp[0][i] for i in idx[0:5]])
|
46 |
+
top5_idx = idx[0:5]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
# Return the top 5 highest probability class labels
|
49 |
+
return {CLASS_LABEL[i]: str(v) for i, v in zip(top5_idx, top5_value)}
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
# Define the interface
|
52 |
+
interface = gr.Interface(
|
53 |
+
predict_top_classes,
|
54 |
+
[
|
55 |
+
gr.inputs.Image(type='pil'),
|
56 |
+
gr.inputs.Dropdown(
|
57 |
+
choices=["Xception","InceptionV3","InceptionResNetV2","DenseNet201"],
|
58 |
+
type="value",
|
59 |
+
label="Select a model",
|
60 |
+
info="Base model that done feature extraction and fine-tuning process"
|
61 |
+
)
|
62 |
+
],
|
63 |
+
outputs='label'
|
64 |
+
)
|
65 |
|
66 |
+
# Launch the interface
|
67 |
+
interface.launch()
|