Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,32 +1,38 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
import numpy as np
|
4 |
|
|
|
5 |
num_classes = 200
|
6 |
IMG_HEIGHT = 300
|
7 |
IMG_WIDTH = 300
|
8 |
|
|
|
9 |
with open("classlabel.txt", 'r') as file:
|
10 |
CLASS_LABEL = [x.strip() for x in file.readlines()]
|
11 |
|
|
|
12 |
def normalize_image(img):
|
13 |
img = tf.cast(img, tf.float32) / 255.0
|
14 |
img = tf.image.resize(img, (IMG_HEIGHT, IMG_WIDTH), method='bilinear')
|
15 |
return img
|
16 |
|
|
|
17 |
def load_model(model_name):
|
18 |
# Load the model based on the model_name input
|
19 |
-
if model_name ==
|
20 |
return tf.keras.models.load_model("model/Xception.h5")
|
21 |
-
elif model_name ==
|
22 |
return tf.keras.models.load_model("model/InceptionV3.h5")
|
23 |
-
elif model_name ==
|
24 |
return tf.keras.models.load_model("model/InceptionResNetV2.h5")
|
25 |
-
elif model_name ==
|
26 |
return tf.keras.models.load_model("model/DenseNet201.h5")
|
27 |
else:
|
28 |
raise ValueError("Invalid model_name")
|
29 |
|
|
|
30 |
def predict_top_classes(img, model_name):
|
31 |
img = img.convert('RGB')
|
32 |
img_data = normalize_image(img)
|
@@ -38,32 +44,24 @@ def predict_top_classes(img, model_name):
|
|
38 |
idx = np.argsort(np.squeeze(temp))[::-1]
|
39 |
top5_value = np.asarray([temp[0][i] for i in idx[0:5]])
|
40 |
top5_idx = idx[0:5]
|
41 |
-
|
|
|
42 |
return {CLASS_LABEL[i]: str(v) for i, v in zip(top5_idx, top5_value)}
|
43 |
|
44 |
-
|
45 |
-
"Xception": 1,
|
46 |
-
"InceptionV3": 2,
|
47 |
-
"InceptionResNetV2": 3,
|
48 |
-
"DenseNet201": 4
|
49 |
-
}
|
50 |
-
|
51 |
-
def dropdown_example(choice, img):
|
52 |
-
model_name = models[choice]
|
53 |
-
return predict_top_classes(img, model_name)
|
54 |
-
|
55 |
-
dropdown = gr.inputs.Dropdown(
|
56 |
-
choices=list(models.keys()),
|
57 |
-
type="index",
|
58 |
-
label="Select a model"
|
59 |
-
)
|
60 |
-
|
61 |
-
image_input = gr.inputs.Image(type='pil')
|
62 |
-
|
63 |
interface = gr.Interface(
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
outputs='label'
|
67 |
)
|
68 |
-
|
|
|
69 |
interface.launch()
|
|
|
1 |
+
# Import libraries
|
2 |
import gradio as gr
|
3 |
import tensorflow as tf
|
4 |
import numpy as np
|
5 |
|
6 |
+
# Initialize the number of classes, also the image's height and width
|
7 |
num_classes = 200
|
8 |
IMG_HEIGHT = 300
|
9 |
IMG_WIDTH = 300
|
10 |
|
11 |
+
# Open the classlabel.txt to read the class labels
|
12 |
with open("classlabel.txt", 'r') as file:
|
13 |
CLASS_LABEL = [x.strip() for x in file.readlines()]
|
14 |
|
15 |
+
# Function to normalize the image
|
16 |
def normalize_image(img):
|
17 |
img = tf.cast(img, tf.float32) / 255.0
|
18 |
img = tf.image.resize(img, (IMG_HEIGHT, IMG_WIDTH), method='bilinear')
|
19 |
return img
|
20 |
|
21 |
+
# Function to select and load the model
|
22 |
def load_model(model_name):
|
23 |
# Load the model based on the model_name input
|
24 |
+
if model_name == "Xception":
|
25 |
return tf.keras.models.load_model("model/Xception.h5")
|
26 |
+
elif model_name == "InceptionV3":
|
27 |
return tf.keras.models.load_model("model/InceptionV3.h5")
|
28 |
+
elif model_name == "InceptionResNetV2":
|
29 |
return tf.keras.models.load_model("model/InceptionResNetV2.h5")
|
30 |
+
elif model_name == "DenseNet201":
|
31 |
return tf.keras.models.load_model("model/DenseNet201.h5")
|
32 |
else:
|
33 |
raise ValueError("Invalid model_name")
|
34 |
|
35 |
+
# Main function, let the model make the prediction on the image uploaded
|
36 |
def predict_top_classes(img, model_name):
|
37 |
img = img.convert('RGB')
|
38 |
img_data = normalize_image(img)
|
|
|
44 |
idx = np.argsort(np.squeeze(temp))[::-1]
|
45 |
top5_value = np.asarray([temp[0][i] for i in idx[0:5]])
|
46 |
top5_idx = idx[0:5]
|
47 |
+
|
48 |
+
# Return the top 5 highest probability class labels
|
49 |
return {CLASS_LABEL[i]: str(v) for i, v in zip(top5_idx, top5_value)}
|
50 |
|
51 |
+
# Define the interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
interface = gr.Interface(
|
53 |
+
predict_top_classes,
|
54 |
+
[
|
55 |
+
gr.inputs.Image(type='pil'),
|
56 |
+
gr.inputs.Dropdown(
|
57 |
+
choices=["Xception","InceptionV3","InceptionResNetV2","DenseNet201"],
|
58 |
+
type="value",
|
59 |
+
label="Select a model",
|
60 |
+
info="Base model that done feature extraction and fine-tuning process"
|
61 |
+
)
|
62 |
+
]
|
63 |
outputs='label'
|
64 |
)
|
65 |
+
|
66 |
+
# Launch the interface
|
67 |
interface.launch()
|