Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -10,23 +10,26 @@ with open("classlabel.txt", 'r') as file:
|
|
10 |
CLASS_LABEL = [x.strip() for x in file.readlines()]
|
11 |
|
12 |
def normalize_image(img):
|
13 |
-
img = tf.cast(img, tf.float32)/255.
|
14 |
img = tf.image.resize(img, (IMG_HEIGHT, IMG_WIDTH), method='bilinear')
|
15 |
return img
|
16 |
|
17 |
-
|
18 |
-
def predict_fn(img):
|
19 |
img = img.convert('RGB')
|
20 |
img_data = normalize_image(img)
|
21 |
x = np.array(img_data)
|
22 |
x = np.expand_dims(x, axis=0)
|
23 |
temp = model.predict(x)
|
24 |
-
|
25 |
-
class_index = np.argmax(temp)
|
26 |
-
return CLASS_LABEL[class_index]
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
model = tf.keras.models.load_model("Xception.h5")
|
30 |
|
31 |
-
interface = gr.Interface(
|
32 |
-
interface.launch()
|
|
|
10 |
CLASS_LABEL = [x.strip() for x in file.readlines()]
|
11 |
|
12 |
def normalize_image(img):
|
13 |
+
img = tf.cast(img, tf.float32) / 255.
|
14 |
img = tf.image.resize(img, (IMG_HEIGHT, IMG_WIDTH), method='bilinear')
|
15 |
return img
|
16 |
|
17 |
+
def predict_top_classes(img, num_top_classes=5):
|
|
|
18 |
img = img.convert('RGB')
|
19 |
img_data = normalize_image(img)
|
20 |
x = np.array(img_data)
|
21 |
x = np.expand_dims(x, axis=0)
|
22 |
temp = model.predict(x)
|
|
|
|
|
|
|
23 |
|
24 |
+
top_class_indices = np.argpartition(temp, -num_top_classes)[-num_top_classes:]
|
25 |
+
top_class_indices = top_class_indices[np.argsort(temp[0, top_class_indices])[::-1]]
|
26 |
+
|
27 |
+
top_classes = [CLASS_LABEL[i] for i in top_class_indices]
|
28 |
+
top_probabilities = [temp[0, i] for i in top_class_indices]
|
29 |
+
|
30 |
+
return dict(zip(top_classes, top_probabilities))
|
31 |
|
32 |
model = tf.keras.models.load_model("Xception.h5")
|
33 |
|
34 |
+
interface = gr.Interface(predict_top_classes, gr.inputs.Image(type='pil'), outputs='dictionary', args={'num_top_classes': 5})
|
35 |
+
interface.launch()
|