import gradio as gr import tensorflow as tf import numpy as np num_classes = 200 IMG_HEIGHT = 300 IMG_WIDTH = 300 with open("classlabel.txt", 'r') as file: CLASS_LABEL = [x.strip() for x in file.readlines()] def normalize_image(img): img = tf.cast(img, tf.float32) / 255.0 img = tf.image.resize(img, (IMG_HEIGHT, IMG_WIDTH), method='bilinear') return img def load_model(model_name): # Load the model based on the model_name input if model_name == "model1": return tf.keras.models.load_model("model1.h5") elif model_name == "model2": return tf.keras.models.load_model("model2.h5") elif model_name == "model3": return tf.keras.models.load_model("model3.h5") else: raise ValueError("Invalid model_name") def predict_top_classes(img, model_name): img = img.convert('RGB') img_data = normalize_image(img) x = np.array(img_data) x = np.expand_dims(x, axis=0) model = load_model(model_name) temp = model.predict(x) idx = np.argsort(np.squeeze(temp))[::-1] top5_value = np.asarray([temp[0][i] for i in idx[0:5]) top5_idx = idx[0:5] return {CLASS_LABEL[i]: str(v) for i, v in zip(top5_idx, top5_value)} interface = gr.Interface( predict_top_classes, [ gr.inputs.Image(type='pil'), gr.inputs.Button(label="Model 1 (Xception)", value="model1"), gr.inputs.Button(label="Model 2 (InceptionV3)", value="model2"), gr.inputs.Button(label="Model 3 (InceptionResNetV2)", value="model3"), ], outputs='label' ) interface.launch()