import gradio as gr import tensorflow as tf import numpy as np num_classes = 200 IMG_HEIGHT = 300 IMG_WIDTH = 300 with open("classlabel.txt", 'r') as file: CLASS_LABEL = [x.strip() for x in file.readlines()] def normalize_image(img): img = tf.image.random_flip_left_right(img) img = tf.cast(img, tf.float32) / 255.0 img = tf.image.resize(img, (IMG_HEIGHT, IMG_WIDTH), method='bilinear') return img def predict_top_classes(img, num_top_classes=5): img = img.convert('RGB') img_data = normalize_image(img) x = np.array(img_data) x = np.expand_dims(x, axis=0) temp = model.predict(x) idx = np.argsort(np.squeeze(temp))[::-1] top5_value = np.asarray([temp[0][i] for i in idx[0:5]]) top5_idx = idx[0:5] return {CLASS_LABEL[i]:str(v) for i,v in zip(top5_idx,top5_value)} model = tf.keras.models.load_model("Xception.h5") interface = gr.Interface(predict_top_classes, gr.inputs.Image(type='pil'), outputs='label', args={'num_top_classes': 5}) interface.launch()