# Import libraries import gradio as gr import tensorflow as tf import numpy as np # Initialize the number of classes, also the image's height and width num_classes = 200 IMG_HEIGHT = 300 IMG_WIDTH = 300 # Open the classlabel.txt to read the class labels with open("classlabel.txt", 'r') as file: CLASS_LABEL = [x.strip() for x in file.readlines()] # Function to normalize the image def normalize_image(img): img = tf.cast(img, tf.float32)/255. img = tf.image.resize(img, (IMG_HEIGHT, IMG_WIDTH), method='bilinear') return img # Function to select and load the model def load_model(model_name): # Load the model based on the model_name input if model_name == "Xception": return tf.keras.models.load_model("model/Xception.h5") elif model_name == "InceptionV3": return tf.keras.models.load_model("model/InceptionV3.h5") elif model_name == "InceptionResNetV2": return tf.keras.models.load_model("model/InceptionResNetV2.h5") elif model_name == "DenseNet201": return tf.keras.models.load_model("model/DenseNet201.h5") else: raise ValueError("Invalid model_name") # Main function, let the model make the prediction on the image uploaded def predict_top_classes(img, model_name): img = img.convert('RGB') img_data = normalize_image(img) x = np.array(img_data) x = np.expand_dims(x, axis=0) model = load_model(model_name) temp = model.predict(x) idx = np.argsort(np.squeeze(temp))[::-1] top5_value = np.asarray([temp[0][i] for i in idx[0:5]]) top5_idx = idx[0:5] # Return the top 5 highest probability class labels return {CLASS_LABEL[i]: str(v) for i, v in zip(top5_idx, top5_value)} # Define the interface interface = gr.Interface( predict_top_classes, [ gr.Image(type='pil'), gr.Dropdown( choices=["Xception","InceptionV3","InceptionResNetV2","DenseNet201"], type="value", label="Select a model" ) ], outputs='label' ) # Launch the interface interface.launch()