Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -1,12 +1,58 @@
|
|
1 |
---
|
2 |
-
title: Biomass App
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Biomass Prediction App
|
3 |
+
emoji: 🌳
|
4 |
+
colorFrom: green
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.40.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
# Biomass Prediction App
|
13 |
+
|
14 |
+
This Gradio app demonstrates biomass prediction from satellite imagery using a StableResNet model.
|
15 |
+
|
16 |
+
## Features
|
17 |
+
|
18 |
+
- Upload a multi-band satellite image (GeoTIFF format)
|
19 |
+
- View predicted biomass as a heatmap or RGB overlay
|
20 |
+
- Get statistics on predicted biomass values
|
21 |
+
|
22 |
+
## Usage
|
23 |
+
|
24 |
+
1. Upload a multi-band satellite image (GeoTIFF)
|
25 |
+
2. Choose display type (heatmap or RGB overlay)
|
26 |
+
3. Click "Generate Biomass Prediction"
|
27 |
+
4. View the prediction map and statistics
|
28 |
+
|
29 |
+
## Model Information
|
30 |
+
|
31 |
+
- **Created by:** pokkiri
|
32 |
+
- **Date:** 2025-05-17
|
33 |
+
- **Architecture:** StableResNet
|
34 |
+
- **Model Repository:** [pokkiri/biomass-model](https://huggingface.co/pokkiri/biomass-model)
|
35 |
+
- **Input:** Multi-spectral satellite imagery
|
36 |
+
- **Output:** Above-ground biomass (Mg/ha)
|
37 |
+
|
38 |
+
## Requirements
|
39 |
+
|
40 |
+
- GeoTIFF image file with multiple spectral bands
|
41 |
+
- Image bands should match those used during model training
|
42 |
+
|
43 |
+
## How It Works
|
44 |
+
|
45 |
+
The app connects to the biomass prediction model hosted on HuggingFace Hub. When you upload a satellite image:
|
46 |
+
|
47 |
+
1. The app loads your GeoTIFF file
|
48 |
+
2. For each pixel, it extracts the spectral values
|
49 |
+
3. These values are processed through the StableResNet model
|
50 |
+
4. The model predicts biomass values for each pixel
|
51 |
+
5. Results are visualized on a map with summary statistics
|
52 |
+
|
53 |
+
## Citation
|
54 |
+
|
55 |
+
```
|
56 |
+
@misc{biomass_app, author = {pokkiri}, title = {Biomass Prediction App}, year = {2025}, publisher = {HuggingFace Spaces}, howpublished = {https://huggingface.co/spaces/pokkiri/biomass-app} }
|
57 |
+
|
58 |
+
```
|
app.py
ADDED
@@ -0,0 +1,285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Gradio App for Biomass Prediction
|
3 |
+
Provides a web interface for making predictions with StableResNet
|
4 |
+
|
5 |
+
Author: najahpokkiri
|
6 |
+
Date: 2025-05-17
|
7 |
+
"""
|
8 |
+
import os
|
9 |
+
import torch
|
10 |
+
import numpy as np
|
11 |
+
import gradio as gr
|
12 |
+
import joblib
|
13 |
+
import tempfile
|
14 |
+
import matplotlib.pyplot as plt
|
15 |
+
import matplotlib.colors as colors
|
16 |
+
from PIL import Image
|
17 |
+
import io
|
18 |
+
from huggingface_hub import hf_hub_download
|
19 |
+
|
20 |
+
# Import model architecture
|
21 |
+
from model import StableResNet
|
22 |
+
|
23 |
+
class BiomassPredictorApp:
|
24 |
+
"""Gradio app for biomass prediction"""
|
25 |
+
|
26 |
+
def __init__(self, model_repo="pokkiri/biomass-model"):
|
27 |
+
self.model = None
|
28 |
+
self.package = None
|
29 |
+
self.model_repo = model_repo
|
30 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
31 |
+
|
32 |
+
# Load the model
|
33 |
+
self.load_model()
|
34 |
+
|
35 |
+
def load_model(self):
|
36 |
+
"""Load the model and preprocessing pipeline from HuggingFace Hub"""
|
37 |
+
try:
|
38 |
+
# Download files from HuggingFace
|
39 |
+
model_path = hf_hub_download(repo_id=self.model_repo, filename="model.pt")
|
40 |
+
package_path = hf_hub_download(repo_id=self.model_repo, filename="model_package.pkl")
|
41 |
+
|
42 |
+
# Load package with metadata
|
43 |
+
self.package = joblib.load(package_path)
|
44 |
+
n_features = self.package['n_features']
|
45 |
+
|
46 |
+
# Initialize model
|
47 |
+
self.model = StableResNet(n_features=n_features)
|
48 |
+
self.model.load_state_dict(torch.load(model_path, map_location=self.device))
|
49 |
+
self.model.to(self.device)
|
50 |
+
self.model.eval()
|
51 |
+
|
52 |
+
print(f"Model loaded successfully from {self.model_repo}")
|
53 |
+
print(f"Number of features: {n_features}")
|
54 |
+
print(f"Using device: {self.device}")
|
55 |
+
|
56 |
+
return True
|
57 |
+
except Exception as e:
|
58 |
+
print(f"Error loading model: {e}")
|
59 |
+
return False
|
60 |
+
|
61 |
+
def predict_biomass(self, image_file, display_type="heatmap"):
|
62 |
+
"""Predict biomass from a satellite image"""
|
63 |
+
try:
|
64 |
+
# Create a temporary file to save the uploaded file
|
65 |
+
with tempfile.NamedTemporaryFile(suffix='.tif', delete=False) as tmp_file:
|
66 |
+
tmp_path = tmp_file.name
|
67 |
+
with open(image_file.name, 'rb') as f:
|
68 |
+
tmp_file.write(f.read())
|
69 |
+
|
70 |
+
try:
|
71 |
+
import rasterio
|
72 |
+
except ImportError:
|
73 |
+
return None, "Error: rasterio is required but not installed."
|
74 |
+
|
75 |
+
# Open the image file
|
76 |
+
with rasterio.open(tmp_path) as src:
|
77 |
+
image = src.read()
|
78 |
+
height, width = image.shape[1], image.shape[2]
|
79 |
+
transform = src.transform
|
80 |
+
crs = src.crs
|
81 |
+
|
82 |
+
# Check if number of bands matches expected features
|
83 |
+
if image.shape[0] < self.package['n_features']:
|
84 |
+
return None, f"Error: Image has {image.shape[0]} bands, but model expects at least {self.package['n_features']} features."
|
85 |
+
|
86 |
+
print(f"Processing image: {height}x{width} pixels, {image.shape[0]} bands")
|
87 |
+
|
88 |
+
# Process in chunks to avoid memory issues
|
89 |
+
chunk_size = 1000
|
90 |
+
predictions = np.zeros((height, width), dtype=np.float32)
|
91 |
+
|
92 |
+
# Create mask for valid pixels (not NaN or Inf)
|
93 |
+
valid_mask = np.all(np.isfinite(image), axis=0)
|
94 |
+
|
95 |
+
# Process image in chunks
|
96 |
+
for y_start in range(0, height, chunk_size):
|
97 |
+
y_end = min(y_start + chunk_size, height)
|
98 |
+
|
99 |
+
for x_start in range(0, width, chunk_size):
|
100 |
+
x_end = min(x_start + chunk_size, width)
|
101 |
+
|
102 |
+
# Get chunk mask
|
103 |
+
chunk_mask = valid_mask[y_start:y_end, x_start:x_end]
|
104 |
+
if not np.any(chunk_mask):
|
105 |
+
continue
|
106 |
+
|
107 |
+
# Extract valid pixels
|
108 |
+
valid_y, valid_x = np.where(chunk_mask)
|
109 |
+
|
110 |
+
# Extract features for valid pixels
|
111 |
+
pixel_features = []
|
112 |
+
for i, j in zip(valid_y, valid_x):
|
113 |
+
# Extract bands
|
114 |
+
pixel_values = image[:, y_start+i, x_start+j]
|
115 |
+
pixel_features.append(pixel_values)
|
116 |
+
|
117 |
+
# Convert to array and scale features
|
118 |
+
pixel_features = np.array(pixel_features)
|
119 |
+
pixel_features_scaled = self.package['scaler'].transform(pixel_features)
|
120 |
+
|
121 |
+
# Make predictions
|
122 |
+
with torch.no_grad():
|
123 |
+
batch_tensor = torch.tensor(pixel_features_scaled, dtype=torch.float32).to(self.device)
|
124 |
+
batch_predictions = self.model(batch_tensor).cpu().numpy()
|
125 |
+
|
126 |
+
# Convert from log scale if needed
|
127 |
+
if self.package['use_log_transform']:
|
128 |
+
batch_predictions = np.exp(batch_predictions) - self.package.get('epsilon', 1.0)
|
129 |
+
batch_predictions = np.maximum(batch_predictions, 0) # Ensure non-negative
|
130 |
+
|
131 |
+
# Insert predictions back into the image
|
132 |
+
for idx, (i, j) in enumerate(zip(valid_y, valid_x)):
|
133 |
+
predictions[y_start+i, x_start+j] = batch_predictions[idx]
|
134 |
+
|
135 |
+
# Delete temporary file
|
136 |
+
os.unlink(tmp_path)
|
137 |
+
|
138 |
+
# Create visualization
|
139 |
+
plt.figure(figsize=(12, 8))
|
140 |
+
|
141 |
+
if display_type == "heatmap":
|
142 |
+
# Create heatmap
|
143 |
+
plt.imshow(predictions, cmap='viridis')
|
144 |
+
plt.colorbar(label='Biomass (Mg/ha)')
|
145 |
+
plt.title('Predicted Above-Ground Biomass')
|
146 |
+
|
147 |
+
elif display_type == "rgb_overlay":
|
148 |
+
# Create RGB + overlay
|
149 |
+
if image.shape[0] >= 3:
|
150 |
+
# Use first 3 bands as RGB
|
151 |
+
rgb = image[[0, 1, 2]].transpose(1, 2, 0)
|
152 |
+
rgb = np.clip((rgb - np.percentile(rgb, 2)) / (np.percentile(rgb, 98) - np.percentile(rgb, 2)), 0, 1)
|
153 |
+
|
154 |
+
plt.imshow(rgb)
|
155 |
+
|
156 |
+
# Create mask for overlay (where we have predictions)
|
157 |
+
mask = ~np.isclose(predictions, 0)
|
158 |
+
overlay = np.zeros((height, width, 4))
|
159 |
+
|
160 |
+
# Create colormap for biomass
|
161 |
+
norm = colors.Normalize(vmin=np.percentile(predictions[mask], 5),
|
162 |
+
vmax=np.percentile(predictions[mask], 95))
|
163 |
+
cmap = plt.cm.viridis
|
164 |
+
|
165 |
+
# Apply colormap
|
166 |
+
overlay[..., :3] = cmap(norm(predictions))[..., :3]
|
167 |
+
overlay[..., 3] = np.where(mask, 0.7, 0) # Set alpha channel
|
168 |
+
|
169 |
+
plt.imshow(overlay)
|
170 |
+
plt.colorbar(plt.cm.ScalarMappable(norm=norm, cmap=cmap),
|
171 |
+
label='Biomass (Mg/ha)')
|
172 |
+
plt.title('Biomass Prediction Overlay')
|
173 |
+
else:
|
174 |
+
plt.imshow(predictions, cmap='viridis')
|
175 |
+
plt.colorbar(label='Biomass (Mg/ha)')
|
176 |
+
plt.title('Predicted Above-Ground Biomass')
|
177 |
+
|
178 |
+
# Save figure to bytes buffer
|
179 |
+
buf = io.BytesIO()
|
180 |
+
plt.savefig(buf, format='png', dpi=150, bbox_inches='tight')
|
181 |
+
buf.seek(0)
|
182 |
+
|
183 |
+
# Create summary statistics
|
184 |
+
valid_predictions = predictions[valid_mask]
|
185 |
+
stats = {
|
186 |
+
'Mean Biomass': f"{np.mean(valid_predictions):.2f} Mg/ha",
|
187 |
+
'Median Biomass': f"{np.median(valid_predictions):.2f} Mg/ha",
|
188 |
+
'Min Biomass': f"{np.min(valid_predictions):.2f} Mg/ha",
|
189 |
+
'Max Biomass': f"{np.max(valid_predictions):.2f} Mg/ha",
|
190 |
+
'Total Biomass': f"{np.sum(valid_predictions) * (transform[0] * transform[0]) / 10000:.2f} Mg",
|
191 |
+
'Area': f"{np.sum(valid_mask) * (transform[0] * transform[0]) / 10000:.2f} hectares"
|
192 |
+
}
|
193 |
+
|
194 |
+
# Format statistics as markdown
|
195 |
+
stats_md = "### Biomass Statistics\n\n"
|
196 |
+
stats_md += "| Metric | Value |\n|--------|-------|\n"
|
197 |
+
for k, v in stats.items():
|
198 |
+
stats_md += f"| {k} | {v} |\n"
|
199 |
+
|
200 |
+
# Close the plot
|
201 |
+
plt.close()
|
202 |
+
|
203 |
+
# Return visualization and statistics
|
204 |
+
return Image.open(buf), stats_md
|
205 |
+
|
206 |
+
except Exception as e:
|
207 |
+
import traceback
|
208 |
+
return None, f"Error predicting biomass: {str(e)}\n\n{traceback.format_exc()}"
|
209 |
+
|
210 |
+
def create_interface(self):
|
211 |
+
"""Create Gradio interface"""
|
212 |
+
with gr.Blocks(title="Biomass Prediction Model") as interface:
|
213 |
+
gr.Markdown("# Above-Ground Biomass Prediction")
|
214 |
+
gr.Markdown("""
|
215 |
+
Upload a multi-band satellite image to predict above-ground biomass (AGB) across the landscape.
|
216 |
+
|
217 |
+
**Requirements:**
|
218 |
+
- Image must be a GeoTIFF with spectral bands
|
219 |
+
- For best results, image should contain similar bands to those used in training
|
220 |
+
""")
|
221 |
+
|
222 |
+
with gr.Row():
|
223 |
+
with gr.Column():
|
224 |
+
input_image = gr.File(
|
225 |
+
label="Upload Satellite Image (GeoTIFF)",
|
226 |
+
file_types=[".tif", ".tiff"]
|
227 |
+
)
|
228 |
+
|
229 |
+
display_type = gr.Radio(
|
230 |
+
choices=["heatmap", "rgb_overlay"],
|
231 |
+
value="heatmap",
|
232 |
+
label="Display Type"
|
233 |
+
)
|
234 |
+
|
235 |
+
submit_btn = gr.Button("Generate Biomass Prediction")
|
236 |
+
|
237 |
+
with gr.Column():
|
238 |
+
output_image = gr.Image(
|
239 |
+
label="Biomass Prediction Map",
|
240 |
+
type="pil"
|
241 |
+
)
|
242 |
+
|
243 |
+
output_stats = gr.Markdown(
|
244 |
+
label="Statistics"
|
245 |
+
)
|
246 |
+
|
247 |
+
with gr.Accordion("About", open=False):
|
248 |
+
gr.Markdown(f"""
|
249 |
+
## About This Model
|
250 |
+
|
251 |
+
This biomass prediction model uses the StableResNet architecture to predict above-ground biomass from satellite imagery.
|
252 |
+
|
253 |
+
### Model Details
|
254 |
+
|
255 |
+
- Architecture: StableResNet
|
256 |
+
- Input: Multi-spectral satellite imagery
|
257 |
+
- Output: Above-ground biomass (Mg/ha)
|
258 |
+
- Creator: {pokkiri}
|
259 |
+
- Date: {2025-05-17}
|
260 |
+
- Model Repository: [{pokkiri/biomass-model}](https://huggingface.co/{pokkiri/biomass-model})
|
261 |
+
|
262 |
+
### How It Works
|
263 |
+
|
264 |
+
1. The model extracts features from each pixel in the satellite image
|
265 |
+
2. These features are processed through the StableResNet model
|
266 |
+
3. The model outputs a biomass prediction for each pixel
|
267 |
+
4. Results are visualized as a heatmap or RGB overlay
|
268 |
+
""")
|
269 |
+
|
270 |
+
submit_btn.click(
|
271 |
+
fn=self.predict_biomass,
|
272 |
+
inputs=[input_image, display_type],
|
273 |
+
outputs=[output_image, output_stats]
|
274 |
+
)
|
275 |
+
|
276 |
+
return interface
|
277 |
+
|
278 |
+
def launch_app():
|
279 |
+
"""Launch the Gradio app"""
|
280 |
+
app = BiomassPredictorApp()
|
281 |
+
interface = app.create_interface()
|
282 |
+
interface.launch()
|
283 |
+
|
284 |
+
if __name__ == "__main__":
|
285 |
+
launch_app()
|
model.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
StableResNet Model for Biomass Prediction
|
3 |
+
A numerically stable ResNet architecture for regression tasks
|
4 |
+
|
5 |
+
Author: najahpokkiri
|
6 |
+
Date: 2025-05-17
|
7 |
+
"""
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
|
11 |
+
class StableResNet(nn.Module):
|
12 |
+
"""Numerically stable ResNet for biomass regression"""
|
13 |
+
def __init__(self, n_features, dropout=0.2):
|
14 |
+
super().__init__()
|
15 |
+
|
16 |
+
self.input_proj = nn.Sequential(
|
17 |
+
nn.Linear(n_features, 256),
|
18 |
+
nn.LayerNorm(256),
|
19 |
+
nn.ReLU(),
|
20 |
+
nn.Dropout(dropout)
|
21 |
+
)
|
22 |
+
|
23 |
+
self.layer1 = self._make_simple_resblock(256, 256)
|
24 |
+
self.layer2 = self._make_simple_resblock(256, 128)
|
25 |
+
self.layer3 = self._make_simple_resblock(128, 64)
|
26 |
+
|
27 |
+
self.regressor = nn.Sequential(
|
28 |
+
nn.Linear(64, 32),
|
29 |
+
nn.ReLU(),
|
30 |
+
nn.Linear(32, 1)
|
31 |
+
)
|
32 |
+
|
33 |
+
self._init_weights()
|
34 |
+
|
35 |
+
def _make_simple_resblock(self, in_dim, out_dim):
|
36 |
+
return nn.Sequential(
|
37 |
+
nn.Linear(in_dim, out_dim),
|
38 |
+
nn.BatchNorm1d(out_dim),
|
39 |
+
nn.ReLU(),
|
40 |
+
nn.Linear(out_dim, out_dim),
|
41 |
+
nn.BatchNorm1d(out_dim),
|
42 |
+
nn.ReLU()
|
43 |
+
) if in_dim == out_dim else nn.Sequential(
|
44 |
+
nn.Linear(in_dim, out_dim),
|
45 |
+
nn.BatchNorm1d(out_dim),
|
46 |
+
nn.ReLU(),
|
47 |
+
)
|
48 |
+
|
49 |
+
def _init_weights(self):
|
50 |
+
for m in self.modules():
|
51 |
+
if isinstance(m, nn.Linear):
|
52 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='relu')
|
53 |
+
if m.bias is not None:
|
54 |
+
nn.init.zeros_(m.bias)
|
55 |
+
|
56 |
+
def forward(self, x):
|
57 |
+
x = self.input_proj(x)
|
58 |
+
|
59 |
+
identity = x
|
60 |
+
out = self.layer1(x)
|
61 |
+
x = out + identity
|
62 |
+
|
63 |
+
x = self.layer2(x)
|
64 |
+
x = self.layer3(x)
|
65 |
+
|
66 |
+
x = self.regressor(x)
|
67 |
+
return x.squeeze()
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch>=1.10.0
|
2 |
+
numpy>=1.20.0
|
3 |
+
joblib>=1.1.0
|
4 |
+
rasterio>=1.2.0
|
5 |
+
huggingface_hub>=0.10.0
|
6 |
+
matplotlib>=3.5.0
|
7 |
+
gradio>=3.0.0
|
8 |
+
pillow>=8.0.0
|