Spaces:
Running
Running
Update feature_engineering.py
Browse files- feature_engineering.py +377 -670
feature_engineering.py
CHANGED
@@ -1,709 +1,416 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
sample_thumbnails = {}
|
5 |
-
for name, path in self.sample_images.items():
|
6 |
-
if os.path.exists(path):
|
7 |
-
thumbnail = self.create_thumbnail(path)
|
8 |
-
if thumbnail:
|
9 |
-
sample_thumbnails[name] = Image.open(thumbnail)
|
10 |
-
else:
|
11 |
-
logger.warning(f"Sample image not found: {path}")
|
12 |
-
|
13 |
-
with gr.Blocks(title="Biomass Prediction Model") as interface:
|
14 |
-
gr.Markdown("# Above-Ground Biomass Prediction")
|
15 |
-
gr.Markdown("""
|
16 |
-
Upload a multi-band satellite image to predict above-ground biomass (AGB) across the landscape.
|
17 |
-
|
18 |
-
**Requirements:**
|
19 |
-
- Image must be a GeoTIFF with spectral bands
|
20 |
-
- For best results, image should contain at least 3 bands
|
21 |
-
""")
|
22 |
-
|
23 |
-
with gr.Row():
|
24 |
-
with gr.Column(scale=1):
|
25 |
-
input_image = gr.File(
|
26 |
-
label="Upload Satellite Image (GeoTIFF)",
|
27 |
-
file_types=[".tif", ".tiff"]
|
28 |
-
)
|
29 |
-
|
30 |
-
# Sample images section
|
31 |
-
gr.Markdown("### Sample Images")
|
32 |
-
|
33 |
-
# Sample buttons container
|
34 |
-
sample_buttons = []
|
35 |
-
|
36 |
-
# First row - sample thumbnails side by side horizontally
|
37 |
-
with gr.Row():
|
38 |
-
for name, thumbnail in sample_thumbnails.items():
|
39 |
-
with gr.Column():
|
40 |
-
gr.Image(
|
41 |
-
value=thumbnail,
|
42 |
-
label=name.replace("input_", "Input ").replace("chip_", "Chip "),
|
43 |
-
show_download_button=False,
|
44 |
-
height=180
|
45 |
-
)
|
46 |
-
|
47 |
-
# Second row - buttons side by side horizontally, matching the thumbnails above
|
48 |
-
with gr.Row():
|
49 |
-
for name, _ in sample_thumbnails.items():
|
50 |
-
with gr.Column():
|
51 |
-
sample_btn = gr.Button(
|
52 |
-
f"Use {name.replace('input_', 'Input ').replace('chip_', 'Chip ')}",
|
53 |
-
variant="secondary",
|
54 |
-
size="lg"
|
55 |
-
)
|
56 |
-
sample_buttons.append((sample_btn, name))
|
57 |
-
|
58 |
-
# Generate button at the bottom
|
59 |
-
generate_btn = gr.Button("Generate Biomass Prediction", variant="primary", size="lg")
|
60 |
-
|
61 |
-
with gr.Column(scale=2):
|
62 |
-
output_image = gr.Image(
|
63 |
-
label="Biomass Prediction Map",
|
64 |
-
type="pil"
|
65 |
-
)
|
66 |
-
|
67 |
-
output_stats = gr.Markdown(
|
68 |
-
label="Statistics"
|
69 |
-
)
|
70 |
-
|
71 |
-
with gr.Accordion("About", open=False):
|
72 |
-
gr.Markdown("""
|
73 |
-
## About This Model
|
74 |
-
|
75 |
-
This biomass prediction model uses the StableResNet architecture to predict above-ground biomass from satellite imagery.
|
76 |
-
|
77 |
-
### Model Details
|
78 |
-
|
79 |
-
- Architecture: StableResNet
|
80 |
-
- Input: Multi-spectral satellite imagery
|
81 |
-
- Output: Above-ground biomass (Mg/ha)
|
82 |
-
- Creator: vertify.earth
|
83 |
-
- Date: 2025-05-19
|
84 |
-
|
85 |
-
### Improvements in This Version
|
86 |
-
|
87 |
-
- Added calibration factor to match full-tile inference values
|
88 |
-
- Improved chunk processing with overlap to reduce edge artifacts
|
89 |
-
- Enhanced feature calculation for better results
|
90 |
-
- Optimized visualization to show the full range of biomass values
|
91 |
-
""")
|
92 |
-
|
93 |
-
# Add a warning if model failed to load
|
94 |
-
if self.model is None:
|
95 |
-
gr.Warning("⚠️ Model failed to load. The app may not work correctly. Check logs for details.")
|
96 |
-
|
97 |
-
# Connect the process button
|
98 |
-
generate_btn.click(
|
99 |
-
fn=self.predict_biomass,
|
100 |
-
inputs=[input_image],
|
101 |
-
outputs=[output_image, output_stats]
|
102 |
-
)
|
103 |
-
|
104 |
-
# Connect the sample buttons
|
105 |
-
for button, name in sample_buttons:
|
106 |
-
button.click(
|
107 |
-
fn=lambda path=self.sample_images[name]: self.predict_biomass(path),
|
108 |
-
inputs=[],
|
109 |
-
outputs=[output_image, output_stats]
|
110 |
-
)
|
111 |
-
|
112 |
-
return interface
|
113 |
-
|
114 |
-
def launch_app():
|
115 |
-
"""Launch the Gradio app"""
|
116 |
-
try:
|
117 |
-
# Create app instance
|
118 |
-
app = BiomassPredictorApp()
|
119 |
-
|
120 |
-
# Create interface
|
121 |
-
interface = app.create_interface()
|
122 |
-
|
123 |
-
# Launch interface
|
124 |
-
interface.launch()
|
125 |
-
except Exception as e:
|
126 |
-
logger.error(f"Error launching app: {e}")
|
127 |
-
logger.error(traceback.format_exc())
|
128 |
|
129 |
-
if __name__ == "__main__":
|
130 |
-
launch_app()"""
|
131 |
-
Biomass Prediction Gradio App with Two Sample Images and RGB Comparison
|
132 |
Author: najahpokkiri
|
133 |
Date: 2025-05-19
|
134 |
-
|
135 |
-
Updated with sample image thumbnails and always-on RGB comparison.
|
136 |
"""
|
137 |
-
import os
|
138 |
-
import sys
|
139 |
-
import torch
|
140 |
import numpy as np
|
141 |
-
import gradio as gr
|
142 |
-
import joblib
|
143 |
-
import tempfile
|
144 |
-
import matplotlib.pyplot as plt
|
145 |
-
import matplotlib.colors as colors
|
146 |
-
from PIL import Image
|
147 |
-
import io
|
148 |
import logging
|
149 |
-
from
|
150 |
-
import rasterio
|
151 |
|
152 |
# Configure logger
|
153 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
154 |
logger = logging.getLogger(__name__)
|
155 |
|
156 |
-
#
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
# Get valid pixel coordinates
|
172 |
-
valid_y, valid_x = np.where(valid_mask)
|
173 |
-
n_valid = len(valid_y)
|
174 |
|
175 |
-
#
|
176 |
-
|
177 |
-
|
178 |
|
179 |
-
|
180 |
-
|
|
|
|
|
181 |
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
|
189 |
-
#
|
190 |
-
|
|
|
191 |
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
self.feature_names = []
|
202 |
-
self.model_repo = model_repo
|
203 |
-
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
204 |
-
|
205 |
-
# Sample image paths
|
206 |
-
self.sample_images = {
|
207 |
-
"input_chip_1": "input_chip_1.tif",
|
208 |
-
"input_chip_2": "input_chip_2.tif"
|
209 |
-
}
|
210 |
-
|
211 |
-
# Cache for storing temporary files
|
212 |
-
self.temp_files = []
|
213 |
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
def load_model(self):
|
218 |
-
"""Load the model and preprocessing pipeline"""
|
219 |
-
try:
|
220 |
-
logger.info(f"Loading model from {self.model_repo}")
|
221 |
-
|
222 |
-
# Download model files from HuggingFace or use local files
|
223 |
-
try:
|
224 |
-
model_path = hf_hub_download(repo_id=self.model_repo, filename="model.pt")
|
225 |
-
package_path = hf_hub_download(repo_id=self.model_repo, filename="model_package.pkl")
|
226 |
-
except Exception as e:
|
227 |
-
logger.warning(f"Failed to download from HuggingFace: {e}")
|
228 |
-
# Fallback to local files
|
229 |
-
model_path = "model.pt"
|
230 |
-
package_path = "model_package.pkl"
|
231 |
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
self.package = joblib.load(package_path)
|
236 |
-
logger.info("Successfully loaded model package")
|
237 |
|
238 |
-
#
|
239 |
-
|
240 |
-
self.feature_names = self.package.get('feature_names', [f"feature_{i}" for i in range(n_features)])
|
241 |
|
242 |
-
|
243 |
-
|
244 |
-
except Exception as e:
|
245 |
-
logger.error(f"Error loading package file: {e}")
|
246 |
-
# Fallback to default values
|
247 |
-
n_features = 99 # We know there are 99 features
|
248 |
-
self.feature_names = [f"feature_{i}" for i in range(n_features)]
|
249 |
|
250 |
-
#
|
251 |
-
|
252 |
-
'n_features': n_features,
|
253 |
-
'use_log_transform': True,
|
254 |
-
'epsilon': 1.0,
|
255 |
-
'scaler': None # Will handle the None case in prediction
|
256 |
-
}
|
257 |
-
|
258 |
-
# Initialize model
|
259 |
-
self.model = StableResNet(n_features=n_features)
|
260 |
-
self.model.load_state_dict(torch.load(model_path, map_location=self.device))
|
261 |
-
self.model.to(self.device)
|
262 |
-
self.model.eval()
|
263 |
-
|
264 |
-
logger.info(f"Model loaded successfully")
|
265 |
-
logger.info(f"Number of features: {n_features}")
|
266 |
-
logger.info(f"Using device: {self.device}")
|
267 |
-
|
268 |
-
return True
|
269 |
-
except Exception as e:
|
270 |
-
logger.error(f"Error loading model: {e}")
|
271 |
-
import traceback
|
272 |
-
logger.error(traceback.format_exc())
|
273 |
-
return False
|
274 |
-
|
275 |
-
def cleanup(self):
|
276 |
-
"""Clean up temporary files"""
|
277 |
-
for tmp_path in self.temp_files:
|
278 |
-
try:
|
279 |
-
if os.path.exists(tmp_path):
|
280 |
-
os.unlink(tmp_path)
|
281 |
-
except Exception as e:
|
282 |
-
logger.warning(f"Failed to remove temporary file {tmp_path}: {e}")
|
283 |
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
return None
|
292 |
-
|
293 |
-
# Open the GeoTIFF
|
294 |
-
with rasterio.open(image_path) as src:
|
295 |
-
# Read data with RGB bands if available
|
296 |
-
if src.count >= 3:
|
297 |
-
# Use first three bands as RGB
|
298 |
-
rgb_data = src.read([1, 2, 3])
|
299 |
-
|
300 |
-
# Transpose from (bands, height, width) to (height, width, bands)
|
301 |
-
rgb_data = np.transpose(rgb_data, (1, 2, 0))
|
302 |
-
|
303 |
-
# Normalize to 0-255 range
|
304 |
-
rgb_data = np.clip(rgb_data, 0, None) # Clip negative values
|
305 |
-
for i in range(3):
|
306 |
-
p2 = np.percentile(rgb_data[:,:,i], 2)
|
307 |
-
p98 = np.percentile(rgb_data[:,:,i], 98)
|
308 |
-
if p98 > p2:
|
309 |
-
rgb_data[:,:,i] = np.clip((rgb_data[:,:,i] - p2) / (p98 - p2) * 255, 0, 255)
|
310 |
-
else:
|
311 |
-
rgb_data[:,:,i] = np.clip(rgb_data[:,:,i] / (rgb_data[:,:,i].max() or 1) * 255, 0, 255)
|
312 |
-
|
313 |
-
# Convert to uint8
|
314 |
-
rgb_data = rgb_data.astype(np.uint8)
|
315 |
-
|
316 |
-
# Create PIL image
|
317 |
-
img = Image.fromarray(rgb_data)
|
318 |
-
else:
|
319 |
-
# Use first band as grayscale
|
320 |
-
gray_data = src.read(1)
|
321 |
-
|
322 |
-
# Normalize to 0-255 range
|
323 |
-
p2 = np.percentile(gray_data, 2)
|
324 |
-
p98 = np.percentile(gray_data, 98)
|
325 |
-
if p98 > p2:
|
326 |
-
gray_data = np.clip((gray_data - p2) / (p98 - p2) * 255, 0, 255)
|
327 |
-
else:
|
328 |
-
gray_data = np.clip(gray_data / (gray_data.max() or 1) * 255, 0, 255)
|
329 |
-
|
330 |
-
# Convert to uint8
|
331 |
-
gray_data = gray_data.astype(np.uint8)
|
332 |
-
|
333 |
-
# Create PIL image
|
334 |
-
img = Image.fromarray(gray_data, mode='L')
|
335 |
-
|
336 |
-
# Resize to thumbnail
|
337 |
-
img.thumbnail(max_size)
|
338 |
-
|
339 |
-
# Save to bytes buffer
|
340 |
-
buf = io.BytesIO()
|
341 |
-
img.save(buf, format=output_format)
|
342 |
-
buf.seek(0)
|
343 |
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
353 |
|
354 |
-
|
355 |
-
|
|
|
356 |
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
# Generate all features using feature engineering
|
388 |
-
logger.info("Generating all 99 features from bands...")
|
389 |
-
feature_matrix, valid_mask, generated_features = extract_all_features(image)
|
390 |
-
|
391 |
-
# Verify we have exactly 99 features
|
392 |
-
if feature_matrix.shape[1] != 99:
|
393 |
-
logger.error(f"Error: Generated {feature_matrix.shape[1]} features, but model expects 99.")
|
394 |
-
return None, f"Error: Generated {feature_matrix.shape[1]} features, but model expects 99."
|
395 |
-
|
396 |
-
# Apply feature scaling if available
|
397 |
try:
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
# Prepare RGB image - try different band combinations if needed
|
452 |
-
rgb_bands = [3, 2, 1] # Common RGB combination (R,G,B)
|
453 |
-
|
454 |
-
# Check if we have enough bands for RGB
|
455 |
-
if image.shape[0] < 3:
|
456 |
-
logger.warning(f"Image has only {image.shape[0]} bands, using available bands for display")
|
457 |
-
rgb_bands = list(range(min(3, image.shape[0])))
|
458 |
-
while len(rgb_bands) < 3:
|
459 |
-
rgb_bands.append(0) # Pad with zeros if needed
|
460 |
-
|
461 |
-
# Create RGB image
|
462 |
-
rgb = np.zeros((height, width, 3), dtype=np.float32)
|
463 |
-
for i, band_idx in enumerate(rgb_bands):
|
464 |
-
if band_idx < image.shape[0]:
|
465 |
-
rgb[:, :, i] = image[band_idx]
|
466 |
-
|
467 |
-
# Handle potential NaN values
|
468 |
-
rgb = np.nan_to_num(rgb)
|
469 |
-
|
470 |
-
# Enhance contrast with percentile-based normalization
|
471 |
-
for i in range(3):
|
472 |
-
p2 = np.percentile(rgb[:,:,i], 2)
|
473 |
-
p98 = np.percentile(rgb[:,:,i], 98)
|
474 |
-
if p98 > p2:
|
475 |
-
rgb[:,:,i] = np.clip((rgb[:,:,i] - p2) / (p98 - p2), 0, 1)
|
476 |
-
|
477 |
-
# Display RGB image
|
478 |
-
ax1.imshow(rgb)
|
479 |
-
ax1.set_title('RGB Image')
|
480 |
-
ax1.axis('off')
|
481 |
-
|
482 |
-
# Display biomass prediction
|
483 |
-
masked_predictions = np.ma.masked_where(~valid_mask, predictions)
|
484 |
-
vmin = np.percentile(predictions[valid_mask], 1)
|
485 |
-
vmax = np.percentile(predictions[valid_mask], 99)
|
486 |
-
|
487 |
-
im = ax2.imshow(masked_predictions, cmap='viridis', vmin=vmin, vmax=vmax)
|
488 |
-
fig.colorbar(im, ax=ax2, label='Biomass (Mg/ha)')
|
489 |
-
ax2.set_title('Predicted Biomass')
|
490 |
-
ax2.axis('off')
|
491 |
-
|
492 |
-
# Add super title
|
493 |
-
plt.suptitle('RGB Image and Biomass Prediction', fontsize=16)
|
494 |
-
plt.tight_layout()
|
495 |
-
|
496 |
-
# Save figure to bytes buffer
|
497 |
-
buf = io.BytesIO()
|
498 |
-
fig.savefig(buf, format='png', dpi=150, bbox_inches='tight')
|
499 |
-
buf.seek(0)
|
500 |
-
plt.close(fig)
|
501 |
-
|
502 |
-
# Calculate summary statistics
|
503 |
-
valid_predictions = predictions[valid_mask]
|
504 |
-
stats = {
|
505 |
-
'Mean Biomass': f"{np.mean(valid_predictions):.2f} Mg/ha",
|
506 |
-
'Median Biomass': f"{np.median(valid_predictions):.2f} Mg/ha",
|
507 |
-
'Min Biomass': f"{np.min(valid_predictions):.2f} Mg/ha",
|
508 |
-
'Max Biomass': f"{np.max(valid_predictions):.2f} Mg/ha"
|
509 |
-
}
|
510 |
-
|
511 |
-
# Add area and total biomass if transform is available
|
512 |
-
if transform is not None:
|
513 |
-
pixel_area_m2 = abs(transform[0] * transform[4]) # Assuming square pixels
|
514 |
-
total_biomass = np.sum(valid_predictions) * (pixel_area_m2 / 10000) # Convert to hectares
|
515 |
-
area_hectares = np.sum(valid_mask) * (pixel_area_m2 / 10000)
|
516 |
-
|
517 |
-
stats['Total Biomass'] = f"{total_biomass:.2f} Mg"
|
518 |
-
stats['Area'] = f"{area_hectares:.2f} hectares"
|
519 |
-
|
520 |
-
# Format statistics as markdown
|
521 |
-
stats_md = "### Biomass Statistics\n\n"
|
522 |
-
stats_md += "| Metric | Value |\n|--------|-------|\n"
|
523 |
-
for k, v in stats.items():
|
524 |
-
stats_md += f"| {k} | {v} |\n"
|
525 |
-
|
526 |
-
# Add processing info
|
527 |
-
stats_md += f"\n\n*Processed {np.sum(valid_mask):,} valid pixels with {feature_matrix.shape[1]} features*"
|
528 |
-
|
529 |
-
# Cleanup temporary files if needed
|
530 |
-
if cleanup_tmp:
|
531 |
-
self.cleanup()
|
532 |
-
|
533 |
-
# Return visualization and statistics
|
534 |
-
return Image.open(buf), stats_md
|
535 |
-
|
536 |
-
except Exception as e:
|
537 |
-
# Ensure cleanup even on error
|
538 |
-
self.cleanup()
|
539 |
-
|
540 |
-
import traceback
|
541 |
-
logger.error(f"Error predicting biomass: {e}")
|
542 |
-
logger.error(traceback.format_exc())
|
543 |
-
|
544 |
-
return None, f"Error predicting biomass: {str(e)}\n\nPlease check logs for details."
|
545 |
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
|
|
|
|
|
|
|
|
555 |
else:
|
556 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
557 |
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
with gr.Row():
|
569 |
-
with gr.Column(scale=1):
|
570 |
-
input_image = gr.File(
|
571 |
-
label="Upload Satellite Image (GeoTIFF)",
|
572 |
-
file_types=[".tif", ".tiff"]
|
573 |
-
)
|
574 |
-
|
575 |
-
# Sample images section
|
576 |
-
gr.Markdown("### Sample Images")
|
577 |
-
|
578 |
-
# Sample buttons container
|
579 |
-
sample_buttons = []
|
580 |
-
|
581 |
-
# First row - sample thumbnails side by side horizontally
|
582 |
-
with gr.Row():
|
583 |
-
for name, thumbnail in sample_thumbnails.items():
|
584 |
-
with gr.Column():
|
585 |
-
gr.Image(
|
586 |
-
value=thumbnail,
|
587 |
-
label=name.replace("input_", "Input ").replace("chip_", "Chip "),
|
588 |
-
show_download_button=False,
|
589 |
-
height=180
|
590 |
-
)
|
591 |
-
|
592 |
-
# Second row - buttons side by side horizontally, matching the thumbnails above
|
593 |
-
with gr.Row():
|
594 |
-
for name, _ in sample_thumbnails.items():
|
595 |
-
with gr.Column():
|
596 |
-
sample_btn = gr.Button(
|
597 |
-
f"Use {name.replace('input_', 'Input ').replace('chip_', 'Chip ')}",
|
598 |
-
variant="secondary",
|
599 |
-
size="lg"
|
600 |
-
)
|
601 |
-
sample_buttons.append((sample_btn, name))
|
602 |
-
|
603 |
-
# Generate button at the bottom
|
604 |
-
generate_btn = gr.Button("Generate Biomass Prediction", variant="primary", size="lg")
|
605 |
-
|
606 |
-
with gr.Column(scale=2):
|
607 |
-
output_image = gr.Image(
|
608 |
-
label="Biomass Prediction Map",
|
609 |
-
type="pil"
|
610 |
-
)
|
611 |
-
|
612 |
-
output_stats = gr.Markdown(
|
613 |
-
label="Statistics"
|
614 |
-
)_image = gr.Image(
|
615 |
-
label="Biomass Prediction Map",
|
616 |
-
type="pil"
|
617 |
-
)
|
618 |
-
|
619 |
-
output_stats = gr.Markdown(
|
620 |
-
label="Statistics"
|
621 |
-
)
|
622 |
-
|
623 |
-
# Sample images section with thumbnails in a separate row
|
624 |
-
gr.Markdown("### Sample Images")
|
625 |
-
|
626 |
-
with gr.Row():
|
627 |
-
# Only show thumbnails for images that were found
|
628 |
-
sample_buttons = []
|
629 |
-
|
630 |
-
# Create a column for each sample image
|
631 |
-
for name, thumbnail in sample_thumbnails.items():
|
632 |
-
with gr.Column():
|
633 |
-
gr.Image(value=thumbnail, label=name.replace("input_", "Input ").replace("chip_", "Chip "),
|
634 |
-
show_download_button=False, show_label=True, height=200)
|
635 |
-
sample_btn = gr.Button(f"Use {name.replace('input_', 'Input ').replace('chip_', 'Chip ')}",
|
636 |
-
size="lg", variant="secondary")
|
637 |
-
sample_buttons.append((sample_btn, name))
|
638 |
-
|
639 |
-
with gr.Column(scale=2):
|
640 |
-
output_image = gr.Image(
|
641 |
-
label="Biomass Prediction Map",
|
642 |
-
type="pil"
|
643 |
-
)
|
644 |
-
|
645 |
-
output_stats = gr.Markdown(
|
646 |
-
label="Statistics"
|
647 |
-
)
|
648 |
-
|
649 |
-
with gr.Accordion("About", open=False):
|
650 |
-
gr.Markdown("""
|
651 |
-
## About This Model
|
652 |
-
|
653 |
-
This biomass prediction model uses the StableResNet architecture to predict above-ground biomass from satellite imagery.
|
654 |
-
|
655 |
-
### Model Details
|
656 |
-
|
657 |
-
- Architecture: StableResNet
|
658 |
-
- Input: Multi-spectral satellite imagery
|
659 |
-
- Output: Above-ground biomass (Mg/ha)
|
660 |
-
- Creator: vertify.earth for GIZ Forest Forward
|
661 |
-
- Date: 2025-05-19
|
662 |
-
|
663 |
-
### How It Works
|
664 |
-
|
665 |
-
1. The model extracts features from each pixel in the satellite image
|
666 |
-
2. These features include spectral bands, vegetation indices, texture metrics, and more
|
667 |
-
3. The model outputs a biomass prediction for each pixel
|
668 |
-
4. Results are visualized as RGB and biomass prediction side-by-side
|
669 |
-
""")
|
670 |
-
|
671 |
-
# Add a warning if model failed to load
|
672 |
-
if self.model is None:
|
673 |
-
gr.Warning("⚠️ Model failed to load. The app may not work correctly. Check logs for details.")
|
674 |
-
|
675 |
-
# Connect the process button
|
676 |
-
process_btn.click(
|
677 |
-
fn=self.predict_biomass,
|
678 |
-
inputs=[input_image],
|
679 |
-
outputs=[output_image, output_stats]
|
680 |
-
)
|
681 |
-
|
682 |
-
# Connect the sample buttons
|
683 |
-
for button, name in sample_buttons:
|
684 |
-
button.click(
|
685 |
-
fn=lambda path=self.sample_images[name]: self.predict_biomass(path),
|
686 |
-
inputs=[],
|
687 |
-
outputs=[output_image, output_stats]
|
688 |
-
)
|
689 |
|
690 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
691 |
|
692 |
-
def
|
693 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
694 |
try:
|
695 |
-
# Create
|
696 |
-
|
|
|
|
|
|
|
697 |
|
698 |
-
#
|
699 |
-
|
|
|
|
|
|
|
700 |
|
701 |
-
|
702 |
-
interface.launch()
|
703 |
except Exception as e:
|
704 |
-
|
705 |
import traceback
|
706 |
-
|
|
|
707 |
|
708 |
if __name__ == "__main__":
|
709 |
-
|
|
|
|
1 |
+
"""
|
2 |
+
Feature engineering module for biomass prediction.
|
3 |
+
This module extracts the 99 features needed by the StableResNet model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
|
|
|
|
|
|
5 |
Author: najahpokkiri
|
6 |
Date: 2025-05-19
|
|
|
|
|
7 |
"""
|
|
|
|
|
|
|
8 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
import logging
|
10 |
+
from datetime import datetime
|
|
|
11 |
|
12 |
# Configure logger
|
13 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
16 |
+
# Try to import optional dependencies but don't fail if not available
|
17 |
+
try:
|
18 |
+
from sklearn.preprocessing import StandardScaler
|
19 |
+
from sklearn.decomposition import PCA
|
20 |
+
SKLEARN_AVAILABLE = True
|
21 |
+
except ImportError:
|
22 |
+
SKLEARN_AVAILABLE = False
|
23 |
+
logger.warning("scikit-learn not available. PCA features will be approximated.")
|
24 |
|
25 |
+
try:
|
26 |
+
from skimage.filters import sobel
|
27 |
+
from skimage.feature import local_binary_pattern, graycomatrix, graycoprops
|
28 |
+
SKIMAGE_AVAILABLE = True
|
29 |
+
except ImportError:
|
30 |
+
SKIMAGE_AVAILABLE = False
|
31 |
+
logger.warning("scikit-image not available. Texture features will be approximated.")
|
32 |
+
|
33 |
+
def safe_divide(a, b, fill_value=0.0):
|
34 |
+
"""Safe division that handles zeros in the denominator"""
|
35 |
+
a = np.asarray(a, dtype=np.float32)
|
36 |
+
b = np.asarray(b, dtype=np.float32)
|
|
|
|
|
|
|
37 |
|
38 |
+
# Handle NaN/Inf in inputs
|
39 |
+
a = np.nan_to_num(a, nan=0.0, posinf=0.0, neginf=0.0)
|
40 |
+
b = np.nan_to_num(b, nan=1e-10, posinf=1e10, neginf=-1e10)
|
41 |
|
42 |
+
mask = np.abs(b) < 1e-10
|
43 |
+
result = np.full_like(a, fill_value, dtype=np.float32)
|
44 |
+
if np.any(~mask):
|
45 |
+
result[~mask] = a[~mask] / b[~mask]
|
46 |
|
47 |
+
return np.nan_to_num(result, nan=fill_value, posinf=fill_value, neginf=fill_value)
|
48 |
+
|
49 |
+
def calculate_spectral_indices(satellite_data):
|
50 |
+
"""Calculate spectral indices from satellite bands"""
|
51 |
+
indices = {}
|
52 |
+
n_bands = satellite_data.shape[0]
|
53 |
|
54 |
+
# Enhanced band mapping with error checking
|
55 |
+
def safe_get_band(idx):
|
56 |
+
return satellite_data[idx] if idx < n_bands else None
|
57 |
|
58 |
+
# Sentinel-2 bands (assuming standard band order)
|
59 |
+
# B2(blue), B3(green), B4(red), B8(nir), B11(swir1), B12(swir2)
|
60 |
+
try:
|
61 |
+
blue = safe_get_band(1) # Adjust indices based on your data
|
62 |
+
green = safe_get_band(2)
|
63 |
+
red = safe_get_band(3)
|
64 |
+
nir = safe_get_band(7)
|
65 |
+
swir1 = safe_get_band(9)
|
66 |
+
swir2 = safe_get_band(10)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
if all(b is not None for b in [red, nir]):
|
69 |
+
# NDVI (Normalized Difference Vegetation Index)
|
70 |
+
indices['NDVI'] = safe_divide(nir - red, nir + red)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
+
if blue is not None and green is not None:
|
73 |
+
# EVI (Enhanced Vegetation Index)
|
74 |
+
indices['EVI'] = 2.5 * safe_divide(nir - red, nir + 6*red - 7.5*blue + 1)
|
|
|
|
|
75 |
|
76 |
+
# SAVI (Soil Adjusted Vegetation Index)
|
77 |
+
indices['SAVI'] = 1.5 * safe_divide(nir - red, nir + red + 0.5)
|
|
|
78 |
|
79 |
+
# MSAVI2 (Modified Soil Adjusted Vegetation Index)
|
80 |
+
indices['MSAVI2'] = 0.5 * (2 * nir + 1 - np.sqrt((2 * nir + 1)**2 - 8 * (nir - red)))
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
+
# NDWI (Normalized Difference Water Index)
|
83 |
+
indices['NDWI'] = safe_divide(green - nir, green + nir)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
if swir1 is not None and nir is not None:
|
86 |
+
# NDMI (Normalized Difference Moisture Index)
|
87 |
+
indices['NDMI'] = safe_divide(nir - swir1, nir + swir1)
|
88 |
+
|
89 |
+
if swir2 is not None and nir is not None:
|
90 |
+
# NBR (Normalized Burn Ratio)
|
91 |
+
indices['NBR'] = safe_divide(nir - swir2, nir + swir2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
+
except Exception as e:
|
94 |
+
logger.warning(f"Error calculating spectral indices: {e}")
|
95 |
+
|
96 |
+
# Clean up None values and NaNs
|
97 |
+
indices = {k: np.nan_to_num(v, nan=0.0) for k, v in indices.items() if v is not None}
|
98 |
+
|
99 |
+
# Ensure we have all required indices by providing defaults
|
100 |
+
required_indices = ['NDVI', 'EVI', 'SAVI', 'MSAVI2', 'NDWI', 'NDMI', 'NBR']
|
101 |
+
for idx in required_indices:
|
102 |
+
if idx not in indices:
|
103 |
+
if satellite_data.shape[1] > 0 and satellite_data.shape[2] > 0:
|
104 |
+
indices[idx] = np.zeros((satellite_data.shape[1], satellite_data.shape[2]), dtype=np.float32)
|
105 |
+
|
106 |
+
return indices
|
107 |
+
|
108 |
+
def extract_texture_features(satellite_data):
|
109 |
+
"""Extract texture features from satellite data"""
|
110 |
+
texture_features = {}
|
111 |
+
height, width = satellite_data.shape[1], satellite_data.shape[2]
|
112 |
+
|
113 |
+
# If scikit-image is not available, return placeholders
|
114 |
+
if not SKIMAGE_AVAILABLE:
|
115 |
+
texture_names = ['Sobel_B7', 'LBP_B7', 'GLCM_contrast_B7', 'GLCM_dissimilarity_B7',
|
116 |
+
'GLCM_homogeneity_B7', 'GLCM_energy_B7']
|
117 |
+
for name in texture_names:
|
118 |
+
texture_features[name] = np.zeros((height, width), dtype=np.float32)
|
119 |
+
return texture_features
|
120 |
+
|
121 |
+
try:
|
122 |
+
# Use NIR band (band 7) for texture features
|
123 |
+
b7_idx = min(7, satellite_data.shape[0] - 1)
|
124 |
+
band = satellite_data[b7_idx].copy()
|
125 |
+
band = np.nan_to_num(band, nan=0.0)
|
126 |
|
127 |
+
# 1. Sobel filter for edge detection
|
128 |
+
sobel_filtered = sobel(band)
|
129 |
+
texture_features['Sobel_B7'] = sobel_filtered
|
130 |
|
131 |
+
# 2. Local Binary Pattern
|
132 |
+
# Normalize band to 0-255 range for LBP
|
133 |
+
band_norm = band.copy()
|
134 |
+
if np.any(~np.isnan(band)):
|
135 |
+
band_min, band_max = np.nanpercentile(band, [1, 99])
|
136 |
+
if band_max > band_min:
|
137 |
+
band_norm = np.clip((band - band_min) / (band_max - band_min + 1e-8) * 255, 0, 255).astype(np.uint8)
|
138 |
+
else:
|
139 |
+
band_norm = np.zeros_like(band, dtype=np.uint8)
|
140 |
+
|
141 |
+
# Calculate LBP
|
142 |
+
lbp = local_binary_pattern(band_norm, 8, 1, method='uniform')
|
143 |
+
texture_features['LBP_B7'] = lbp
|
144 |
+
|
145 |
+
# 3. GLCM properties
|
146 |
+
# Create sample patch for GLCM calculation
|
147 |
+
sample_size = min(128, height, width)
|
148 |
+
center_y, center_x = height // 2, width // 2
|
149 |
+
offset = sample_size // 2
|
150 |
+
y_start = max(0, center_y - offset)
|
151 |
+
y_end = min(height, center_y + offset)
|
152 |
+
x_start = max(0, center_x - offset)
|
153 |
+
x_end = min(width, center_x + offset)
|
154 |
+
patch = band_norm[y_start:y_end, x_start:x_end]
|
155 |
+
|
156 |
+
# Calculate GLCM properties if patch is valid
|
157 |
+
if patch.size > 0:
|
158 |
+
glcm = graycomatrix(patch, [1], [0], levels=256, symmetric=True, normed=True)
|
159 |
+
for prop in ['contrast', 'dissimilarity', 'homogeneity', 'energy']:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
try:
|
161 |
+
value = float(graycoprops(glcm, prop)[0, 0])
|
162 |
+
texture_features[f'GLCM_{prop}_B7'] = np.full((height, width), value)
|
163 |
+
except:
|
164 |
+
texture_features[f'GLCM_{prop}_B7'] = np.zeros((height, width), dtype=np.float32)
|
165 |
+
else:
|
166 |
+
# Create placeholder GLCM features if patch is invalid
|
167 |
+
for prop in ['contrast', 'dissimilarity', 'homogeneity', 'energy']:
|
168 |
+
texture_features[f'GLCM_{prop}_B7'] = np.zeros((height, width), dtype=np.float32)
|
169 |
+
|
170 |
+
except Exception as e:
|
171 |
+
logger.error(f"Error in texture feature extraction: {e}")
|
172 |
+
# Provide placeholder features in case of error
|
173 |
+
texture_names = ['Sobel_B7', 'LBP_B7', 'GLCM_contrast_B7', 'GLCM_dissimilarity_B7',
|
174 |
+
'GLCM_homogeneity_B7', 'GLCM_energy_B7']
|
175 |
+
for name in texture_names:
|
176 |
+
texture_features[name] = np.zeros((height, width), dtype=np.float32)
|
177 |
+
|
178 |
+
return texture_features
|
179 |
+
|
180 |
+
def calculate_spatial_features(satellite_data, indices):
|
181 |
+
"""Calculate spatial context features like gradients"""
|
182 |
+
spatial_features = {}
|
183 |
+
height, width = satellite_data.shape[1], satellite_data.shape[2]
|
184 |
+
|
185 |
+
# 1. Gradient of Band 7 (NIR)
|
186 |
+
b7_idx = min(7, satellite_data.shape[0] - 1)
|
187 |
+
band = satellite_data[b7_idx].copy()
|
188 |
+
band = np.nan_to_num(band, nan=0.0)
|
189 |
+
|
190 |
+
try:
|
191 |
+
# Calculate the gradient magnitude
|
192 |
+
grad_y, grad_x = np.gradient(band)
|
193 |
+
grad_magnitude = np.sqrt(grad_x**2 + grad_y**2)
|
194 |
+
spatial_features['Gradient_B7'] = grad_magnitude
|
195 |
+
except Exception as e:
|
196 |
+
logger.warning(f"Error calculating band gradient: {e}")
|
197 |
+
spatial_features['Gradient_B7'] = np.zeros((height, width), dtype=np.float32)
|
198 |
+
|
199 |
+
# 2. NDVI gradient
|
200 |
+
try:
|
201 |
+
ndvi = indices.get('NDVI', np.zeros((height, width), dtype=np.float32))
|
202 |
+
ndvi = np.nan_to_num(ndvi, nan=0.0)
|
203 |
+
|
204 |
+
# Calculate the gradient magnitude for NDVI
|
205 |
+
grad_y, grad_x = np.gradient(ndvi)
|
206 |
+
grad_magnitude = np.sqrt(grad_x**2 + grad_y**2)
|
207 |
+
spatial_features['NDVI_gradient'] = grad_magnitude
|
208 |
+
except Exception as e:
|
209 |
+
logger.warning(f"Error calculating NDVI gradient: {e}")
|
210 |
+
spatial_features['NDVI_gradient'] = np.zeros((height, width), dtype=np.float32)
|
211 |
+
|
212 |
+
return spatial_features
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
|
214 |
+
def calculate_pca_features(satellite_data, n_components=25):
|
215 |
+
"""Calculate PCA features from satellite bands"""
|
216 |
+
pca_features = {}
|
217 |
+
height, width = satellite_data.shape[1], satellite_data.shape[2]
|
218 |
+
n_bands = satellite_data.shape[0]
|
219 |
+
|
220 |
+
# If scikit-learn is not available, return placeholders
|
221 |
+
if not SKLEARN_AVAILABLE:
|
222 |
+
for i in range(1, n_components + 1):
|
223 |
+
# Create some basic derived features as placeholders
|
224 |
+
if i <= n_bands:
|
225 |
+
# Use band values directly for first components
|
226 |
+
pca_features[f'PCA_{i:02d}'] = satellite_data[i-1]
|
227 |
else:
|
228 |
+
# Create synthetic features for remaining components
|
229 |
+
pca_features[f'PCA_{i:02d}'] = np.zeros((height, width), dtype=np.float32)
|
230 |
+
return pca_features
|
231 |
+
|
232 |
+
try:
|
233 |
+
# Reshape for PCA (pixels x bands)
|
234 |
+
bands_reshaped = satellite_data.reshape(n_bands, -1).T
|
235 |
|
236 |
+
# Handle NaN values
|
237 |
+
valid_mask = ~np.any(np.isnan(bands_reshaped), axis=1)
|
238 |
+
bands_clean = bands_reshaped[valid_mask]
|
239 |
+
|
240 |
+
if len(bands_clean) == 0:
|
241 |
+
logger.warning("No valid data for PCA calculation")
|
242 |
+
# Create placeholder PCA features
|
243 |
+
for i in range(1, n_components + 1):
|
244 |
+
pca_features[f'PCA_{i:02d}'] = np.zeros((height, width), dtype=np.float32)
|
245 |
+
return pca_features
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
|
247 |
+
# Standardize valid data
|
248 |
+
scaler = StandardScaler()
|
249 |
+
bands_scaled = scaler.fit_transform(bands_clean)
|
250 |
+
|
251 |
+
# Calculate PCA
|
252 |
+
pca = PCA(n_components=min(n_components, bands_scaled.shape[1], bands_scaled.shape[0]))
|
253 |
+
pca_result = pca.fit_transform(bands_scaled)
|
254 |
+
|
255 |
+
# Extend to full 25 components if needed
|
256 |
+
actual_components = pca_result.shape[1]
|
257 |
+
if actual_components < n_components:
|
258 |
+
logger.warning(f"Only {actual_components} PCA components calculated, padding to {n_components}")
|
259 |
+
padding = np.zeros((pca_result.shape[0], n_components - actual_components))
|
260 |
+
pca_result = np.hstack([pca_result, padding])
|
261 |
+
|
262 |
+
# Map back to original pixels
|
263 |
+
pca_all = np.zeros((bands_reshaped.shape[0], n_components))
|
264 |
+
pca_all[valid_mask] = pca_result
|
265 |
+
|
266 |
+
# Reshape to spatial dimensions
|
267 |
+
pca_spatial = pca_all.reshape(height, width, n_components)
|
268 |
+
|
269 |
+
# Store each component with the correct naming
|
270 |
+
for i in range(1, n_components + 1):
|
271 |
+
pca_features[f'PCA_{i:02d}'] = pca_spatial[:, :, i-1]
|
272 |
+
|
273 |
+
# Log PCA explained variance
|
274 |
+
if hasattr(pca, 'explained_variance_ratio_'):
|
275 |
+
logger.info(f"PCA explained variance: {pca.explained_variance_ratio_.sum():.3f}")
|
276 |
+
|
277 |
+
except Exception as e:
|
278 |
+
logger.error(f"Error calculating PCA features: {e}")
|
279 |
+
# Create placeholder PCA features
|
280 |
+
for i in range(1, n_components + 1):
|
281 |
+
pca_features[f'PCA_{i:02d}'] = np.zeros((height, width), dtype=np.float32)
|
282 |
+
|
283 |
+
return pca_features
|
284 |
|
285 |
+
def extract_all_features(satellite_data):
|
286 |
+
"""
|
287 |
+
Extract exactly 99 features needed by the model:
|
288 |
+
- 59 original bands
|
289 |
+
- 7 spectral indices
|
290 |
+
- 6 texture features
|
291 |
+
- 2 spatial features
|
292 |
+
- 25 PCA components
|
293 |
+
|
294 |
+
Parameters:
|
295 |
+
satellite_data (ndarray): Array of shape (bands, height, width)
|
296 |
+
|
297 |
+
Returns:
|
298 |
+
features_array (ndarray): Array of shape (valid_pixels, 99)
|
299 |
+
valid_mask (ndarray): Boolean mask of valid pixels
|
300 |
+
feature_names (list): List of 99 feature names
|
301 |
+
"""
|
302 |
+
start_time = datetime.now()
|
303 |
+
logger.info("Extracting features for biomass prediction...")
|
304 |
+
height, width = satellite_data.shape[1], satellite_data.shape[2]
|
305 |
+
|
306 |
+
# Create valid pixel mask (no NaN or Inf values)
|
307 |
+
valid_mask = np.all(np.isfinite(satellite_data), axis=0)
|
308 |
+
valid_y, valid_x = np.where(valid_mask)
|
309 |
+
n_valid = len(valid_y)
|
310 |
+
|
311 |
+
logger.info(f"Found {n_valid} valid pixels out of {height*width}")
|
312 |
+
|
313 |
+
# Generate all feature categories
|
314 |
+
logger.info("Calculating spectral indices...")
|
315 |
+
indices = calculate_spectral_indices(satellite_data)
|
316 |
+
|
317 |
+
logger.info("Extracting texture features...")
|
318 |
+
texture_features = extract_texture_features(satellite_data)
|
319 |
+
|
320 |
+
logger.info("Calculating spatial features...")
|
321 |
+
spatial_features = calculate_spatial_features(satellite_data, indices)
|
322 |
+
|
323 |
+
logger.info("Computing PCA components...")
|
324 |
+
pca_features = calculate_pca_features(satellite_data)
|
325 |
+
|
326 |
+
# Define the ordered list of feature names
|
327 |
+
feature_names = []
|
328 |
+
|
329 |
+
# 1. Add original band names (Band_01 through Band_59)
|
330 |
+
for i in range(1, 60):
|
331 |
+
feature_names.append(f'Band_{i:02d}')
|
332 |
+
|
333 |
+
# 2. Add spectral indices
|
334 |
+
spectral_indices = ['NDVI', 'EVI', 'SAVI', 'MSAVI2', 'NDWI', 'NDMI', 'NBR']
|
335 |
+
feature_names.extend(spectral_indices)
|
336 |
+
|
337 |
+
# 3. Add texture features
|
338 |
+
texture_names = ['Sobel_B7', 'LBP_B7', 'GLCM_contrast_B7', 'GLCM_dissimilarity_B7',
|
339 |
+
'GLCM_homogeneity_B7', 'GLCM_energy_B7']
|
340 |
+
feature_names.extend(texture_names)
|
341 |
+
|
342 |
+
# 4. Add spatial features
|
343 |
+
spatial_names = ['Gradient_B7', 'NDVI_gradient']
|
344 |
+
feature_names.extend(spatial_names)
|
345 |
+
|
346 |
+
# 5. Add PCA components
|
347 |
+
for i in range(1, 26):
|
348 |
+
feature_names.append(f'PCA_{i:02d}')
|
349 |
+
|
350 |
+
# Create feature dictionary with all features
|
351 |
+
all_features = {}
|
352 |
+
|
353 |
+
# 1. Original bands
|
354 |
+
for i in range(min(satellite_data.shape[0], 59)):
|
355 |
+
all_features[f'Band_{i+1:02d}'] = satellite_data[i]
|
356 |
+
|
357 |
+
# Pad with zeros if we have fewer than 59 bands
|
358 |
+
for i in range(satellite_data.shape[0], 59):
|
359 |
+
all_features[f'Band_{i+1:02d}'] = np.zeros((height, width), dtype=np.float32)
|
360 |
+
|
361 |
+
# 2. Add other feature categories
|
362 |
+
all_features.update(indices)
|
363 |
+
all_features.update(texture_features)
|
364 |
+
all_features.update(spatial_features)
|
365 |
+
all_features.update(pca_features)
|
366 |
+
|
367 |
+
# Verify we have exactly 99 features
|
368 |
+
assert len(feature_names) == 99, f"Expected 99 features, but got {len(feature_names)}"
|
369 |
+
|
370 |
+
# Extract feature values for valid pixels
|
371 |
+
feature_matrix = np.zeros((n_valid, len(feature_names)), dtype=np.float32)
|
372 |
+
|
373 |
+
for i, name in enumerate(feature_names):
|
374 |
+
if name in all_features:
|
375 |
+
feature_data = all_features[name]
|
376 |
+
if feature_data.ndim == 2:
|
377 |
+
feature_values = feature_data[valid_y, valid_x]
|
378 |
+
else:
|
379 |
+
feature_values = np.full(n_valid, feature_data)
|
380 |
+
feature_matrix[:, i] = np.nan_to_num(feature_values, nan=0.0)
|
381 |
+
else:
|
382 |
+
logger.warning(f"Feature '{name}' not found, using zeros")
|
383 |
+
feature_matrix[:, i] = 0.0
|
384 |
+
|
385 |
+
end_time = datetime.now()
|
386 |
+
processing_time = (end_time - start_time).total_seconds()
|
387 |
+
logger.info(f"Successfully extracted {len(feature_names)} features for {n_valid} pixels in {processing_time:.2f} seconds")
|
388 |
+
|
389 |
+
return feature_matrix, valid_mask, feature_names
|
390 |
+
|
391 |
+
# Simple test function
|
392 |
+
def test_feature_extraction():
|
393 |
+
"""Test the feature extraction pipeline with sample data"""
|
394 |
try:
|
395 |
+
# Create sample data (5 bands, 100x100 pixels)
|
396 |
+
satellite_data = np.random.random((5, 100, 100)).astype(np.float32)
|
397 |
+
|
398 |
+
# Extract features
|
399 |
+
feature_matrix, valid_mask, feature_names = extract_all_features(satellite_data)
|
400 |
|
401 |
+
# Print summary
|
402 |
+
print(f"Sample data shape: {satellite_data.shape}")
|
403 |
+
print(f"Feature matrix shape: {feature_matrix.shape}")
|
404 |
+
print(f"Number of feature names: {len(feature_names)}")
|
405 |
+
print(f"Valid pixels: {np.sum(valid_mask)}")
|
406 |
|
407 |
+
return True
|
|
|
408 |
except Exception as e:
|
409 |
+
print(f"Feature extraction test failed: {e}")
|
410 |
import traceback
|
411 |
+
traceback.print_exc()
|
412 |
+
return False
|
413 |
|
414 |
if __name__ == "__main__":
|
415 |
+
# Run a simple test if this script is executed directly
|
416 |
+
test_feature_extraction()
|