File size: 20,829 Bytes
8ce4d25
 
 
 
 
4775a9f
8ce4d25
 
 
be59b6e
8ce4d25
be59b6e
8ce4d25
be59b6e
 
 
 
8ce4d25
 
 
 
 
 
 
 
 
 
 
 
 
 
be59b6e
 
8ce4d25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be59b6e
 
 
 
 
 
 
 
 
 
 
8ce4d25
 
 
be59b6e
 
 
 
 
 
 
8ce4d25
 
be59b6e
 
 
 
 
 
 
 
 
 
 
 
8ce4d25
be59b6e
 
 
 
 
 
 
 
8ce4d25
 
 
 
be59b6e
8ce4d25
be59b6e
8ce4d25
 
 
 
 
be59b6e
 
4775a9f
be59b6e
 
 
 
 
 
 
 
 
 
 
 
8e4fbd2
be59b6e
4775a9f
 
 
be59b6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e4fbd2
 
 
 
 
be59b6e
8e4fbd2
be59b6e
 
 
 
 
 
 
8e4fbd2
 
 
 
 
 
be59b6e
 
8e4fbd2
 
 
be59b6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e4fbd2
 
 
be59b6e
 
 
 
 
 
 
 
 
 
 
 
 
 
8e4fbd2
 
be59b6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4775a9f
8ce4d25
 
 
be59b6e
8ce4d25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be59b6e
 
8ce4d25
 
be59b6e
8ce4d25
 
 
 
 
 
 
 
 
 
be59b6e
8e4fbd2
 
 
be59b6e
 
 
 
 
 
 
4775a9f
be59b6e
 
 
 
 
4775a9f
 
 
be59b6e
 
4775a9f
be59b6e
 
 
 
4775a9f
be59b6e
 
 
 
 
4775a9f
 
 
 
8ce4d25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be59b6e
4775a9f
8ce4d25
 
 
be59b6e
8ce4d25
 
 
 
 
 
 
 
be59b6e
87544bc
be59b6e
87544bc
8ce4d25
 
 
 
 
 
 
 
 
be59b6e
 
 
 
8ce4d25
 
 
be59b6e
 
8ce4d25
be59b6e
8ce4d25
be59b6e
4775a9f
be59b6e
 
 
8ce4d25
 
 
 
be59b6e
 
8ce4d25
 
 
be59b6e
 
 
 
 
 
 
4775a9f
 
be59b6e
 
 
 
 
 
 
 
 
 
 
4775a9f
be59b6e
 
 
 
 
 
 
 
8e4fbd2
8ce4d25
4775a9f
 
 
 
 
 
 
 
8ce4d25
 
 
 
 
 
 
 
 
 
 
 
 
be59b6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ce4d25
be59b6e
 
 
 
8ce4d25
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
#!/usr/bin/env python3

import torch
from PIL import Image
import numpy as np
from typing import cast, Generator
from pathlib import Path
import base64
from io import BytesIO
from typing import Union, Tuple, List, Dict, Any
import matplotlib
import matplotlib.cm as cm
import re
import io

import json
import time

from colpali_engine.models import ColPali, ColPaliProcessor
from colpali_engine.utils.torch_utils import get_torch_device
from einops import rearrange
from vidore_benchmark.interpretability.torch_utils import (
    normalize_similarity_map_per_query_token,
)
from vidore_benchmark.interpretability.vit_configs import VIT_CONFIG
from vespa.application import Vespa
from vespa.io import VespaQueryResponse

matplotlib.use("Agg")

MAX_QUERY_TERMS = 64

COLPALI_GEMMA_MODEL_NAME = "vidore/colpaligemma-3b-pt-448-base"


def load_model() -> Tuple[ColPali, ColPaliProcessor]:
    model_name = "vidore/colpali-v1.2"

    device = get_torch_device("auto")
    print(f"Using device: {device}")

    # Load the model
    model = cast(
        ColPali,
        ColPali.from_pretrained(
            model_name,
            torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
            device_map=device,
        ),
    ).eval()

    # Load the processor
    processor = cast(ColPaliProcessor, ColPaliProcessor.from_pretrained(model_name))
    return model, processor


def load_vit_config(model):
    # Load the ViT config
    print(f"VIT config: {VIT_CONFIG}")
    vit_config = VIT_CONFIG[COLPALI_GEMMA_MODEL_NAME]
    return vit_config


def save_figure(fig, filename: str = "similarity_map.png"):
    try:
        OUTPUT_DIR = Path(__file__).parent.parent / "output" / "sim_maps"
        OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
        fig.savefig(
            OUTPUT_DIR / filename,
            bbox_inches="tight",
            pad_inches=0,
        )
    except Exception as e:
        print(f"Failed to save figure: {e}")


def annotate_plot(ax, query, selected_token):
    # Add the query text as a title over the image with opacity
    ax.text(
        0.5,
        0.95,  # Adjust the position to be on the image (y=0.1 is 10% from the bottom)
        query,
        fontsize=18,
        color="white",
        ha="center",
        va="center",
        alpha=0.8,  # Set opacity (1 is fully opaque, 0 is fully transparent)
        bbox=dict(
            boxstyle="round,pad=0.5", fc="black", ec="none", lw=0, alpha=0.5
        ),  # Add a semi-transparent background
        transform=ax.transAxes,  # Ensure the coordinates are relative to the axes
    )

    # Add annotation with the selected token over the image with opacity
    ax.text(
        0.5,
        0.05,  # Position towards the top of the image
        f"Selected token: `{selected_token}`",
        fontsize=18,
        color="white",
        ha="center",
        va="center",
        alpha=0.8,  # Set opacity for the text
        bbox=dict(
            boxstyle="round,pad=0.3", fc="black", ec="none", lw=0, alpha=0.5
        ),  # Semi-transparent background
        transform=ax.transAxes,  # Keep the coordinates relative to the axes
    )
    return ax


def gen_similarity_maps(
    model: ColPali,
    processor: ColPaliProcessor,
    device,
    vit_config,
    query: str,
    query_embs: torch.Tensor,
    token_idx_map: dict,
    images: List[Union[Path, str]],
    vespa_sim_maps: List[str],
) -> Generator[Tuple[int, str, str], None, None]:
    """
    Generate similarity maps for the given images and query, and return base64-encoded blended images.

    Args:
        model (ColPali): The model used for generating embeddings.
        processor (ColPaliProcessor): Processor for images and text.
        device: Device to run the computations on.
        vit_config: Configuration for the Vision Transformer.
        query (str): The query string.
        query_embs (torch.Tensor): Query embeddings.
        token_idx_map (dict): Mapping from tokens to their indices.
        images (List[Union[Path, str]]): List of image paths or base64-encoded strings.
        vespa_sim_maps (List[str]): List of Vespa similarity maps.

    Yields:
        Tuple[int, str, str]: A tuple containing the image index, the selected token, and the base64-encoded image.

    """

    start = time.perf_counter()

    # Prepare the colormap once to avoid recomputation
    colormap = cm.get_cmap("viridis")

    # Process images and store original images and sizes
    processed_images = []
    original_images = []
    original_sizes = []
    for img in images:
        if isinstance(img, Path):
            try:
                img_pil = Image.open(img).convert("RGB")
            except Exception as e:
                raise ValueError(f"Failed to open image from path: {e}")
        elif isinstance(img, str):
            try:
                img_pil = Image.open(BytesIO(base64.b64decode(img))).convert("RGB")
            except Exception as e:
                raise ValueError(f"Failed to open image from base64 string: {e}")
        else:
            raise ValueError(f"Unsupported image type: {type(img)}")
        original_images.append(img_pil.copy())
        original_sizes.append(img_pil.size)  # (width, height)
        processed_images.append(img_pil)

    # If similarity maps are provided, use them instead of computing them
    if vespa_sim_maps:
        print("Using provided similarity maps")
        # A sim map looks like this:
        # "similarities": [
        #      {
        #        "address": {
        #          "patch": "0",
        #          "querytoken": "0"
        #        },
        #        "value": 1.2599412202835083
        #      },
        # ... and so on.
        # Now turn these into a tensor of same shape as previous similarity map
        vespa_sim_map_tensor = torch.zeros(
            (
                len(vespa_sim_maps),
                query_embs.size(dim=1),
                vit_config.n_patch_per_dim,
                vit_config.n_patch_per_dim,
            )
        )
        for idx, vespa_sim_map in enumerate(vespa_sim_maps):
            for cell in vespa_sim_map["similarities"]["cells"]:
                patch = int(cell["address"]["patch"])
                if patch >= processor.image_seq_length:
                    continue
                query_token = int(cell["address"]["querytoken"])
                value = cell["value"]
                vespa_sim_map_tensor[
                    idx,
                    int(query_token),
                    int(patch) // vit_config.n_patch_per_dim,
                    int(patch) % vit_config.n_patch_per_dim,
                ] = value

        # Normalize the similarity map per query token
        similarity_map_normalized = normalize_similarity_map_per_query_token(
            vespa_sim_map_tensor
        )
    else:
        # Preprocess inputs
        print("Computing similarity maps")
        start2 = time.perf_counter()
        input_image_processed = processor.process_images(processed_images).to(device)

        # Forward passes
        with torch.no_grad():
            output_image = model.forward(**input_image_processed)

        # Remove the special tokens from the output
        output_image = output_image[:, : processor.image_seq_length, :]

        # Rearrange the output image tensor to represent the 2D grid of patches
        output_image = rearrange(
            output_image,
            "b (h w) c -> b h w c",
            h=vit_config.n_patch_per_dim,
            w=vit_config.n_patch_per_dim,
        )

        # Ensure query_embs has batch dimension
        if query_embs.dim() == 2:
            query_embs = query_embs.unsqueeze(0).to(device)
        else:
            query_embs = query_embs.to(device)

        # Compute the similarity map
        similarity_map = torch.einsum(
            "bnk,bhwk->bnhw", query_embs, output_image
        )  # Shape: (batch_size, query_tokens, h, w)

        end2 = time.perf_counter()
        print(f"Similarity map computation took: {end2 - start2} s")

        # Normalize the similarity map per query token
        similarity_map_normalized = normalize_similarity_map_per_query_token(
            similarity_map
        )

    # Collect the blended images
    start3 = time.perf_counter()
    results = []
    for idx, img in enumerate(original_images):
        original_size = original_sizes[idx]  # (width, height)
        result_per_image = {}
        for token, token_idx in token_idx_map.items():
            if is_special_token(token):
                continue

            # Get the similarity map for this image and the selected token
            sim_map = similarity_map_normalized[idx, token_idx, :, :]  # Shape: (h, w)

            # Move the similarity map to CPU, convert to float (as BFloat16 not supported by Numpy) and convert to NumPy array
            sim_map_np = sim_map.cpu().float().numpy()

            # Resize the similarity map to the original image size
            sim_map_img = Image.fromarray(sim_map_np)
            sim_map_resized = sim_map_img.resize(original_size, resample=Image.BICUBIC)

            # Convert the resized similarity map to a NumPy array
            sim_map_resized_np = np.array(sim_map_resized, dtype=np.float32)

            # Normalize the similarity map to range [0, 1]
            sim_map_min = sim_map_resized_np.min()
            sim_map_max = sim_map_resized_np.max()
            if sim_map_max - sim_map_min > 1e-6:
                sim_map_normalized = (sim_map_resized_np - sim_map_min) / (
                    sim_map_max - sim_map_min
                )
            else:
                sim_map_normalized = np.zeros_like(sim_map_resized_np)

            # Apply a colormap to the normalized similarity map
            heatmap = colormap(sim_map_normalized)  # Returns an RGBA array

            # Convert the heatmap to a PIL Image
            heatmap_uint8 = (heatmap * 255).astype(np.uint8)
            heatmap_img = Image.fromarray(heatmap_uint8)

            # Ensure both images are in RGBA mode
            original_img_rgba = img.convert("RGBA")
            heatmap_img_rgba = heatmap_img.convert("RGBA")

            # Overlay the heatmap onto the original image
            blended_img = Image.blend(
                original_img_rgba, heatmap_img_rgba, alpha=0.4
            )  # Adjust alpha as needed
            # Save the blended image to a BytesIO buffer
            buffer = io.BytesIO()
            blended_img.save(buffer, format="PNG")
            buffer.seek(0)

            # Encode the image to base64
            blended_img_base64 = base64.b64encode(buffer.read()).decode("utf-8")

            # Store the base64-encoded image
            result_per_image[token] = blended_img_base64
            yield idx, token, blended_img_base64


def get_query_embeddings_and_token_map(
    processor, model, query
) -> Tuple[torch.Tensor, dict]:
    inputs = processor.process_queries([query]).to(model.device)
    with torch.no_grad():
        embeddings_query = model(**inputs)
        q_emb = embeddings_query.to("cpu")[0]  # Extract the single embedding
    # Use this cell output to choose a token using its index
    query_tokens = processor.tokenizer.tokenize(processor.decode(inputs.input_ids[0]))
    # reverse key, values in dictionary
    print(query_tokens)
    token_to_idx = {val: idx for idx, val in enumerate(query_tokens)}
    return q_emb, token_to_idx


def format_query_results(query, response, hits=5) -> dict:
    query_time = response.json.get("timing", {}).get("searchtime", -1)
    query_time = round(query_time, 2)
    count = response.json.get("root", {}).get("fields", {}).get("totalCount", 0)
    result_text = f"Query text: '{query}', query time {query_time}s, count={count}, top results:\n"
    print(result_text)
    return response.json


async def query_vespa_default(
    app: Vespa,
    query: str,
    q_emb: torch.Tensor,
    hits: int = 3,
    timeout: str = "10s",
    **kwargs,
) -> dict:
    async with app.asyncio(connections=1, total_timeout=120) as session:
        query_embedding = format_q_embs(q_emb)

        start = time.perf_counter()
        response: VespaQueryResponse = await session.query(
            body={
                "yql": "select id,title,url,full_image,page_number,snippet,text,summaryfeatures from pdf_page where userQuery();",
                "ranking": "default",
                "query": query,
                "timeout": timeout,
                "hits": hits,
                "input.query(qt)": query_embedding,
                "presentation.timing": True,
                **kwargs,
            },
        )
        assert response.is_successful(), response.json
        stop = time.perf_counter()
        print(
            f"Query time + data transfer took: {stop - start} s, vespa said searchtime was {response.json.get('timing', {}).get('searchtime', -1)} s"
        )
        open("response.json", "w").write(json.dumps(response.json))
    return format_query_results(query, response)


async def query_vespa_bm25(
    app: Vespa,
    query: str,
    q_emb: torch.Tensor,
    hits: int = 3,
    timeout: str = "10s",
    **kwargs,
) -> dict:
    async with app.asyncio(connections=1, total_timeout=120) as session:
        query_embedding = format_q_embs(q_emb)

        start = time.perf_counter()
        response: VespaQueryResponse = await session.query(
            body={
                "yql": "select id,title,url,full_image,page_number,snippet,text,summaryfeatures from pdf_page where userQuery();",
                "ranking": "bm25",
                "query": query,
                "timeout": timeout,
                "hits": hits,
                "input.query(qt)": query_embedding,
                "presentation.timing": True,
                **kwargs,
            },
        )
        assert response.is_successful(), response.json
        stop = time.perf_counter()
        print(
            f"Query time + data transfer took: {stop - start} s, vespa said searchtime was {response.json.get('timing', {}).get('searchtime', -1)} s"
        )
    return format_query_results(query, response)


def float_to_binary_embedding(float_query_embedding: dict) -> dict:
    binary_query_embeddings = {}
    for k, v in float_query_embedding.items():
        binary_vector = (
            np.packbits(np.where(np.array(v) > 0, 1, 0)).astype(np.int8).tolist()
        )
        binary_query_embeddings[k] = binary_vector
        if len(binary_query_embeddings) >= MAX_QUERY_TERMS:
            print(f"Warning: Query has more than {MAX_QUERY_TERMS} terms. Truncating.")
            break
    return binary_query_embeddings


def create_nn_query_strings(
    binary_query_embeddings: dict, target_hits_per_query_tensor: int = 20
) -> Tuple[str, dict]:
    # Query tensors for nearest neighbor calculations
    nn_query_dict = {}
    for i in range(len(binary_query_embeddings)):
        nn_query_dict[f"input.query(rq{i})"] = binary_query_embeddings[i]
    nn = " OR ".join(
        [
            f"({{targetHits:{target_hits_per_query_tensor}}}nearestNeighbor(embedding,rq{i}))"
            for i in range(len(binary_query_embeddings))
        ]
    )
    return nn, nn_query_dict


def format_q_embs(q_embs: torch.Tensor) -> dict:
    float_query_embedding = {k: v.tolist() for k, v in enumerate(q_embs)}
    return float_query_embedding


async def query_vespa_nearest_neighbor(
    app: Vespa,
    query: str,
    q_emb: torch.Tensor,
    target_hits_per_query_tensor: int = 20,
    hits: int = 3,
    timeout: str = "10s",
    **kwargs,
) -> dict:
    # Hyperparameter for speed vs. accuracy
    async with app.asyncio(connections=1, total_timeout=180) as session:
        float_query_embedding = format_q_embs(q_emb)
        binary_query_embeddings = float_to_binary_embedding(float_query_embedding)

        # Mixed tensors for MaxSim calculations
        query_tensors = {
            "input.query(qtb)": binary_query_embeddings,
            "input.query(qt)": float_query_embedding,
        }
        nn_string, nn_query_dict = create_nn_query_strings(
            binary_query_embeddings, target_hits_per_query_tensor
        )
        query_tensors.update(nn_query_dict)
        response: VespaQueryResponse = await session.query(
            body={
                **query_tensors,
                "presentation.timing": True,
                # if we use rank({nn_string}, userQuery()), dynamic summary doesn't work, see https://github.com/vespa-engine/vespa/issues/28704
                "yql": f"select id,title,snippet,text,url,full_image,page_number,summaryfeatures from pdf_page where {nn_string} or userQuery()",
                "ranking.profile": "retrieval-and-rerank",
                "timeout": timeout,
                "hits": hits,
                "query": query,
                **kwargs,
            },
        )
        assert response.is_successful(), response.json
    return format_query_results(query, response)


def is_special_token(token: str) -> bool:
    # Pattern for tokens that start with '<', numbers, whitespace, or single characters, or the string 'Question'
    # Will exclude these tokens from the similarity map generation
    pattern = re.compile(r"^<.*$|^\d+$|^\s+$|^\w$|^Question$")
    if (len(token) < 3) or pattern.match(token):
        return True
    return False


async def get_result_from_query(
    app: Vespa,
    processor: ColPaliProcessor,
    model: ColPali,
    query: str,
    q_embs: torch.Tensor,
    token_to_idx: Dict[str, int],
    ranking: str,
) -> Dict[str, Any]:
    # Get the query embeddings and token map
    print(query)

    print(token_to_idx)
    if ranking == "nn+colpali":
        result = await query_vespa_nearest_neighbor(app, query, q_embs)
    elif ranking == "bm25+colpali":
        result = await query_vespa_default(app, query, q_embs)
    elif ranking == "bm25":
        result = await query_vespa_bm25(app, query, q_embs)
    else:
        raise ValueError(f"Unsupported ranking: {ranking}")
    # Print score, title id, and text of the results
    for idx, child in enumerate(result["root"]["children"]):
        print(
            f"Result {idx+1}: {child['relevance']}, {child['fields']['title']}, {child['fields']['id']}"
        )
    for single_result in result["root"]["children"]:
        print(single_result["fields"].keys())
    return result


def add_sim_maps_to_result(
    result: Dict[str, Any],
    model: ColPali,
    processor: ColPaliProcessor,
    query: str,
    q_embs: Any,
    token_to_idx: Dict[str, int],
    query_id: str,
    result_cache,
) -> Dict[str, Any]:
    vit_config = load_vit_config(model)
    imgs: List[str] = []
    vespa_sim_maps: List[str] = []
    for single_result in result["root"]["children"]:
        img = single_result["fields"]["full_image"]
        if img:
            imgs.append(img)
        vespa_sim_map = single_result["fields"].get("summaryfeatures", None)
        if vespa_sim_map:
            vespa_sim_maps.append(vespa_sim_map)
    sim_map_imgs_generator = gen_similarity_maps(
        model=model,
        processor=processor,
        device=model.device,
        vit_config=vit_config,
        query=query,
        query_embs=q_embs,
        token_idx_map=token_to_idx,
        images=imgs,
        vespa_sim_maps=vespa_sim_maps,
    )
    for img_idx, token, sim_mapb64 in sim_map_imgs_generator:
        print(f"Created sim map for image {img_idx} and token {token}")
        result["root"]["children"][img_idx]["fields"][f"sim_map_{token}"] = sim_mapb64
        # Update result_cache with the new sim_map
        result_cache.set(query_id, result)
    # for single_result, sim_map_dict in zip(result["root"]["children"], sim_map_imgs):
    #     for token, sim_mapb64 in sim_map_dict.items():
    #         single_result["fields"][f"sim_map_{token}"] = sim_mapb64
    return result


if __name__ == "__main__":
    model, processor = load_model()
    vit_config = load_vit_config(model)
    query = "How many percent of source water is fresh water?"
    image_filepath = (
        Path(__file__).parent.parent
        / "static"
        / "assets"
        / "ConocoPhillips Sustainability Highlights - Nature (24-0976).png"
    )
    q_embs, token_to_idx = get_query_embeddings_and_token_map(
        processor,
        model,
        query,
    )
    figs_images = gen_similarity_maps(
        model,
        processor,
        model.device,
        vit_config,
        query=query,
        query_embs=q_embs,
        token_idx_map=token_to_idx,
        images=[image_filepath],
        vespa_sim_maps=None,
    )
    for fig_token in figs_images:
        for token, (fig, ax) in fig_token.items():
            print(f"Token: {token}")
            save_figure(fig, f"similarity_map_{token}.png")
    print("Done")