File size: 10,482 Bytes
8ce4d25
b7897bb
 
be59b6e
 
8ce4d25
 
 
 
 
b7897bb
be59b6e
 
b7897bb
 
3b2eca4
b7897bb
be59b6e
 
b7897bb
3b2eca4
b7897bb
3b2eca4
 
 
 
 
 
 
8ce4d25
b7897bb
 
 
 
8ce4d25
 
 
 
 
 
 
 
 
b7897bb
 
 
 
 
 
 
 
 
1f02318
8ce4d25
b7897bb
8ce4d25
 
 
 
 
 
b7897bb
 
 
8ce4d25
 
 
 
be59b6e
4775a9f
 
 
be59b6e
b7897bb
 
 
 
 
 
 
 
 
 
8ce4d25
 
1f02318
 
 
 
 
 
be59b6e
 
8ce4d25
 
 
 
 
 
 
 
 
b7897bb
8ce4d25
 
 
 
be59b6e
8ce4d25
be59b6e
 
8ce4d25
 
 
 
 
b7897bb
8ce4d25
b7897bb
 
 
 
 
 
 
8ce4d25
b7897bb
 
8ce4d25
 
300f274
 
 
ad76a25
 
 
 
 
8ce4d25
b7897bb
 
 
 
 
 
8ce4d25
 
 
be59b6e
8ce4d25
 
 
be59b6e
 
 
 
 
 
 
4775a9f
ad76a25
 
 
 
 
300f274
4775a9f
1f02318
 
be59b6e
8ce4d25
be59b6e
8ce4d25
be59b6e
 
 
 
 
 
 
 
 
 
4775a9f
 
 
be59b6e
 
 
 
8ce4d25
 
3b2eca4
 
 
 
 
4775a9f
3b2eca4
 
 
4775a9f
 
 
 
8ce4d25
 
 
 
 
4775a9f
be59b6e
 
 
 
 
 
 
 
 
 
 
 
 
 
4775a9f
 
be59b6e
 
 
4775a9f
be59b6e
8ce4d25
3b2eca4
 
 
 
 
 
 
4775a9f
 
3b2eca4
4775a9f
3b2eca4
 
 
4775a9f
3b2eca4
 
 
 
b7897bb
3b2eca4
 
 
8ce4d25
 
b7897bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ce4d25
 
b7897bb
8ce4d25
 
 
 
6bc996f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import asyncio
import hashlib
import time
from concurrent.futures import ThreadPoolExecutor
from functools import partial

from fasthtml.common import *
from shad4fast import *
from vespa.application import Vespa

from backend.cache import LRUCache
from backend.colpali import (
    add_sim_maps_to_result,
    get_query_embeddings_and_token_map,
    get_result_from_query,
    is_special_token,
    get_full_image_from_vespa,
)
from backend.modelmanager import ModelManager
from backend.vespa_app import get_vespa_app
from frontend.app import (
    ChatResult,
    Home,
    Search,
    SearchBox,
    SearchResult,
    SimMapButtonPoll,
    SimMapButtonReady,
)
from frontend.layout import Layout
import google.generativeai as genai
from PIL import Image
import io
import base64

highlight_js_theme_link = Link(id="highlight-theme", rel="stylesheet", href="")
highlight_js_theme = Script(src="/static/js/highlightjs-theme.js")
highlight_js = HighlightJS(
    langs=["python", "javascript", "java", "json", "xml"],
    dark="github-dark",
    light="github",
)

overlayscrollbars_link = Link(
    rel="stylesheet",
    href="https://cdnjs.cloudflare.com/ajax/libs/overlayscrollbars/2.10.0/styles/overlayscrollbars.min.css",
    type="text/css",
)
overlayscrollbars_js = Script(
    src="https://cdnjs.cloudflare.com/ajax/libs/overlayscrollbars/2.10.0/browser/overlayscrollbars.browser.es5.min.js"
)
sselink = Script(src="https://unpkg.com/[email protected]/sse.js")

app, rt = fast_app(
    htmlkw={"cls": "grid h-full"},
    pico=False,
    hdrs=(
        ShadHead(tw_cdn=False, theme_handle=True),
        highlight_js,
        highlight_js_theme_link,
        highlight_js_theme,
        overlayscrollbars_link,
        overlayscrollbars_js,
        sselink,
    ),
)
vespa_app: Vespa = get_vespa_app()

result_cache = LRUCache(max_size=20)  # Each result can be ~10MB
task_cache = LRUCache(
    max_size=1000
)  # Map from query_id to boolean value - False if not all results are ready.
thread_pool = ThreadPoolExecutor()
# Gemini config

genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
GEMINI_SYSTEM_PROMPT = """If the user query is a question, try your best to answer it based on the provided images. 
If the user query is not an obvious question, reply with 'No question detected.'. Your response should be HTML formatted.
This means that newlines will be replaced with <br> tags, bold text will be enclosed in <b> tags, and so on.
"""
gemini_model = genai.GenerativeModel(
    "gemini-1.5-flash-8b", system_instruction=GEMINI_SYSTEM_PROMPT
)


@app.on_event("startup")
def load_model_on_startup():
    app.manager = ModelManager.get_instance()
    return


def generate_query_id(query):
    return hashlib.md5(query.encode("utf-8")).hexdigest()


@rt("/static/{filepath:path}")
def serve_static(filepath: str):
    return FileResponse(f"./static/{filepath}")


@rt("/")
def get():
    return Layout(Main(Home()))


@rt("/search")
def get(request):
    # Extract the 'query' and 'ranking' parameters from the URL
    query_value = request.query_params.get("query", "").strip()
    ranking_value = request.query_params.get("ranking", "nn+colpali")
    print("/search: Fetching results for ranking_value:", ranking_value)

    # Always render the SearchBox first
    if not query_value:
        # Show SearchBox and a message for missing query
        return Layout(
            Main(
                Div(
                    SearchBox(query_value=query_value, ranking_value=ranking_value),
                    Div(
                        P(
                            "No query provided. Please enter a query.",
                            cls="text-center text-muted-foreground",
                        ),
                        cls="p-10",
                    ),
                    cls="grid",
                )
            )
        )
    # Generate a unique query_id based on the query and ranking value
    query_id = generate_query_id(query_value + ranking_value)
    # See if results are already in cache
    # if result_cache.get(query_id) is not None:
    #     print(f"Results for query_id {query_id} already in cache")
    #     result = result_cache.get(query_id)
    #     search_results = get_results_children(result)
    #     return Layout(Search(request, search_results))
    # Show the loading message if a query is provided
    return Layout(
        Main(Search(request), data_overlayscrollbars_initialize=True, cls="border-t"),
        Aside(
            ChatResult(query_id=query_id, query=query_value), cls="border-t border-l"
        ),
    )  # Show SearchBox and Loading message initially


@rt("/fetch_results")
async def get(request, query: str, nn: bool = True):
    if "hx-request" not in request.headers:
        return RedirectResponse("/search")

    # Extract ranking option from the request
    ranking_value = request.query_params.get("ranking")
    print(
        f"/fetch_results: Fetching results for query: {query}, ranking: {ranking_value}"
    )
    # Generate a unique query_id based on the query and ranking value
    query_id = generate_query_id(query + ranking_value)
    # See if results are already in cache
    # if result_cache.get(query_id) is not None:
    #     print(f"Results for query_id {query_id} already in cache")
    #     result = result_cache.get(query_id)
    #     search_results = get_results_children(result)
    #     return SearchResult(search_results, query_id)
    # Run the embedding and query against Vespa app
    task_cache.set(query_id, False)
    model = app.manager.model
    processor = app.manager.processor
    q_embs, token_to_idx = get_query_embeddings_and_token_map(processor, model, query)

    start = time.perf_counter()
    # Fetch real search results from Vespa
    result = await get_result_from_query(
        app=vespa_app,
        processor=processor,
        model=model,
        query=query,
        q_embs=q_embs,
        token_to_idx=token_to_idx,
        ranking=ranking_value,
    )
    end = time.perf_counter()
    print(
        f"Search results fetched in {end - start:.2f} seconds, Vespa says searchtime was {result['timing']['searchtime']} seconds"
    )
    # Start generating the similarity map in the background
    asyncio.create_task(
        generate_similarity_map(
            model, processor, query, q_embs, token_to_idx, result, query_id
        )
    )
    fields_to_add = [
        f"sim_map_{token}"
        for token in token_to_idx.keys()
        if not is_special_token(token)
    ]
    search_results = get_results_children(result)
    for result in search_results:
        for sim_map_key in fields_to_add:
            result["fields"][sim_map_key] = None
    return SearchResult(search_results, query_id)


def get_results_children(result):
    search_results = (
        result["root"]["children"]
        if "root" in result and "children" in result["root"]
        else []
    )
    return search_results


async def generate_similarity_map(
    model, processor, query, q_embs, token_to_idx, result, query_id
):
    loop = asyncio.get_event_loop()
    sim_map_task = partial(
        add_sim_maps_to_result,
        result=result,
        model=model,
        processor=processor,
        query=query,
        q_embs=q_embs,
        token_to_idx=token_to_idx,
        query_id=query_id,
        result_cache=result_cache,
    )
    sim_map_result = await loop.run_in_executor(thread_pool, sim_map_task)
    result_cache.set(query_id, sim_map_result)
    task_cache.set(query_id, True)


@app.get("/get_sim_map")
async def get_sim_map(query_id: str, idx: int, token: str):
    """
    Endpoint that each of the sim map button polls to get the sim map image
    when it is ready. If it is not ready, returns a SimMapButtonPoll, that
    continues to poll every 1 second.
    """
    result = result_cache.get(query_id)
    if result is None:
        return SimMapButtonPoll(query_id=query_id, idx=idx, token=token)
    search_results = get_results_children(result)
    # Check if idx exists in list of children
    if idx >= len(search_results):
        return SimMapButtonPoll(query_id=query_id, idx=idx, token=token)
    else:
        sim_map_key = f"sim_map_{token}"
        sim_map_b64 = search_results[idx]["fields"].get(sim_map_key, None)
        if sim_map_b64 is None:
            return SimMapButtonPoll(query_id=query_id, idx=idx, token=token)
        sim_map_img_src = f"data:image/png;base64,{sim_map_b64}"
        return SimMapButtonReady(
            query_id=query_id, idx=idx, token=token, img_src=sim_map_img_src
        )


@app.get("/full_image")
async def full_image(id: str):
    """
    Endpoint to get the full quality image for a given result id.
    """
    image_data = await get_full_image_from_vespa(vespa_app, id)

    # Decode the base64 image data
    # image_data = base64.b64decode(image_data)
    image_data = "data:image/jpeg;base64," + image_data

    return Img(
        src=image_data,
        alt="something",
        cls="result-image w-full h-full object-contain",
    )


async def message_generator(query_id: str, query: str):
    result = None
    while result is None:
        result = result_cache.get(query_id)
        await asyncio.sleep(0.5)
    search_results = get_results_children(result)
    images = [result["fields"]["blur_image"] for result in search_results]
    # from b64 to PIL image
    images = [Image.open(io.BytesIO(base64.b64decode(img))) for img in images]

    # If newlines are present in the response, the connection will be closed.
    def replace_newline_with_br(text):
        return text.replace("\n", "<br>")

    response_text = ""
    async for chunk in await gemini_model.generate_content_async(
        images + ["\n\n Query: ", query], stream=True
    ):
        if chunk.text:
            response_text += chunk.text
            response_text = replace_newline_with_br(response_text)
            yield f"event: message\ndata: {response_text}\n\n"
            await asyncio.sleep(0.5)
    yield "event: close\ndata: \n\n"


@app.get("/get-message")
async def get_message(query_id: str, query: str):
    return StreamingResponse(
        message_generator(query_id=query_id, query=query),
        media_type="text/event-stream",
    )


@rt("/app")
def get():
    return Layout(Main(Div(P(f"Connected to Vespa at {vespa_app.url}"), cls="p-4")))


if __name__ == "__main__":
    # ModelManager.get_instance()  # Initialize once at startup
    serve(port=7860)