Spaces:
Running
on
T4
Running
on
T4
File size: 10,482 Bytes
8ce4d25 b7897bb be59b6e 8ce4d25 b7897bb be59b6e b7897bb 3b2eca4 b7897bb be59b6e b7897bb 3b2eca4 b7897bb 3b2eca4 8ce4d25 b7897bb 8ce4d25 b7897bb 1f02318 8ce4d25 b7897bb 8ce4d25 b7897bb 8ce4d25 be59b6e 4775a9f be59b6e b7897bb 8ce4d25 1f02318 be59b6e 8ce4d25 b7897bb 8ce4d25 be59b6e 8ce4d25 be59b6e 8ce4d25 b7897bb 8ce4d25 b7897bb 8ce4d25 b7897bb 8ce4d25 300f274 ad76a25 8ce4d25 b7897bb 8ce4d25 be59b6e 8ce4d25 be59b6e 4775a9f ad76a25 300f274 4775a9f 1f02318 be59b6e 8ce4d25 be59b6e 8ce4d25 be59b6e 4775a9f be59b6e 8ce4d25 3b2eca4 4775a9f 3b2eca4 4775a9f 8ce4d25 4775a9f be59b6e 4775a9f be59b6e 4775a9f be59b6e 8ce4d25 3b2eca4 4775a9f 3b2eca4 4775a9f 3b2eca4 4775a9f 3b2eca4 b7897bb 3b2eca4 8ce4d25 b7897bb 8ce4d25 b7897bb 8ce4d25 6bc996f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import asyncio
import hashlib
import time
from concurrent.futures import ThreadPoolExecutor
from functools import partial
from fasthtml.common import *
from shad4fast import *
from vespa.application import Vespa
from backend.cache import LRUCache
from backend.colpali import (
add_sim_maps_to_result,
get_query_embeddings_and_token_map,
get_result_from_query,
is_special_token,
get_full_image_from_vespa,
)
from backend.modelmanager import ModelManager
from backend.vespa_app import get_vespa_app
from frontend.app import (
ChatResult,
Home,
Search,
SearchBox,
SearchResult,
SimMapButtonPoll,
SimMapButtonReady,
)
from frontend.layout import Layout
import google.generativeai as genai
from PIL import Image
import io
import base64
highlight_js_theme_link = Link(id="highlight-theme", rel="stylesheet", href="")
highlight_js_theme = Script(src="/static/js/highlightjs-theme.js")
highlight_js = HighlightJS(
langs=["python", "javascript", "java", "json", "xml"],
dark="github-dark",
light="github",
)
overlayscrollbars_link = Link(
rel="stylesheet",
href="https://cdnjs.cloudflare.com/ajax/libs/overlayscrollbars/2.10.0/styles/overlayscrollbars.min.css",
type="text/css",
)
overlayscrollbars_js = Script(
src="https://cdnjs.cloudflare.com/ajax/libs/overlayscrollbars/2.10.0/browser/overlayscrollbars.browser.es5.min.js"
)
sselink = Script(src="https://unpkg.com/[email protected]/sse.js")
app, rt = fast_app(
htmlkw={"cls": "grid h-full"},
pico=False,
hdrs=(
ShadHead(tw_cdn=False, theme_handle=True),
highlight_js,
highlight_js_theme_link,
highlight_js_theme,
overlayscrollbars_link,
overlayscrollbars_js,
sselink,
),
)
vespa_app: Vespa = get_vespa_app()
result_cache = LRUCache(max_size=20) # Each result can be ~10MB
task_cache = LRUCache(
max_size=1000
) # Map from query_id to boolean value - False if not all results are ready.
thread_pool = ThreadPoolExecutor()
# Gemini config
genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
GEMINI_SYSTEM_PROMPT = """If the user query is a question, try your best to answer it based on the provided images.
If the user query is not an obvious question, reply with 'No question detected.'. Your response should be HTML formatted.
This means that newlines will be replaced with <br> tags, bold text will be enclosed in <b> tags, and so on.
"""
gemini_model = genai.GenerativeModel(
"gemini-1.5-flash-8b", system_instruction=GEMINI_SYSTEM_PROMPT
)
@app.on_event("startup")
def load_model_on_startup():
app.manager = ModelManager.get_instance()
return
def generate_query_id(query):
return hashlib.md5(query.encode("utf-8")).hexdigest()
@rt("/static/{filepath:path}")
def serve_static(filepath: str):
return FileResponse(f"./static/{filepath}")
@rt("/")
def get():
return Layout(Main(Home()))
@rt("/search")
def get(request):
# Extract the 'query' and 'ranking' parameters from the URL
query_value = request.query_params.get("query", "").strip()
ranking_value = request.query_params.get("ranking", "nn+colpali")
print("/search: Fetching results for ranking_value:", ranking_value)
# Always render the SearchBox first
if not query_value:
# Show SearchBox and a message for missing query
return Layout(
Main(
Div(
SearchBox(query_value=query_value, ranking_value=ranking_value),
Div(
P(
"No query provided. Please enter a query.",
cls="text-center text-muted-foreground",
),
cls="p-10",
),
cls="grid",
)
)
)
# Generate a unique query_id based on the query and ranking value
query_id = generate_query_id(query_value + ranking_value)
# See if results are already in cache
# if result_cache.get(query_id) is not None:
# print(f"Results for query_id {query_id} already in cache")
# result = result_cache.get(query_id)
# search_results = get_results_children(result)
# return Layout(Search(request, search_results))
# Show the loading message if a query is provided
return Layout(
Main(Search(request), data_overlayscrollbars_initialize=True, cls="border-t"),
Aside(
ChatResult(query_id=query_id, query=query_value), cls="border-t border-l"
),
) # Show SearchBox and Loading message initially
@rt("/fetch_results")
async def get(request, query: str, nn: bool = True):
if "hx-request" not in request.headers:
return RedirectResponse("/search")
# Extract ranking option from the request
ranking_value = request.query_params.get("ranking")
print(
f"/fetch_results: Fetching results for query: {query}, ranking: {ranking_value}"
)
# Generate a unique query_id based on the query and ranking value
query_id = generate_query_id(query + ranking_value)
# See if results are already in cache
# if result_cache.get(query_id) is not None:
# print(f"Results for query_id {query_id} already in cache")
# result = result_cache.get(query_id)
# search_results = get_results_children(result)
# return SearchResult(search_results, query_id)
# Run the embedding and query against Vespa app
task_cache.set(query_id, False)
model = app.manager.model
processor = app.manager.processor
q_embs, token_to_idx = get_query_embeddings_and_token_map(processor, model, query)
start = time.perf_counter()
# Fetch real search results from Vespa
result = await get_result_from_query(
app=vespa_app,
processor=processor,
model=model,
query=query,
q_embs=q_embs,
token_to_idx=token_to_idx,
ranking=ranking_value,
)
end = time.perf_counter()
print(
f"Search results fetched in {end - start:.2f} seconds, Vespa says searchtime was {result['timing']['searchtime']} seconds"
)
# Start generating the similarity map in the background
asyncio.create_task(
generate_similarity_map(
model, processor, query, q_embs, token_to_idx, result, query_id
)
)
fields_to_add = [
f"sim_map_{token}"
for token in token_to_idx.keys()
if not is_special_token(token)
]
search_results = get_results_children(result)
for result in search_results:
for sim_map_key in fields_to_add:
result["fields"][sim_map_key] = None
return SearchResult(search_results, query_id)
def get_results_children(result):
search_results = (
result["root"]["children"]
if "root" in result and "children" in result["root"]
else []
)
return search_results
async def generate_similarity_map(
model, processor, query, q_embs, token_to_idx, result, query_id
):
loop = asyncio.get_event_loop()
sim_map_task = partial(
add_sim_maps_to_result,
result=result,
model=model,
processor=processor,
query=query,
q_embs=q_embs,
token_to_idx=token_to_idx,
query_id=query_id,
result_cache=result_cache,
)
sim_map_result = await loop.run_in_executor(thread_pool, sim_map_task)
result_cache.set(query_id, sim_map_result)
task_cache.set(query_id, True)
@app.get("/get_sim_map")
async def get_sim_map(query_id: str, idx: int, token: str):
"""
Endpoint that each of the sim map button polls to get the sim map image
when it is ready. If it is not ready, returns a SimMapButtonPoll, that
continues to poll every 1 second.
"""
result = result_cache.get(query_id)
if result is None:
return SimMapButtonPoll(query_id=query_id, idx=idx, token=token)
search_results = get_results_children(result)
# Check if idx exists in list of children
if idx >= len(search_results):
return SimMapButtonPoll(query_id=query_id, idx=idx, token=token)
else:
sim_map_key = f"sim_map_{token}"
sim_map_b64 = search_results[idx]["fields"].get(sim_map_key, None)
if sim_map_b64 is None:
return SimMapButtonPoll(query_id=query_id, idx=idx, token=token)
sim_map_img_src = f"data:image/png;base64,{sim_map_b64}"
return SimMapButtonReady(
query_id=query_id, idx=idx, token=token, img_src=sim_map_img_src
)
@app.get("/full_image")
async def full_image(id: str):
"""
Endpoint to get the full quality image for a given result id.
"""
image_data = await get_full_image_from_vespa(vespa_app, id)
# Decode the base64 image data
# image_data = base64.b64decode(image_data)
image_data = "data:image/jpeg;base64," + image_data
return Img(
src=image_data,
alt="something",
cls="result-image w-full h-full object-contain",
)
async def message_generator(query_id: str, query: str):
result = None
while result is None:
result = result_cache.get(query_id)
await asyncio.sleep(0.5)
search_results = get_results_children(result)
images = [result["fields"]["blur_image"] for result in search_results]
# from b64 to PIL image
images = [Image.open(io.BytesIO(base64.b64decode(img))) for img in images]
# If newlines are present in the response, the connection will be closed.
def replace_newline_with_br(text):
return text.replace("\n", "<br>")
response_text = ""
async for chunk in await gemini_model.generate_content_async(
images + ["\n\n Query: ", query], stream=True
):
if chunk.text:
response_text += chunk.text
response_text = replace_newline_with_br(response_text)
yield f"event: message\ndata: {response_text}\n\n"
await asyncio.sleep(0.5)
yield "event: close\ndata: \n\n"
@app.get("/get-message")
async def get_message(query_id: str, query: str):
return StreamingResponse(
message_generator(query_id=query_id, query=query),
media_type="text/event-stream",
)
@rt("/app")
def get():
return Layout(Main(Div(P(f"Connected to Vespa at {vespa_app.url}"), cls="p-4")))
if __name__ == "__main__":
# ModelManager.get_instance() # Initialize once at startup
serve(port=7860)
|