andreer's picture
Upload folder using huggingface_hub
9e9d8e8 verified
raw
history blame
13.5 kB
import asyncio
import os
import time
from pathlib import Path
from concurrent.futures import ThreadPoolExecutor
import uuid
import google.generativeai as genai
from fasthtml.common import (
Div,
Img,
Main,
P,
Script,
Link,
fast_app,
HighlightJS,
FileResponse,
RedirectResponse,
Aside,
StreamingResponse,
JSONResponse,
serve,
)
from shad4fast import ShadHead
from vespa.application import Vespa
import base64
from fastcore.parallel import threaded
from PIL import Image
from backend.colpali import get_query_embeddings_and_token_map, gen_similarity_maps
from backend.modelmanager import ModelManager
from backend.vespa_app import VespaQueryClient
from frontend.app import (
ChatResult,
Home,
Search,
SearchBox,
SearchResult,
SimMapButtonPoll,
SimMapButtonReady,
WhatIsThis,
)
from frontend.layout import Layout
highlight_js_theme_link = Link(id="highlight-theme", rel="stylesheet", href="")
highlight_js_theme = Script(src="/static/js/highlightjs-theme.js")
highlight_js = HighlightJS(
langs=["python", "javascript", "java", "json", "xml"],
dark="github-dark",
light="github",
)
overlayscrollbars_link = Link(
rel="stylesheet",
href="https://cdnjs.cloudflare.com/ajax/libs/overlayscrollbars/2.10.0/styles/overlayscrollbars.min.css",
type="text/css",
)
overlayscrollbars_js = Script(
src="https://cdnjs.cloudflare.com/ajax/libs/overlayscrollbars/2.10.0/browser/overlayscrollbars.browser.es5.min.js"
)
awesomplete_link = Link(
rel="stylesheet",
href="https://cdnjs.cloudflare.com/ajax/libs/awesomplete/1.1.7/awesomplete.min.css",
type="text/css",
)
awesomplete_js = Script(
src="https://cdnjs.cloudflare.com/ajax/libs/awesomplete/1.1.7/awesomplete.min.js"
)
sselink = Script(src="https://unpkg.com/[email protected]/sse.js")
app, rt = fast_app(
htmlkw={"cls": "grid h-full"},
pico=False,
hdrs=(
highlight_js,
highlight_js_theme_link,
highlight_js_theme,
overlayscrollbars_link,
overlayscrollbars_js,
awesomplete_link,
awesomplete_js,
sselink,
ShadHead(tw_cdn=False, theme_handle=True),
),
)
vespa_app: Vespa = VespaQueryClient()
thread_pool = ThreadPoolExecutor()
# Gemini config
genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
GEMINI_SYSTEM_PROMPT = """If the user query is a question, try your best to answer it based on the provided images.
If the user query can not be interpreted as a question, or if the answer to the query can not be inferred from the images,
answer with the exact phrase "I am sorry, I do not have enough information in the image to answer your question.".
Your response should be HTML formatted, but only simple tags, such as <b>. <p>, <i>, <br> <ul> and <li> are allowed. No HTML tables.
This means that newlines will be replaced with <br> tags, bold text will be enclosed in <b> tags, and so on.
But, you should NOT include backticks (`) or HTML tags in your response.
"""
gemini_model = genai.GenerativeModel(
"gemini-1.5-flash-8b", system_instruction=GEMINI_SYSTEM_PROMPT
)
STATIC_DIR = Path("static")
IMG_DIR = STATIC_DIR / "full_images"
SIM_MAP_DIR = STATIC_DIR / "sim_maps"
os.makedirs(IMG_DIR, exist_ok=True)
os.makedirs(SIM_MAP_DIR, exist_ok=True)
@app.on_event("startup")
def load_model_on_startup():
app.manager = ModelManager.get_instance()
return
@app.on_event("startup")
async def keepalive():
asyncio.create_task(poll_vespa_keepalive())
return
def generate_query_id(query, ranking_value):
hash_input = (query + ranking_value).encode("utf-8")
return hash(hash_input)
@rt("/static/{filepath:path}")
def serve_static(filepath: str):
return FileResponse(STATIC_DIR / filepath)
@rt("/")
def get(session):
if "session_id" not in session:
session["session_id"] = str(uuid.uuid4())
return Layout(Main(Home()))
@rt("/what-is-this")
def get():
return Layout(Main(WhatIsThis()))
@rt("/search")
def get(request):
# Extract the 'query' and 'ranking' parameters from the URL
query_value = request.query_params.get("query", "").strip()
ranking_value = request.query_params.get("ranking", "nn+colpali")
print("/search: Fetching results for ranking_value:", ranking_value)
# Always render the SearchBox first
if not query_value:
# Show SearchBox and a message for missing query
return Layout(
Main(
Div(
SearchBox(query_value=query_value, ranking_value=ranking_value),
Div(
P(
"No query provided. Please enter a query.",
cls="text-center text-muted-foreground",
),
cls="p-10",
),
cls="grid",
)
)
)
# Generate a unique query_id based on the query and ranking value
query_id = generate_query_id(query_value, ranking_value)
# Show the loading message if a query is provided
return Layout(
Main(Search(request), data_overlayscrollbars_initialize=True, cls="border-t"),
Aside(
ChatResult(query_id=query_id, query=query_value),
cls="border-t border-l hidden md:block",
),
) # Show SearchBox and Loading message initially
@rt("/fetch_results2")
def get(query: str, ranking: str):
# 1. Get the results from Vespa (without sim_maps and full_images)
# Call search-endpoint in Vespa sync.
# 2. Kick off tasks to fetch sim_maps and full_images
# Sim maps - call search endpoint async.
# (A) New rank_profile that does not calculate sim_maps.
# (A) Make vespa endpoints take select_fields as a parameter.
# One sim map per image per token.
# the filename query_id_result_idx_token_idx.png
# Full image. based on the doc_id.
# Each of these tasks saves to disk.
# Need a cleanup task to delete old files.
# Polling endpoints for sim_maps and full_images checks if file exists and returns it.
pass
@rt("/fetch_results")
async def get(session, request, query: str, ranking: str):
if "hx-request" not in request.headers:
return RedirectResponse("/search")
# Get the hash of the query and ranking value
query_id = generate_query_id(query, ranking)
print(f"Query id in /fetch_results: {query_id}")
# Run the embedding and query against Vespa app
model = app.manager.model
processor = app.manager.processor
q_embs, token_to_idx = get_query_embeddings_and_token_map(processor, model, query)
start = time.perf_counter()
# Fetch real search results from Vespa
result = await vespa_app.get_result_from_query(
query=query,
q_embs=q_embs,
ranking=ranking,
token_to_idx=token_to_idx,
)
end = time.perf_counter()
print(
f"Search results fetched in {end - start:.2f} seconds, Vespa says searchtime was {result['timing']['searchtime']} seconds"
)
search_results = vespa_app.results_to_search_results(result, token_to_idx)
get_and_store_sim_maps(
query_id=query_id,
query=query,
q_embs=q_embs,
ranking=ranking,
token_to_idx=token_to_idx,
)
return SearchResult(search_results, query_id)
def get_results_children(result):
search_results = (
result["root"]["children"]
if "root" in result and "children" in result["root"]
else []
)
return search_results
async def poll_vespa_keepalive():
while True:
await asyncio.sleep(5)
await vespa_app.keepalive()
print(f"Vespa keepalive: {time.time()}")
@threaded
def get_and_store_sim_maps(query_id, query: str, q_embs, ranking, token_to_idx):
ranking_sim = ranking + "_sim"
vespa_sim_maps = vespa_app.get_sim_maps_from_query(
query=query,
q_embs=q_embs,
ranking=ranking_sim,
token_to_idx=token_to_idx,
)
img_paths = [
IMG_DIR / f"{query_id}_{idx}.jpg" for idx in range(len(vespa_sim_maps))
]
# All images should be downloaded, but best to wait 5 secs
max_wait = 5
start_time = time.time()
while (
not all([os.path.exists(img_path) for img_path in img_paths])
and time.time() - start_time < max_wait
):
time.sleep(0.2)
if not all([os.path.exists(img_path) for img_path in img_paths]):
print(f"Images not ready in 5 seconds for query_id: {query_id}")
return False
sim_map_generator = gen_similarity_maps(
model=app.manager.model,
processor=app.manager.processor,
device=app.manager.device,
query=query,
query_embs=q_embs,
token_idx_map=token_to_idx,
images=img_paths,
vespa_sim_maps=vespa_sim_maps,
)
for idx, token, token_idx, blended_img_base64 in sim_map_generator:
with open(SIM_MAP_DIR / f"{query_id}_{idx}_{token_idx}.png", "wb") as f:
f.write(base64.b64decode(blended_img_base64))
print(
f"Sim map saved to disk for query_id: {query_id}, idx: {idx}, token: {token}"
)
return True
@app.get("/get_sim_map")
async def get_sim_map(query_id: str, idx: int, token: str, token_idx: int):
"""
Endpoint that each of the sim map button polls to get the sim map image
when it is ready. If it is not ready, returns a SimMapButtonPoll, that
continues to poll every 1 second.
"""
sim_map_path = SIM_MAP_DIR / f"{query_id}_{idx}_{token_idx}.png"
if not os.path.exists(sim_map_path):
print(f"Sim map not ready for query_id: {query_id}, idx: {idx}, token: {token}")
return SimMapButtonPoll(
query_id=query_id, idx=idx, token=token, token_idx=token_idx
)
else:
return SimMapButtonReady(
query_id=query_id, idx=idx, token=token, img_src=sim_map_path
)
@app.get("/full_image")
async def full_image(docid: str, query_id: str, idx: int):
"""
Endpoint to get the full quality image for a given result id.
"""
img_path = IMG_DIR / f"{query_id}_{idx}.jpg"
if not os.path.exists(img_path):
image_data = await vespa_app.get_full_image_from_vespa(docid)
# image data is base 64 encoded string. Save it to disk as jpg.
with open(img_path, "wb") as f:
f.write(base64.b64decode(image_data))
print(f"Full image saved to disk for query_id: {query_id}, idx: {idx}")
else:
with open(img_path, "rb") as f:
image_data = base64.b64encode(f.read()).decode("utf-8")
return Img(
src=f"data:image/jpeg;base64,{image_data}",
alt="something",
cls="result-image w-full h-full object-contain",
)
@rt("/suggestions")
async def get_suggestions(request):
query = request.query_params.get("query", "").lower().strip()
if query:
suggestions = await vespa_app.get_suggestions(query)
if len(suggestions) > 0:
return JSONResponse({"suggestions": suggestions})
return JSONResponse({"suggestions": []})
async def message_generator(query_id: str, query: str):
images = []
num_images = 3 # Number of images before firing chat request
max_wait = 10 # seconds
start_time = time.time()
# Check if full images are ready on disk
while len(images) < num_images and time.time() - start_time < max_wait:
for idx in range(num_images):
if not os.path.exists(IMG_DIR / f"{query_id}_{idx}.jpg"):
print(
f"Message generator: Full image not ready for query_id: {query_id}, idx: {idx}"
)
continue
else:
print(
f"Message generator: image ready for query_id: {query_id}, idx: {idx}"
)
images.append(Image.open(IMG_DIR / f"{query_id}_{idx}.jpg"))
await asyncio.sleep(0.2)
# yield message with number of images ready
yield f"event: message\ndata: Generating response based on {len(images)} images.\n\n"
if not images:
yield "event: message\ndata: I am sorry, I do not have enough information in the image to answer your question.\n\n"
yield "event: close\ndata: \n\n"
return
# If newlines are present in the response, the connection will be closed.
def replace_newline_with_br(text):
return text.replace("\n", "<br>")
response_text = ""
async for chunk in await gemini_model.generate_content_async(
images + ["\n\n Query: ", query], stream=True
):
if chunk.text:
response_text += chunk.text
response_text = replace_newline_with_br(response_text)
yield f"event: message\ndata: {response_text}\n\n"
await asyncio.sleep(0.1)
yield "event: close\ndata: \n\n"
@app.get("/get-message")
async def get_message(query_id: str, query: str):
return StreamingResponse(
message_generator(query_id=query_id, query=query),
media_type="text/event-stream",
)
@rt("/app")
def get():
return Layout(Main(Div(P(f"Connected to Vespa at {vespa_app.url}"), cls="p-4")))
if __name__ == "__main__":
# ModelManager.get_instance() # Initialize once at startup
HOT_RELOAD = os.getenv("HOT_RELOAD", "False").lower() == "true"
print(f"Starting app with hot reload: {HOT_RELOAD}")
serve(port=7860, reload=HOT_RELOAD)