edia_full_en / modules /module_segmentedWordCloud.py
nanom's picture
First commit
e8aad19
from wordcloud import WordCloud
import matplotlib.pyplot as plt
from typing import Dict, Tuple, List
class SimpleGroupedColorFunc(object):
"""Create a color function object which assigns EXACT colors
to certain words based on the color to words mapping
Parameters
----------
color_to_words : dict(str -> list(str))
A dictionary that maps a color to the list of words.
default_color : str
Color that will be assigned to a word that's not a member
of any value from color_to_words.
"""
def __init__(
self,
color_to_words: Dict,
default_color: str
) -> Dict:
self.word_to_color = {
word: color
for (color, words) in color_to_words.items()
for word in words
}
self.default_color = default_color
def __call__(self, word, **kwargs):
return self.word_to_color.get(word, self.default_color)
class SegmentedWordCloud:
def __init__(
self,
freq_dic: Dict[str, int],
less_group: List[str],
greater_group: List[str]
) -> WordCloud:
colors = {
'less': '#529ef3',
'salient':'#d35400',
'greater':'#5d6d7e',
}
color_to_words = {
colors['greater']: greater_group,
colors['less']: less_group,
}
grouped_color_func = SimpleGroupedColorFunc(
color_to_words=color_to_words,
default_color=colors['salient']
)
self.wc = WordCloud(
background_color="white",
width=900,
height=300,
random_state=None).generate_from_frequencies(freq_dic)
self.wc.recolor(color_func=grouped_color_func)
def plot(
self,
figsize: Tuple[int,int]
) -> plt.Figure:
fig, ax = plt.subplots(figsize=figsize)
ax.imshow(self.wc, interpolation="bilinear")
ax.axis("off")
fig.tight_layout()
return fig