Spaces:
Runtime error
Runtime error
import numpy as np | |
import pandas as pd | |
import pytz | |
from datetime import datetime | |
from typing import List | |
class DateLogs: | |
def __init__( | |
self, | |
zone: str = "America/Argentina/Cordoba" | |
) -> None: | |
self.time_zone = pytz.timezone(zone) | |
def full( | |
self | |
) -> str: | |
now = datetime.now(self.time_zone) | |
return now.strftime("%H:%M:%S %d-%m-%Y") | |
def day( | |
self | |
) -> str: | |
now = datetime.now(self.time_zone) | |
return now.strftime("%d-%m-%Y") | |
def take_two_sides_extreme_sorted( | |
df: pd.DataFrame, | |
n_extreme: int, | |
part_column: str=None, | |
head_value: str='', | |
tail_value: str='' | |
) -> pd.DataFrame: | |
head_df = df.head(n_extreme)[:] | |
tail_df = df.tail(n_extreme)[:] | |
if part_column is not None: | |
head_df[part_column] = head_value | |
tail_df[part_column] = tail_value | |
return (pd.concat([head_df, tail_df]) | |
.drop_duplicates() | |
.reset_index(drop=True)) | |
def normalize( | |
v: np.ndarray | |
) -> np.ndarray: | |
"""Normalize a 1-D vector.""" | |
if v.ndim != 1: | |
raise ValueError('v should be 1-D, {}-D was given'.format( | |
v.ndim)) | |
norm = np.linalg.norm(v) | |
if norm == 0: | |
return v | |
return v / norm | |
def project_params( | |
u: np.ndarray, | |
v: np.ndarray | |
) -> np.ndarray: | |
"""Projecting and rejecting the vector v onto direction u with scalar.""" | |
normalize_u = normalize(u) | |
projection = (v @ normalize_u) | |
projected_vector = projection * normalize_u | |
rejected_vector = v - projected_vector | |
return projection, projected_vector, rejected_vector | |
def cosine_similarity( | |
v: np.ndarray, | |
u: np.ndarray | |
) -> np.ndarray: | |
"""Calculate the cosine similarity between two vectors.""" | |
v_norm = np.linalg.norm(v) | |
u_norm = np.linalg.norm(u) | |
similarity = v @ u / (v_norm * u_norm) | |
return similarity | |
def axes_labels_format( | |
left: str, | |
right: str, | |
sep: str, | |
word_wrap: int = 4 | |
) -> str: | |
def sparse( | |
word: str, | |
max_len: int | |
) -> str: | |
diff = max_len-len(word) | |
rest = diff if diff > 0 else 0 | |
return word+" "*rest | |
def gen_block( | |
list_: List[str], | |
n_rows:int, | |
n_cols:int | |
) -> List[str]: | |
block = [] | |
block_row = [] | |
for r in range(n_rows): | |
for c in range(n_cols): | |
i = r * n_cols + c | |
w = list_[i] if i <= len(list_) - 1 else "" | |
block_row.append(w) | |
if (i+1) % n_cols == 0: | |
block.append(block_row) | |
block_row = [] | |
return block | |
# Transform 'string' to list of string | |
l_list = [word.strip() for word in left.split(",") if word.strip() != ""] | |
r_list = [word.strip() for word in right.split(",") if word.strip() != ""] | |
# Get longest word, and longest_list | |
longest_list = max(len(l_list), len(r_list)) | |
longest_word = len(max( max(l_list, key=len), max(r_list, key=len))) | |
# Creation of word blocks for each list | |
n_rows = (longest_list // word_wrap) if longest_list % word_wrap == 0 else (longest_list // word_wrap) + 1 | |
n_cols = word_wrap | |
l_block = gen_block(l_list, n_rows, n_cols) | |
r_block = gen_block(r_list, n_rows, n_cols) | |
# Transform list of list to sparse string | |
labels = "" | |
for i,(l,r) in enumerate(zip(l_block, r_block)): | |
line = ' '.join([sparse(w, longest_word) for w in l]) + sep + \ | |
' '.join([sparse(w, longest_word) for w in r]) | |
labels += f"β {line} β\n" if i==0 else f" {line} \n" | |
return labels |