diff --git "a/notebook/EDIA_Road_Map.ipynb" "b/notebook/EDIA_Road_Map.ipynb" new file mode 100644--- /dev/null +++ "b/notebook/EDIA_Road_Map.ipynb" @@ -0,0 +1,6686 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "authorship_tag": "ABX9TyMl3GeSZ59mdoGuG/o3ZqrX", + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "c768940bf3914802b49921f6f0b0eff8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3f8d7a65fc1546ad8622be544bb7d5bc", + "IPY_MODEL_829d6621391d41e0817a3ddeb79487e6", + "IPY_MODEL_0f4f92426b094225a56f201874d59103" + ], + "layout": "IPY_MODEL_8f13762e2f0147f6aee604e6e18e3912" + } + }, + "3f8d7a65fc1546ad8622be544bb7d5bc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3132563e2de345e29f7c1174705c5e93", + "placeholder": "​", + "style": "IPY_MODEL_dd240e6077f14d11b13e7d1d10fb3fac", + "value": "Downloading builder script: 100%" + } + }, + "829d6621391d41e0817a3ddeb79487e6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_23e0c52d7225457985b8977910f711cf", + "max": 151562, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_f382a9dd32b940e889d941fe0a2b31fd", + "value": 151562 + } + }, + "0f4f92426b094225a56f201874d59103": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f5d393ff408042bd86123b64f14dd9b3", + "placeholder": "​", + "style": "IPY_MODEL_23920ed430dc4865864bf35ee1dc7f70", + "value": " 152k/152k [00:00<00:00, 2.86MB/s]" + } + }, + "8f13762e2f0147f6aee604e6e18e3912": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3132563e2de345e29f7c1174705c5e93": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dd240e6077f14d11b13e7d1d10fb3fac": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "23e0c52d7225457985b8977910f711cf": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f382a9dd32b940e889d941fe0a2b31fd": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f5d393ff408042bd86123b64f14dd9b3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "23920ed430dc4865864bf35ee1dc7f70": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4cb3b5bdf71944f6b0457ac460a44bde": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_92eff9653b21425ea40817023f22fe35", + "IPY_MODEL_61ba0ad569ba4973bc22a6e324e62da1", + "IPY_MODEL_8b4446f435954c799ca8c2929055af13" + ], + "layout": "IPY_MODEL_ac00eac9255f476f9bea7d249beb6a0c" + } + }, + "92eff9653b21425ea40817023f22fe35": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cae9f807ea134c1f8c9078fda8482690", + "placeholder": "​", + "style": "IPY_MODEL_d438a9c99af2476dbae79c61aa352fe0", + "value": "Downloading readme: 100%" + } + }, + "61ba0ad569ba4973bc22a6e324e62da1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_50ef18f1584244558ac5a71ddc77b00b", + "max": 2999, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_8f116179e2cd4130bc419a6a0f51f2ac", + "value": 2999 + } + }, + "8b4446f435954c799ca8c2929055af13": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_545d71f6b9694f4c941d4587f90c2af6", + "placeholder": "​", + "style": "IPY_MODEL_e968f2ffd9884fa38e696ad235cd756b", + "value": " 3.00k/3.00k [00:00<00:00, 133kB/s]" + } + }, + "ac00eac9255f476f9bea7d249beb6a0c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cae9f807ea134c1f8c9078fda8482690": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d438a9c99af2476dbae79c61aa352fe0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "50ef18f1584244558ac5a71ddc77b00b": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8f116179e2cd4130bc419a6a0f51f2ac": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "545d71f6b9694f4c941d4587f90c2af6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e968f2ffd9884fa38e696ad235cd756b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6c4ba16d0b724631a22ee97f429f2d66": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_700b1e46c85046c1a5b77510f13c4c7e", + "IPY_MODEL_647080c64b7b43b9b422e67b2f5b9e01", + "IPY_MODEL_a192286f188b4ea09aeab14351b25878" + ], + "layout": "IPY_MODEL_346544ff50f146c4b2b3f61e4ef36b96" + } + }, + "700b1e46c85046c1a5b77510f13c4c7e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_72ab36be168e493193474efef90bdd5f", + "placeholder": "​", + "style": "IPY_MODEL_eeb52684ce384939aa226d83dfa8d1db", + "value": "Downloading: 100%" + } + }, + "647080c64b7b43b9b422e67b2f5b9e01": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_866903a5abdf44b4ba4c4abff24a8bf3", + "max": 310, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_31ea07ae78a748df824938322bdc6e5a", + "value": 310 + } + }, + "a192286f188b4ea09aeab14351b25878": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dcf35bcecbbc4391ac581b5ee448d168", + "placeholder": "​", + "style": "IPY_MODEL_3e61f16f97984f898c9873d3563ce434", + "value": " 310/310 [00:00<00:00, 12.8kB/s]" + } + }, + "346544ff50f146c4b2b3f61e4ef36b96": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "72ab36be168e493193474efef90bdd5f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "eeb52684ce384939aa226d83dfa8d1db": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "866903a5abdf44b4ba4c4abff24a8bf3": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "31ea07ae78a748df824938322bdc6e5a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "dcf35bcecbbc4391ac581b5ee448d168": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3e61f16f97984f898c9873d3563ce434": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "427fdd00864e4644b723c1f2a76ccc52": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_95d85068dc434287b86a1ba6e89f0d84", + "IPY_MODEL_9c132cb28a2843a98fe65d58685b60fe", + "IPY_MODEL_dc20acd6721a48098891c2344add8586" + ], + "layout": "IPY_MODEL_b828c8960fc54954b24719afa544a443" + } + }, + "95d85068dc434287b86a1ba6e89f0d84": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bc85d30a9cd544608adda871131eb10d", + "placeholder": "​", + "style": "IPY_MODEL_696e732ca22e43ba8a68782673c763ca", + "value": "Downloading: 100%" + } + }, + "9c132cb28a2843a98fe65d58685b60fe": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_711f769420e64dfa8c13903b6afea13e", + "max": 650, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_1f821ddf5464436dacc63ab447f68332", + "value": 650 + } + }, + "dc20acd6721a48098891c2344add8586": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a56f7f4909274dc7bedaddde5c9a2b64", + "placeholder": "​", + "style": "IPY_MODEL_a093106e3d844abe81b55333815e3c12", + "value": " 650/650 [00:00<00:00, 32.6kB/s]" + } + }, + "b828c8960fc54954b24719afa544a443": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bc85d30a9cd544608adda871131eb10d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "696e732ca22e43ba8a68782673c763ca": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "711f769420e64dfa8c13903b6afea13e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1f821ddf5464436dacc63ab447f68332": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a56f7f4909274dc7bedaddde5c9a2b64": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a093106e3d844abe81b55333815e3c12": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fa3ec4c5c3cc47d3844fbaaeab9854d3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fbcab28a5bce4baf994b068105326d6a", + "IPY_MODEL_30b59447d461461aa2af988d6e7cd090", + "IPY_MODEL_25856ca8622040f19e8ccdf39c132149" + ], + "layout": "IPY_MODEL_94ed3850e561423bb638b9f59d64c63d" + } + }, + "fbcab28a5bce4baf994b068105326d6a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f8a2e6f2eecb40b5bb22408e0031226e", + "placeholder": "​", + "style": "IPY_MODEL_472ee52170d546de82e433d018a4414b", + "value": "Downloading: 100%" + } + }, + "30b59447d461461aa2af988d6e7cd090": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5928d732ed0c4fa489d8a35e16d5179a", + "max": 247723, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_dbd2d361580b4d3f9a5ee4ca92bce25e", + "value": 247723 + } + }, + "25856ca8622040f19e8ccdf39c132149": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4a9db2bdd87342cc851dc87d48cfabef", + "placeholder": "​", + "style": "IPY_MODEL_aa94457d76b447859c719751e092356b", + "value": " 248k/248k [00:00<00:00, 6.74MB/s]" + } + }, + "94ed3850e561423bb638b9f59d64c63d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f8a2e6f2eecb40b5bb22408e0031226e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "472ee52170d546de82e433d018a4414b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5928d732ed0c4fa489d8a35e16d5179a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dbd2d361580b4d3f9a5ee4ca92bce25e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4a9db2bdd87342cc851dc87d48cfabef": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "aa94457d76b447859c719751e092356b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "45ed00a6e5db44809321b5f7a5e24678": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_27cb4e7279354e6e919b1e270bf65ca0", + "IPY_MODEL_28d691f9c59a41ef8b920dcdafc3aff2", + "IPY_MODEL_2ed15cae927444ae8aca5da97a1a56c6" + ], + "layout": "IPY_MODEL_2a013c6ed34249768b7cc7bddd4eb4e1" + } + }, + "27cb4e7279354e6e919b1e270bf65ca0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a50b183ebad6446bb048282062e62840", + "placeholder": "​", + "style": "IPY_MODEL_8cd92373cb734dee98c6cad62b176045", + "value": "Downloading: 100%" + } + }, + "28d691f9c59a41ef8b920dcdafc3aff2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b4d2056558454d51b7ffa855f007f3d0", + "max": 486125, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_d04ad06471b5432ba846bb3f3e1080ef", + "value": 486125 + } + }, + "2ed15cae927444ae8aca5da97a1a56c6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a028ac203c124f858c4d4687ba39870c", + "placeholder": "​", + "style": "IPY_MODEL_66a9f3e5547f4357bae6d1c2b7ef1a6b", + "value": " 486k/486k [00:00<00:00, 12.2MB/s]" + } + }, + "2a013c6ed34249768b7cc7bddd4eb4e1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a50b183ebad6446bb048282062e62840": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8cd92373cb734dee98c6cad62b176045": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b4d2056558454d51b7ffa855f007f3d0": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d04ad06471b5432ba846bb3f3e1080ef": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a028ac203c124f858c4d4687ba39870c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "66a9f3e5547f4357bae6d1c2b7ef1a6b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b5439c9eb41f4292ab17e8b232e9248c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_32639bee39c24f01b618d42738cb01ba", + "IPY_MODEL_5f1e62aeca7b46dfa9ab3ab0a67a364b", + "IPY_MODEL_1d08b8493d2b42fb8c7a60b1db4285dc" + ], + "layout": "IPY_MODEL_a449de23f75d472b80e574140f9210ae" + } + }, + "32639bee39c24f01b618d42738cb01ba": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c9db20d2012a414ba2d4acef37c83e58", + "placeholder": "​", + "style": "IPY_MODEL_25ec53ddf6344195a3ff694fa710b0f1", + "value": "Downloading: 100%" + } + }, + "5f1e62aeca7b46dfa9ab3ab0a67a364b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b2cd011ad24845e3aefb9da2de6b46b2", + "max": 134, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_9396ac8c515544c7a480bbfd4c241c1b", + "value": 134 + } + }, + "1d08b8493d2b42fb8c7a60b1db4285dc": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f483f4eedae0451abce2fc416d7e4a40", + "placeholder": "​", + "style": "IPY_MODEL_c049602983bf4bd0aa360a2e1db5a6f7", + "value": " 134/134 [00:00<00:00, 6.44kB/s]" + } + }, + "a449de23f75d472b80e574140f9210ae": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c9db20d2012a414ba2d4acef37c83e58": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "25ec53ddf6344195a3ff694fa710b0f1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b2cd011ad24845e3aefb9da2de6b46b2": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9396ac8c515544c7a480bbfd4c241c1b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f483f4eedae0451abce2fc416d7e4a40": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c049602983bf4bd0aa360a2e1db5a6f7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "539524df8687473c9ddfce0643fa715d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_39abd3ba59914ec5af904b553a5cdab9", + "IPY_MODEL_1b6755d380284084a3eb81ee87d71c18", + "IPY_MODEL_dd47c825ba224fe09c8e451212a17e1f" + ], + "layout": "IPY_MODEL_67d6a97093c84c18bb76153f0bf7ccbf" + } + }, + "39abd3ba59914ec5af904b553a5cdab9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_544e5c19d8384694bd32671f299942bc", + "placeholder": "​", + "style": "IPY_MODEL_3fd0c8feff954b4d9596c2d4c9fbd724", + "value": "Downloading: 100%" + } + }, + "1b6755d380284084a3eb81ee87d71c18": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bf9cb0700ebc4039b707b9ea8d92c9ee", + "max": 439621341, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_f610bf79fe844d7e93b6ea8285a27620", + "value": 439621341 + } + }, + "dd47c825ba224fe09c8e451212a17e1f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1463e5b675be4ada9a6faec06bf59038", + "placeholder": "​", + "style": "IPY_MODEL_dbfd74df1e0844fca6b3500dd74d0671", + "value": " 440M/440M [00:05<00:00, 72.0MB/s]" + } + }, + "67d6a97093c84c18bb76153f0bf7ccbf": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "544e5c19d8384694bd32671f299942bc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3fd0c8feff954b4d9596c2d4c9fbd724": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "bf9cb0700ebc4039b707b9ea8d92c9ee": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f610bf79fe844d7e93b6ea8285a27620": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1463e5b675be4ada9a6faec06bf59038": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dbfd74df1e0844fca6b3500dd74d0671": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8210559f31e240fcb842acdb9adef3ba": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_adfc411e41654cc7bddee4bba82d088e", + "IPY_MODEL_3513d7dce2df482c860e16c1864145b5", + "IPY_MODEL_11ffe16295654ec5839f3cd29f852c96" + ], + "layout": "IPY_MODEL_8ca85c0797ef4477b202d5183d743650" + } + }, + "adfc411e41654cc7bddee4bba82d088e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5a07aa88df9f47b2a51488dacec67f1e", + "placeholder": "​", + "style": "IPY_MODEL_524e6723653d42ec9b0f33b13e5ce6c5", + "value": "Downloading: 100%" + } + }, + "3513d7dce2df482c860e16c1864145b5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_62e566c8a19545ad8711bdd05ce2fa2c", + "max": 323, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_35517801bf444280bfe13cb8e5e50a64", + "value": 323 + } + }, + "11ffe16295654ec5839f3cd29f852c96": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5a11edd7e4d7416e9e88f0e69f75dccf", + "placeholder": "​", + "style": "IPY_MODEL_98bd1eee8ba64423bb00e5b27efc5559", + "value": " 323/323 [00:00<00:00, 18.4kB/s]" + } + }, + "8ca85c0797ef4477b202d5183d743650": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5a07aa88df9f47b2a51488dacec67f1e": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "524e6723653d42ec9b0f33b13e5ce6c5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "62e566c8a19545ad8711bdd05ce2fa2c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "35517801bf444280bfe13cb8e5e50a64": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5a11edd7e4d7416e9e88f0e69f75dccf": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "98bd1eee8ba64423bb00e5b27efc5559": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2a5f6ae196ee44b7aec590fa2808c834": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_12cf676b77e041faa9093c89646efe7c", + "IPY_MODEL_49226cc06ed142ec9c556d65c8a83a7e", + "IPY_MODEL_c432981b740843639ca1fca7ea92a445" + ], + "layout": "IPY_MODEL_92f8b1f7a95743ef9f70baa35fe25ff4" + } + }, + "12cf676b77e041faa9093c89646efe7c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_38ca73d9be144f24bf045db0c4bf7e49", + "placeholder": "​", + "style": "IPY_MODEL_947b4957bb68475b93e9b5f605551bd7", + "value": "Downloading: 100%" + } + }, + "49226cc06ed142ec9c556d65c8a83a7e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f682c9f77c9f4396a99fc123f7a98510", + "max": 858069, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_52f0434f92fe4e04bdd2b762d5fabacb", + "value": 858069 + } + }, + "c432981b740843639ca1fca7ea92a445": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_38def2235bf149cba0749c70d978cbd6", + "placeholder": "​", + "style": "IPY_MODEL_5a897ac40d9d44e797e730c0fef4f13a", + "value": " 858k/858k [00:00<00:00, 20.1MB/s]" + } + }, + "92f8b1f7a95743ef9f70baa35fe25ff4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "38ca73d9be144f24bf045db0c4bf7e49": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "947b4957bb68475b93e9b5f605551bd7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f682c9f77c9f4396a99fc123f7a98510": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "52f0434f92fe4e04bdd2b762d5fabacb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "38def2235bf149cba0749c70d978cbd6": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5a897ac40d9d44e797e730c0fef4f13a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f6432fd7081f423297a4981e9b17e419": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1ae25e0ffd9d47bf8321dd308c3ea6d8", + "IPY_MODEL_f9c407c3d69a4366b5a3a89c5eedb87f", + "IPY_MODEL_1a9971038bb64b208d05dfe29a55c681" + ], + "layout": "IPY_MODEL_833da493a19246f7a5080ffcc9d61575" + } + }, + "1ae25e0ffd9d47bf8321dd308c3ea6d8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_681f405c024c45a584a061c81aa42a95", + "placeholder": "​", + "style": "IPY_MODEL_f081826739f64a369f7098c8c649d994", + "value": "Downloading: 100%" + } + }, + "f9c407c3d69a4366b5a3a89c5eedb87f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ec6a7bb2de0f4a4cbb55192ce4e745c7", + "max": 150, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_304bb77879364cbda436072d06a1bb86", + "value": 150 + } + }, + "1a9971038bb64b208d05dfe29a55c681": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_adac3be30fda4b3dad83d8cf14976511", + "placeholder": "​", + "style": "IPY_MODEL_2fb8f7e9350d4846a7b4047ddb0fb4a8", + "value": " 150/150 [00:00<00:00, 10.6kB/s]" + } + }, + "833da493a19246f7a5080ffcc9d61575": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "681f405c024c45a584a061c81aa42a95": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f081826739f64a369f7098c8c649d994": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ec6a7bb2de0f4a4cbb55192ce4e745c7": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "304bb77879364cbda436072d06a1bb86": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "adac3be30fda4b3dad83d8cf14976511": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2fb8f7e9350d4846a7b4047ddb0fb4a8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "65e76bfad25c4075a1437e61db159ee0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d510c7c9cf2a489dbfab1f7db200ccbf", + "IPY_MODEL_a3d9b73b047d4569ab4889aeabcab1b7", + "IPY_MODEL_48d536a3efbf40b19f4961af4ad59ee3" + ], + "layout": "IPY_MODEL_94386e5efcd544199a5c312e26bb9fad" + } + }, + "d510c7c9cf2a489dbfab1f7db200ccbf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4058e7aa4c3d4a548ecbca9e56b9898f", + "placeholder": "​", + "style": "IPY_MODEL_d5c9d958883b4ee78f4dd9a488abb9c6", + "value": "Downloading: 100%" + } + }, + "a3d9b73b047d4569ab4889aeabcab1b7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_da3888dd812b466ab5244a682ce76e2f", + "max": 677, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_1fe11815c9784df0bb23d1189310164e", + "value": 677 + } + }, + "48d536a3efbf40b19f4961af4ad59ee3": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_cfe4f7b307e748718b0fdff10d5110ee", + "placeholder": "​", + "style": "IPY_MODEL_589095e574904a978345eac8465c356d", + "value": " 677/677 [00:00<00:00, 38.3kB/s]" + } + }, + "94386e5efcd544199a5c312e26bb9fad": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4058e7aa4c3d4a548ecbca9e56b9898f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d5c9d958883b4ee78f4dd9a488abb9c6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "da3888dd812b466ab5244a682ce76e2f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1fe11815c9784df0bb23d1189310164e": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "cfe4f7b307e748718b0fdff10d5110ee": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "589095e574904a978345eac8465c356d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "78430f924a214bfa94de55214ef558c9": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a2c3684814e8498e8fc0339ef0e00ee2", + "IPY_MODEL_1977f75944e547e3a971acc1bfdad99f", + "IPY_MODEL_8356ff7038cf4ba88fd2d662078775ea" + ], + "layout": "IPY_MODEL_a9066867cb264628a0eaeb9bf868b969" + } + }, + "a2c3684814e8498e8fc0339ef0e00ee2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0307110bd30743aeb1661f6ac17b7e08", + "placeholder": "​", + "style": "IPY_MODEL_97405818084c42d2aefd8d16d52b47ba", + "value": "Downloading: 100%" + } + }, + "1977f75944e547e3a971acc1bfdad99f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c28d2be64ee54c169474bf28f3faf4b1", + "max": 435341035, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_d9f71507c3f745abb80afe35d807bf2f", + "value": 435341035 + } + }, + "8356ff7038cf4ba88fd2d662078775ea": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a50f9c47523b4ff6b0d8e7f055891e66", + "placeholder": "​", + "style": "IPY_MODEL_8e44f2400f43429d9aef8948eec94670", + "value": " 435M/435M [00:05<00:00, 76.9MB/s]" + } + }, + "a9066867cb264628a0eaeb9bf868b969": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0307110bd30743aeb1661f6ac17b7e08": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "97405818084c42d2aefd8d16d52b47ba": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c28d2be64ee54c169474bf28f3faf4b1": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d9f71507c3f745abb80afe35d807bf2f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a50f9c47523b4ff6b0d8e7f055891e66": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8e44f2400f43429d9aef8948eec94670": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + } + } + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "markdown", + "source": [ + "# **EDIA**: Estereotipos y Discriminación en Inteligencia Artificial\n", + "\n", + "Ruta de aprendizaje\n", + "\n", + "---" + ], + "metadata": { + "id": "7JMLkzn24hnm" + } + }, + { + "cell_type": "markdown", + "source": [ + "[Explicar motivo del surgimiento de la herramienta. Quiza Lau o Lu puedan redactarlo bien]" + ], + "metadata": { + "id": "EDPbXqPa5JrD" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Objetivo general\n", + "\n", + "El objetivo de esta notebook es **familarizarse** con las diferentes clases y funcionalidades que ofrece la herramienta en la particularización, deteccion y exposición de los sesgos presentes en embeddings de palabras o sentencias, que, de forma indirecta, afecta a comunidades vulnerables frente a modelos de inteligencia artificial que se basan en ellos para el procesamientos de las palabras como unidad mínima de referencia." + ], + "metadata": { + "id": "0iD3tzrf5MK5" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Descarga o uso on-line\n", + "\n", + "Pueden encontrar tanto repositorios en GitHub como en HuggingFace🤗 para instalar localmente esta herramienta. Además, se cuenta en HuggingFace🤗 con una demo con interfaz grafica para conseguir exponer este trabajos a aquellos sectores con menor nivel de conocimiento pero gran interés en el área.\n", + "\n", + "`GitHub:` https://github.com/git-lu/notebook_bias_tools\n", + "\n", + "`HuggingFace🤗`: https://huggingface.co/spaces/vialibre/edia\n" + ], + "metadata": { + "id": "jZRztIwT5Qcc" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Estableciendo el entorno de trabajo\n" + ], + "metadata": { + "id": "zVDHaFdI5Zj8" + } + }, + { + "cell_type": "markdown", + "source": [ + "Para descargar la herramienta, el *dataset* y los paquetes de python requeridos para el correcto funcionamiento, ejecutar la siguiente celda." + ], + "metadata": { + "id": "6K8BU8ZXDFD-" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "0XtkJV7z4e7d", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "collapsed": true, + "outputId": "9fbc84ed-326e-4f56-ba78-e2175f0ceec3" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Cloning into 'notebook_bias_tools'...\n", + "remote: Enumerating objects: 250, done.\u001b[K\n", + "remote: Counting objects: 100% (250/250), done.\u001b[K\n", + "remote: Compressing objects: 100% (155/155), done.\u001b[K\n", + "remote: Total 250 (delta 142), reused 181 (delta 74), pack-reused 0\u001b[K\n", + "Receiving objects: 100% (250/250), 179.69 KiB | 19.96 MiB/s, done.\n", + "Resolving deltas: 100% (142/142), done.\n", + "Downloading...\n", + "From: https://drive.google.com/uc?id=1H7uNfk6u1BaF6Y0I94r8lT6iPZZnQstN\n", + "To: /content/mini_vocab_v6.zip\n", + "100% 93.6k/93.6k [00:00<00:00, 78.2MB/s]\n", + "Downloading...\n", + "From: https://drive.google.com/uc?id=1NYgWZTPDhpKsZO9qOsP29mKHviA_gsYW\n", + "To: /content/quarter_vocab_v6.zip\n", + "100% 74.6M/74.6M [00:01<00:00, 49.6MB/s]\n", + "/content/notebook_bias_tools\n", + "\u001b[K |████████████████████████████████| 5.8 MB 40.9 MB/s \n", + "\u001b[K |████████████████████████████████| 24.1 MB 1.2 MB/s \n", + "\u001b[K |████████████████████████████████| 647 kB 83.2 MB/s \n", + "\u001b[K |████████████████████████████████| 452 kB 88.4 MB/s \n", + "\u001b[K |████████████████████████████████| 7.6 MB 83.3 MB/s \n", + "\u001b[K |████████████████████████████████| 182 kB 69.7 MB/s \n", + "\u001b[K |████████████████████████████████| 132 kB 72.9 MB/s \n", + "\u001b[K |████████████████████████████████| 212 kB 79.4 MB/s \n", + "\u001b[K |████████████████████████████████| 127 kB 78.0 MB/s \n", + "\u001b[?25h Building wheel for sklearn (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + " Building wheel for uuid (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + " Building wheel for annoy (setup.py) ... \u001b[?25l\u001b[?25hdone\n" + ] + } + ], + "source": [ + "!wget -q http://dcc.uchile.cl/~jperez/word-embeddings/fasttext-sbwc.100k.vec.gz\n", + "!git clone https://github.com/git-lu/notebook_bias_tools.git\n", + "!mkdir notebook_bias_tools/data\n", + "!gzip -d fasttext-sbwc.100k.vec.gz\n", + "!mv fasttext-sbwc.100k.vec notebook_bias_tools/data/fasttext-sbwc.100k.vec\n", + "!pip3 -q install --upgrade gdown\n", + "!gdown https://drive.google.com/uc?id=1H7uNfk6u1BaF6Y0I94r8lT6iPZZnQstN\n", + "!mv mini_vocab_v6.zip notebook_bias_tools/data/mini_vocab_v6.zip\n", + "\n", + "!gdown https://drive.google.com/uc?id=1NYgWZTPDhpKsZO9qOsP29mKHviA_gsYW\n", + "!mv quarter_vocab_v6.zip notebook_bias_tools/data/quarter_vocab_v6.zip\n", + "\n", + "%cd notebook_bias_tools/\n", + "!pip -q install -r requirements.txt" + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Núcleos de significado\n" + ], + "metadata": { + "id": "Q7OD9url55Ia" + } + }, + { + "cell_type": "markdown", + "source": [ + "Cuando hablamos de profesiones en el idioma español solemos diferenciar el género del agente dentro de la palabra (por ejemplo, enfermer**o** y enfermer**a**, o arquitect**o** y arquitect**a**), pero este no es la totalidad de los casos, existiendo palabras que atribuyen a todos los géneros como lo es *Astronauta*.\n", + "\n", + "Por nuestras vivencias y culturas, solemos identificar ciertas profesiones (u otras palabras) con un genero implicito; quiza, cuando leyeron la palabra *Astronauta* se les vino a la cabeza una figura masculina. Esto nos da a entender que **ciertas culturas definen el género de una palabra sobre la persona**.\n", + "\n", + "Volviendo a los primeros ejemplos, podemos intuir que las profesiones enfermer**a** y arquitect**a** se encuentran más embebidas en el núcleo femenino, y más distantes del núcleo de género masculino. Además, hicimos notar como la palabra *Astronauta* la cual idealmente deberia encontrarse equisdistante de ambos núcleos de significado solemos acercarlo intuitivamente al núcleo masculino.\n", + "\n", + "Este último tipo de comportamiento **no es el ideal** en modelos de procesamiento del lenguaje natural (PLN), de existir, se trataria de un modelo sesgado que potencialmente puede afectar negativamente a individuos o colectivos vulnerables en sus predicciones.\n", + "\n", + "Por ejemplo, imaginemos un modelo que otorga beneficios bancarios (como prestamos, extensiones de pago o descuentos) a sus clientes a partir de una planilla de inscripcion en la cual se cuenta con informacion del país de procedencia. Si el modelo en cuestion fuera entrenado con ejemplos sesgados de su madurez economica en relación a su procedencia podría, por ejemplo, no otorgar estos beneficios a personas oriundas de Nigeria por presentar una menor solvencia economica, y otorgar estos beneficios siempre (o en gran medida) a alemanes por tener una economia más estable.\n", + "\n", + "Examinemos así, con estos ejemplos, los núcleos de significado utilizando la herramienta **EDIA** para conocer como las palabras que interpretan los modelos a traves de *embeddings* se posicionan dentro." + ], + "metadata": { + "id": "f2S8WV8cCpiq" + } + }, + { + "cell_type": "markdown", + "source": [ + "\n", + "\n", + "> **Nota:** Si contas con embeddigs propios, formato estandar `.vec` (preferentemente) o `.bin`, que quieras utilizar para evaluar los sesgos presentes a lo largo de esta *Google Colab*, importalos dentro de la carpeta `data` y establece el nombre del archivo correctamente en la variable presente en la proxima celda de ejecución.\n", + ">\n", + "> **Importante**, si el número de embeddings es demasiado grande, la infraestrucutra de *Google Colab* puede no ser la ideal, en dichos casos, aconsejamos limitar el número de embeddings a utilizar mediante el paramertro `limit` y/o realizar la reduccion de dimensiones mediante el metodo *randomized PCA*. Si se trata de un archivo `.bin`, este debe tratarse de un **binario en formato C** (quedando así excluido binarios de, por ejemplo, Fasttext), si se cuenta con otro formato, el usuario deberá ser el encargado de extraer los embeddings a un formato estandar para exploración como es `.vec`.\n", + ">\n", + "> Se alienta también a descargar y utilizar esta herramienta en su arquitectura propia y, quiza, más potente, evitando así estos problemas de memoria y procesamiento.\n" + ], + "metadata": { + "id": "z-cVv9JGE8Ig" + } + }, + { + "cell_type": "code", + "source": [ + "EMBEDDINGS_PATH = 'data/fasttext-sbwc.100k.vec'" + ], + "metadata": { + "id": "D1bSztdqFqlF" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "from modules.model_embbeding import Embedding\n", + "from modules.module_rankSents import RankSents\n", + "from modules.module_crowsPairs import CrowsPairs\n", + "from modules.module_vocabulary import Vocabulary\n", + "from modules.module_WordExplorer import WordExplorer\n", + "from modules.module_word2Context import Word2Context\n", + "from modules.module_languageModel import LanguageModel\n", + "from modules.module_BiasExplorer import WEBiasExplorer2Spaces, WEBiasExplorer4Spaces\n", + "emb = Embedding(\n", + " path=EMBEDDINGS_PATH,\n", + " limit=100_000, # Número maximo de vectores a extraer\n", + " randomizedPCA=False, # Utilizar la metodologia `randomized` de obtencion de PCA\n", + " max_neighbors=20, # Número máximo de vecinos por palabra a calcular\n", + " nn_method='sklearn' # Algoritmo de obtención de vecinos\n", + ")\n", + "\n", + "explorador_de_palabras = WordExplorer(emb)\n", + "explorador_de_sesgos_2 = WEBiasExplorer2Spaces(emb)\n", + "explorador_de_sesgos_4 = WEBiasExplorer4Spaces(emb)\n", + "explorador_de_datos = Word2Context('vialibre/splittedspanish3bwc', Vocabulary('quarter'))" + ], + "metadata": { + "id": "A0FR3A9vC4aA", + "collapsed": true, + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "a4e4eba0-cf68-4030-fbff-70ccdfe7ca0b" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Preparing fasttext-sbwc.100k.vec embeddings...\n", + "Initializing sklearn method to search for nearby neighbors...\n", + "Preparing quarter vocabulary...\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Comencemos con las profesiones y el genero atribuido" + ], + "metadata": { + "id": "PClW5cP_E2Kw" + } + }, + { + "cell_type": "code", + "source": [ + "nucleo_fem = ['ella', 'mujer', 'chica', 'femenina']\n", + "nucleo_masc = ['el', 'hombre', 'chico', 'masculino']" + ], + "metadata": { + "id": "NBdwcDWaDLCg" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "Ya con los núcleos femenino y masculino definidos, establecemos las profesiones que nos interesa evaluar entre estos dos. Usaremos aquellas con las cuales ejemplificamos." + ], + "metadata": { + "id": "vTJ_jViwESpr" + } + }, + { + "cell_type": "code", + "source": [ + "profesiones = ['enfermera', 'enfermero', 'arquitecto', 'arquitecta', 'astronauta']\n", + "\n", + "explorador_de_sesgos_2.calculate_bias(profesiones, nucleo_fem, nucleo_masc)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 729 + }, + "id": "gJQ35nzUEpje", + "outputId": "2a15fc25-b7e0-49e4-b459-22070e27d6a9" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAALICAYAAABiqwZ2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3debhlZ0Hn+98vKQIxQDAQEQIhoGEICBEKJKIMbURtu0GU4SIIERVphYhA2/CAXhQVmdTHiUvg0sFWNA0oInYzGBJETIAKmYEAYkAEBRkigStDeO8fe1XnpaiqcyqpOqcq9fk8z3nO3muv4d177bPrW+uss3fHGAEAAFYO2ewBAADA/kQgAwDARCADAMBEIAMAwEQgAwDAZMtmD+C64mY3u9k47rjjNnsYAAAszjvvvH8dYxy9p8sJ5L3kuOOOy7Zt2zZ7GAAALNp++Jos5xQLAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmGzZ7AEAsHe8558+tdlDYA+dcMxNN3sIwE44ggwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAAJMDOpDb3rLtq5fLJ7b9j9diXU9u+w17b3QAAByI9ptAbnvoni4zxvjYGOOhy9UTk1zjQE7y5CQCGQDgILdhgdz2tW3Pa3tp28cv065s+6K2FyY5qe2Pt31/23e2fWnb31vmO73tQ6d1Xbl8P67tJW0PS/IrSR7R9oK2j2h7RNuXL+s6v+2Dl2UObfvCZbmL2j6p7alJbpnkrLZnLfM9su3Fy3zP26jHCQCAzbVlA7f1uDHGp9senuRdbV+T5Igk7xhjPLXtLZK8Msk9klyR5Kwk569nxWOML7X9pSRbxxhPTJK2v57kLWOMx7W9SZJ3tv3rJI9JclySE8cYX2l71DKupyR5wBjjX9veMsnzlrF8Jsmb2v7QGOO183aX0H98khx77LHX6sEBAGD/sJGnWJy6HCk+N8mtkxyf5Kokr1lu/44kZ48xPjnG+FKSM67l9h6Y5OltL0hydpIbJDk2yclJXjLG+EqSjDE+vZNl7zmN5StJ/jjJfXecaYxx2hhj6xhj69FHH30thwsAwP5gQ44gt71/VmF60hjjC23PzipY/32McdU6VvGVLDHf9pAkh61ns0l+ZIxx2Q5j2YORAwBwsNmoI8hHJvnMEsd3THLvnczzjiT3a3vTttdL8rDptsuzOt0hSR6U5Ho7Wf5zSW40XX9jkid1KeK2375Mf3OSn267ZZl+1E6Wf+cylpstfzz4yCRvXe+dBQDgwLVRgfyGJFvavjfJb2R1msXXGGN8PMmzk5yT5O1J3jvd/NKsgvXCJCcl+fxOtnFWkhO2/5FekudkFdIXtb10uZ4kL0vykWX6hUl+dJl+WpI3tD1rGcvTl3VemOS8McZfXNM7DwDAgaNjjM0ew061PSXTH93t77Zu3Tq2bdu22cMADmLv+adPbfYQ2EMnHHPTzR4CXKe1PW+MsXVPl9tv3gcZAAD2Bxv5Nm97ZIxxepLTN3kYAAAcZBxBBgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAyZbNHgAAe8cJx9x0s4cAcJ3gCDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEy2bPYAANg7PvzJKzZ7CAeU2xx95GYPAdhPOYIMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAACT/S6Q2x7d9h1tz2/73Zs9HgAADi5bNnsAO/E9SS4eY/zkehdoe+gY46q9sfG2TdIxxlf3xvoAADiwbMgR5LaPbvvOthe0fUnbQ9te2fbX2l7Y9ty2N297YpLnJ3nwMu/hbR/Y9py27277qrY3XNZ5edvntX13koct15+7LLet7d3bvrHt37d9wjSW/9r2XW0vavvLy7Tj2l7W9g+TXJLk1m1f0PaSthe3fcRGPE4AAGy+fR7Ibe+U5BFJ7jPGODHJVUkeleSIJOeOMe6W5G+S/NQY44Ikv5TkjGXeI5I8K8nJY4y7J9mW5CnT6j81xrj7GONPl+sfWZZ7W5LTkzw0yb2TbA/hByY5Psm9kpyY5B5t77sse3ySPxhj3DnJ1uX2uyU5OckL2t5i7z4yAADsjzbiFIvvSXKPJO9anb2Qw5N8IsmXkrx+mee8JN+7k2XvneSEJG9flj0syTnT7WfsMP/rlu8XJ7nhGONzST7X9ottb5LkgcvX+ct8N8wqjD+S5MNjjHOX6d+V5E+W0zb+pe1bk9xzWn+SpO3jkzw+SY499tg1HwgAAPZ/GxHITfKKMcYzvmZi+7QxxliuXrWLsTTJm8cYj9zFuj+/w/UvLt+/Ol3efn3Lsr7njjFessNYjtvJutY0xjgtyWlJsnXr1rHG7AAAHAA24hzkM5M8tO03JUnbo9reZp3LnpvkPm2/dVn2iLa3vxZjeWOSx03nMR+zfVw7eFuSRyznSh+d5L5J3nkttgsAwAFinx9BHmO8p+2zkryp7SFJvpzkZ9e57CfbnpLkT9pef5n8rCTvv4ZjedNyTvQ5yykbVyZ5dFZHsGd/nuSkJBcmGUl+YYzxz9dkmwAAHFh69VkOXBtbt24d27Zt2+xhAAexD3/yis0ewgHlNkcfudlDAPaxtueNMbbu6XL73QeFAADAZhLIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADDZstkDAGDvuM3RR272EACuExxBBgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAIDJls0eAAB7x4c/ecVmD+GAcpujj9zsIQD7KUeQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYLKuQG57RNtDlsu3b/ugttfbt0MDAICNt94jyH+T5AZtj0nypiQ/luT0fTUoAADYLOsN5I4xvpDkh5P8wRjjYUnuvO+GBQAAm2Pdgdz2pCSPSvJXy7RD982QAABg86w3kJ+c5BlJ/nyMcWnb2yU5a98NCwAANseW9cw0xnhrkrdO1z+U5NR9NSgAANgsuw3ktn+ZZOzq9jHGg/b6iAAAYBOtdQT5hcv3H07yzUn+aLn+yCT/sq8GBQAAm2W3gbycWpG2LxpjbJ1u+su22/bpyAAAYBOs94/0jlj+MC9J0va2SY7YN0MCAIDNsyfvYnF227PbvjWrd7D4ub01iLantL3l3lrfNdj+Tdr+zGZtHwCA/cea72KxfMT0kUmOT3LHZfL7xhhf3IvjOCXJJUk+tpPtHzrGuGovbmtnbpLkZ5L8wT7eDgAA+7k1jyCPMb6a5BfGGF8cY1y4fK0rjtu+tu15bS9t+/i2h7Y9ve0lbS9u+/NtH5pka5I/bntB28PbXt72eW3fneRhbR+5zH9J2+dN67+y7a+1vbDtuW1vvkz/z23f0fb8tn89TX9226dNy1/S9rgkv5HkW5btv6DtDdue2fbdy3YfvP6HFACAA9m63gc5yV8vYXlGks9vnzjG+PQayz1ujPHptocneVeS85IcM8a4S7I6tWGM8dm2T0zytDHGtmV6knxqjHH35dSLc5PcI8lnkryp7Q+NMV6b1XnQ544xntn2+Ul+KsmvJvnbJPceY4y2P5nkF5I8dTfjfHqSu4wxTly2vyXJQ8YY/9b2ZknObfu6McbXvOVd28cneXySHHvssWs8FAAAHAjWG8iPWL7/7DRtJLndTuadndr2IcvlWyc5LMnt2v5uVh9Z/abdLHvG8v2eSc4eY3wySdr+cZL7Jnltki8lef0y33lJvne5fKskZ7S9xbLNf1hjnDtqkl9ve98kX01yTJKbJ/nneaYxxmlJTkuSrVu37vL9ogEAOHCs95P0brunK257/yQnJzlpjPGFtmcnuX6SuyX5viRPSPLwJI/bxSo+v4vpsy9PR3WvytX353eT/OYY43XLOJ69TP9Kvva0khvsYr2PSnJ0knuMMb7c9vLdzAsAwHXIut7Fou312p7a9tXL1xPbXm+NxY5M8pklju+Y5N5JbpbkkDHGa5I8K8ndl3k/l+RGu1jPO5Pcr+3N2h6a1YeUvHUX887b/qfl8mOn6Zdv32bbuyfZHv47bv/IJJ9Y4vgBSW6zxvYAALiOWO8pFi9Ocr1c/S4PP7ZM+8ndLPOGJE9o+94kl2V1HvExWb1d3PYwf8by/fQk/0/b/y/JSfNKxhgfb/v0rN5arkn+aozxF2uM99lJXtX2M0nekqtD+DVJHtP20iTvSPL+ZRufavv2tpck+d9JnpfVh6FcnGRbkvetsT0AAK4jusPfne18pvbCMcbd1pp2MNu6devYts2HCwKb58OfvGKzh3BAuc3RR272EIB9rO15O3wa9Lqs94NCrmr7LdPGbpfVOb8AAHCdsttTLNo+OcnfZfU2aG9pu/3dII7Lrv+4DgAADlhrnYN8qyS/neROST6Q5NNZnQv8mjHG133qHQAAHOh2G8hjjKclSdvDsvq0u+9Mcv8kz2j72THGCft8hAAAsIHW+y4Whye5cVZvf3Zkko8luXhfDQoAADbLWucgn5bkzlm9T/A7sjof+TfHGJ/ZgLEBAMCGW+tdLI7N6tPv/jmrD974aJLP7utBAQDAZlnrHOTvb9usjiJ/Z5KnJrlL208nOWeM8X9vwBgBAGDDrHkO8lh9ksglbT+b5Irl6z8luVcSgQwAwHXKWucgn5rVkePvTPLlrM5B/rskL48/0gMA4DporSPIxyV5VZKfH2N8fN8PBwAANtda5yA/ZaMGAgAA+4O13sUCAAAOKgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmWzZ7AADsHbc5+sjNHgLAdYIjyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAw2bLZA+Dauex3fnGzhwDsJ+5w6nM2ewgA1wmOIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwGS/CuS2R7d9R9vz2373Zo8HAICDz5bNHsAOvifJxWOMn1zvAm0PHWNctTc23rZJOsb46t5YHwAAB559fgS57aPbvrPtBW1f0vbQtle2/bW2F7Y9t+3N256Y5PlJHrzMe3jbB7Y9p+27276q7Q2XdV7e9nlt353kYcv15y7LbWt797ZvbPv3bZ8wjeW/tn1X24va/vIy7bi2l7X9wySXJLl12xcv67l0+3wAABwc9mkgt71Tkkckuc8Y48QkVyV5VJIjkpw7xrhbkr9J8lNjjAuS/FKSM5Z5j0jyrCQnjzHunmRbkqdMq//UGOPuY4w/Xa5/ZFnubUlOT/LQJPdOsj2EH5jk+CT3SnJiknu0ve+y7PFJ/mCMcecxxoeTPHOMsTXJXZPcr+1d9/ZjAwDA/mlfn2LxPUnukeRdq7MXcniSTyT5UpLXL/Ocl+R7d7LsvZOckOTty7KHJTlnuv2MHeZ/3fL94iQ3HGN8Lsnn2n6x7U2SPHD5On+Z74ZZhfFHknx4jHHutK6Ht318Vo/PLZZxXLTjAJd5Hp8kxx577C4fBAAADhz7OpCb5BVjjGd8zcT2aWOMsVy9ahfjaJI3jzEeuYt1f36H619cvn91urz9+pZlfc8dY7xkh7EcN6+r7W2TPC3JPccYn2l7epIb7GwAY4zTkpyWJFu3bh07mwcAgAPLvj4H+cwkD237TUnS9qi2t1nnsucmuU/bb12WPaLt7a/FWN6Y5HHTeczHbB/XDm6cVTBf0fbmSX7gWmwTAIADzD49gjzGeE/bZyV5U9tDknw5yc+uc9lPtj0lyZ+0vf4y+VlJ3n8Nx/Km5Zzoc5ZTNq5M8uisjmDP813Y9vwk70vyj0nefk22BwDAgalXn+nAtbF169axbdu2Dd/uZb/zixu+TWD/dIdTn7PZQwDYr7Q9b3njhT2yX31QCAAAbDaBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAACTLZs9AK6dO5z6nM0eAgDAdYojyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAw2bLZA+DrvfdFz9jsIQAHoDs99bmbPQSA6wRHkAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYHJAB3LbW7Z99XL5xLb/8Vqs68ltv2HvjQ4AgAPRfhPIbQ/d02XGGB8bYzx0uXpikmscyEmenEQgAwAc5DYskNu+tu15bS9t+/hl2pVtX9T2wiQntf3xtu9v+862L237e8t8p7d96LSuK5fvx7W9pO1hSX4lySPaXtD2EW2PaPvyZV3nt33wssyhbV+4LHdR2ye1PTXJLZOc1fasZb4Xt922jPeXN+pxAgBgc23ZwG09bozx6baHJ3lX29ckOSLJO8YYT217iySvTHKPJFckOSvJ+etZ8RjjS21/KcnWMcYTk6Ttryd5yxjjcW1vkuSdbf86yWOSHJfkxDHGV9oetYzrKUkeMMb412W1z1ymH5rkzLZ3HWNcNG93Cf3HJ8mxxx57LR4aAAD2Fxt5isWpy5Hic5PcOsnxSa5K8prl9u9IcvYY45NjjC8lOeNabu+BSZ7e9oIkZye5QZJjk5yc5CVjjK8kyRjj07tY/uFt351VpN85yQk7zjDGOG2MsXWMsfXoo4++lsMFAGB/sCFHkNveP6swPWmM8YW2Z2cVrP8+xrhqHav4SpaYb3tIksPWs9kkPzLGuGyHsaxnvLdN8rQk9xxjfKbt6ct4AQC4jtuoI8hHJvnMEsd3THLvnczzjiT3a3vTttdL8rDptsuzOvUiSR6U5Ho7Wf5zSW40XX9jkid1KeK2375Mf3OSn267ZZl+1E6Wv3GSzye5ou3Nk/zAeu8oAAAHto0K5Dck2dL2vUl+I6vTLL7GGOPjSZ6d5Jwkb0/y3unml2YVzxcmOSmreN3RWUlO2P5Hekmek1VIX9T20uV6krwsyUeW6Rcm+dFl+mlJ3tD2rDHGhVmdWvG+rM6Lfvs1veMAABxYOsbY7DHsVNtTMv3R3f5u69atY9u2bXtlXe990TP2ynqAg8udnvrczR4CwH6l7XljjK17utx+8z7IAACwP9jIt3nbI2OM05OcvsnDAADgIOMIMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEy2bPYA+Hp3eupzN3sIAAAHLUeQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBg0jHGZo/hOqHtJ5N8eLPHsZ+7WZJ/3exBsEfsswOL/XXgsc8OLPbXgecOY4wb7elCW/bFSA5GY4yjN3sM+7u228YYWzd7HKyffXZgsb8OPPbZgcX+OvC03XZNlnOKBQAATAQyAABMBDIb6bTNHgB7zD47sNhfBx777MBifx14rtE+80d6AAAwcQQZAAAmAhkAACYCmX2m7VFt39z2A8v3b9zJPCe2PaftpW0vavuIzRgrK+vZZ8t8b2j72bav3+gxkrT9/raXtf1g26fv5Pbrtz1juf0dbY/b+FGy3Tr2133bvrvtV9o+dDPGyNdaxz57Stv3LP9undn2NpsxTlbWsb+e0Pbithe0/du2J6y1ToHMvvT0JGeOMY5PcuZyfUdfSPKYMcadk3x/kt9ue5MNHCNfaz37LElekOTHNmxU/B9tD03y+0l+IMkJSR65kxf7n0jymTHGtyb5rSTP29hRst0699dHkpyS5JUbOzp2Zp377PwkW8cYd03y6iTP39hRst0699crxxjfNsY4Mat99ZtrrVcgsy89OMkrlsuvSPJDO84wxnj/GOMDy+WPJflEEh+6snnW3GdJMsY4M8nnNmpQfI17JfngGONDY4wvJfnTrPbbbN6Pr07yPW27gWPkamvurzHG5WOMi5J8dTMGyNdZzz47a4zxheXquUlutcFj5Grr2V//Nl09Isma71AhkNmXbj7G+Phy+Z+T3Hx3M7e9V5LDkvz9vh4Yu7RH+4xNcUTbNYwAAAvLSURBVEySf5yuf3SZttN5xhhfSXJFkptuyOjY0Xr2F/uXPd1nP5Hkf+/TEbE769pfbX+27d9ndQT51LVW6qOmuVba/nWSb97JTc+cr4wxRttd/o+t7S2S/I8kjx1jOIqyD+2tfQZwsGv76CRbk9xvs8fC7o0xfj/J77f90STPSvLY3c0vkLlWxhgn7+q2tv/S9hZjjI8vAfyJXcx34yR/leSZY4xz99FQWeyNfcam+qckt56u32qZtrN5Ptp2S5Ijk3xqY4bHDtazv9i/rGuftT05qwML9xtjfHGDxsbX29OfsT9N8uK1VuoUC/al1+Xq/6E9Nslf7DhD28OS/HmSPxxjvHoDx8bOrbnP2HTvSnJ829suPz//V1b7bTbvx4cmecvwqVCbZT37i/3Lmvus7bcneUmSB40xHEjYXOvZX8dPV38wyQfWWqlAZl/6jSTf2/YDSU5erqft1rYvW+Z5eJL7JjllefuVC9qeuDnDJevbZ2n7tiSvyuqPvz7a9vs2ZbQHoeWc4icmeWOS9yb5n2OMS9v+StsHLbP9v0lu2vaDSZ6SXb8bCfvYevZX23u2/WiShyV5SdtLN2/ErPNn7AVJbpjkVcu/W/7Ts0nWub+euLyd7AVZvSbu9vSKxEdNAwDA13AEGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhk2WNtT2v7ecvnZbZ+2SePY2vZ39vE2dnn/2v7dPtjen7S9qO3P7+11r2PbD2rr7dT2sbbHtb3k2s6zr7a9Udtb3sJqlx/6cyCa7+9GvD7B7vgkPThIjTG2Jdm23vnbblneb3Jvbf8799a6kqTtNye55xjjW/fmetdrjPG6+AAIkrQ9dIxx1b7cxhjjl/bl+jfbnr4+wd7mCDLsgbaHtP3P65z36Lavafuu5es+a8z/U8t8Fy7LfcMa85/S9rVt39z28rZPbPuUtue3PbftUct8Z7fduly+WdvLl8v3b/v65fIRbV/e9p3L8g+etvG6tm9JcuYa4/n+tu9exj/Pe8Iyhg+1PXWa/8rp8n9re/Gy7PYPJ9mjxyPJm5Ics7xp/3e3/Za2b2h7Xtu3tb3jst7T2754eYw+tDwOL2/73ranT2N6YNtzlvv0qrY3XKZf3vaXl+kXT+udfzNwetvfaft3yzYeuky/Ydszp2UfvMZ9Omi1PbTtC5bnwEVtf3oPV3Fo25d29eEAb2p7+LLeE5d9f1HbP2/7jcv0s9v+Vttty3Phnm3/rO0H2v7qtN4tbf94mefV25+Xy/PieW3fneRhu3r+7Ob+3nwZz4XL1/b/QO7qfpw+Pa/uuTzXLlx+hm/U9gZt//vyPDu/7QPW2P5xbd+3rPf9y308ue3bl8fgXst891ru1/nLNu+wTL/zsu0Llsf2+GX6Y5brF7b9HzuOfbl+5U7GM78+PXv5Gd3Z68hT2l6yfD15d/dxWubWbe++nnk5iI0xfPnytY6vrP5D+Yokz1vn/K9M8l3L5WOTvHe5fEqS31suPzvJ05bLN52W/dUkT1pj/ack+WCSGyU5OskVSZ6w3PZbSZ68XD47ydbl8s2SXL5cvn+S1y+Xfz3Jo5fLN0ny/iRHLNv4aJKj1hjL0Un+Mcltl+tHTffv75Jcf9n2p5Jcb7ntyuX7DyzzfMMOy+7p43Fckkum62cmOX65/B1Zfdxykpye5E+TNMmDk/xbkm9b9u95SU5cxvo3SY5YlvlvSX5puXz59rEk+ZkkL9vJfj09q08aPCTJCUk+uEzfkuTG0774YJYPbPL1dfvz8UmetVy+flZHE2+7437ezXPhK0lOXK7/z+n5fVGS+y2XfyXJb08/J89bLv9cko8lucWy7Y8muemy3pHkPst8L8/VP7+XJ/mFad/u9PmzmzGfkat/Zg9NcuQa9+P0rD5G/LAkH8rqtydJcuPlefbUJC9fpt0xyUeS3GAdj9n8s/Dy6efktfP6l8snJ3nNcvl3kzxquXxYksOT3Dmr15KbLdOPmsc+bfvKaQyXLJfvn6tfn56dnbyOJLlHkouzeq26YZJLk3z7Op5b37Ist3Wzn+e+9t8vp1jA+j0hyY8leU/bH9zhtg+MMR6yw7STszp6uv36jdc4inSX5UjVTbJ6sX/jOsZ01hjjc0k+1/aKJH+5TL84yV3Xsfx2D0zyoF59vvANsor6JHnzGOPTayx/7yR/M8b4hyTZYf6/GmN8MckX234iyc2zCo7tTk7y38cYX9hh2WvyeCRZHalN8p1ZfQzs9snXn2b5yzHGaHtxkn8ZY1y8LHdpVv9I3yqrsH37svxhSc6Zlv+z5ft5SX54F8N47Rjjq1k9X26+fWhJfr3tfZN8NckxWT0e/7ze+3YQeWCSu05HGo9McnxWwbUe/zDGuGC5fF6S49oemeQmY4y3LtNfkdV/ZLbbforMxUkuHWN8PEnafijJrZN8Nsk/jjHevsz3R0lOTfLC5foZy/d7Z/fPn535D0kekyRjdXrGFcvR7a+7Hzssd4ckHx9jvGtZ9t+WMX9XVtGaMcb72n44ye2z+g/CrvzDDj8LZ04/J9u3e2SSVyxHiEdWoZrl/j2z7a2S/NkY4wNt/0OSV40x/nUZx1qvI7uzs9eR70ry52OMzy9j/rMk353k/O0LLWPY2bnMN03yv5J807UYE9dhAhnW7w+TPDyrmHvFOuY/JMm9xxj/Pk+cgm1Hpyf5oTHGhW1PyeoIylq+OF3+6nT9q7n65/srufp0qhvsYj1N8iNjjMt2GOt3JPn8Osax3jFelfW/7pyePX88tjskyWfHGCeuMab5Mdt+fcsyzjePMR65xvK7uz/zerfv9EdldbT9HmOML3d1usuu9snBrlkdqf+a/xi1PW6dy+/4vDt8D5bZ1fMiWUXhbL6+/Wel2f3zZ09ck/uxN7a1q9eT52T1H/OHLPvi7CQZY7yy7TuS/GCS/9XdnxLzf16T2h6S1X8g9mRs634dGWO8Jcld5mltb5JVHL9oPevg4OQcZFinMcaVWb34H73ORd6U5Enbr7TdVaxtd6MkH297vaxCavtyD2n73D0c7uzyrH4Vmax+Jbszb0zypC713vbbd7Wytu/byeRzk9y37W2XeY7ag/G9OcmPT+dybl/2Gj8ey1G0f2j7sGWZtr3bHozp3CT3afuty/JHtL39Hiy/K0cm+cQSxw9Icpu9sM7rqjcm+S/L/k/b27c9Yp6h7TH92vPdd2uMcUWSz7T97mXSjyV5624W2Zlj2560XP7RJH+7k3l2+fxp+9y2O/62KVmdEvRflnkOXY52r8dlSW7R9p7LsjdquyXJ27L83CzbPjbJZXv6mO3EkUn+abl8yvaJbW+X5ENjjN9J8hdZ/QbrLVmdj33TZZ7tP9uX5+rXpAfl6qPQe+ptSX6o7Tcsz42HLNPWcpskzx9jvOYabpeDgECGPTDG+PwY44Vrz5lk9avXrcsfqLwnq1M0ducXk7wjyduTzBH6LVmdJ3tNvTCr0Dg/q/P3ZtuPfj0nq3+kLlp+tfqcna2o7c1y9dHQq1cyxiezOmf0z9pemKt/1bymMcYbsvrV9ra2FyTZfprHtX08HpXkJ5bxXJrVeZTrHdMns/rH/0/aXpTVr4/vuN7ld+OPs3pOXJzVr9N39p8NVl6W5D1J3t3VW3+9JF9/1PAWWR2N3BOPTfKCZb+emNV5yHvisiQ/2/a9Sb4xyYt3nGGN58+3Zeen1Pxckgcsz43zsjpFY01jjC8leUSS312e62/O6rcSf5DkkGV9ZyQ5ZTlF4Zo8ZrPnJ3nu8noy74+HJ7lk+Rm+S5I/HGNcmuTXkrx1GdtvLvO+NMn9lmkn5Rr+lmqM8e6sftP0zqxeK142xjh/twutlrtwjPHaa7JNDh4dY8ffFgH7k7Z/lOTnl3909+Z6fyTJg8YYj92DZf5TktstR4k2xb56PDjwtH1iko+M1VvsHRDavnGM8X2buP0D7jGDzSCQ4SDU9kFZHQl63Bhjr39gBwAcyAQyAABMnIMMAAATgQwAABOBDAAAE4EMAAATgQwAAJP/H3jAR3HgHrvpAAAAAElFTkSuQmCC\n" + }, + "metadata": {}, + "execution_count": 7 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Examinando los resultados, observamos como efectivamente las palabras arquitect**a** y enfermer**a** se encuentran más inmersas en el núcleo femenino, mientras que sus variantes masculinas, en el núcleo de género masculino. Por otro lado, y lo que nos interesa de este ejemplo, es ver como la palabra *astronauta* se ve sesgada por el núcleo masculino, pero en menor proporcion al de arquitect**o** y enfermer**o**.\n", + "\n", + "Este ejemplo es claro en como las **representaciones de las palabras**, los embeddings (vectores densos), **estan cargados con sesgos** según la tecnica de obtencion de ellos, que en la mayoria de los casos son contruidos con enormes volumenes de datos crudos (*i.e.* sin ningun tipo de filtrado o pre-procesamiento para mitigar los sesgos).\n", + "\n", + "Evaluemos ahora la relacion entre la procedencia de las personas y su madurez economica. Comenzando definiendo los núcleos de interes." + ], + "metadata": { + "id": "MZll0wfJjAjw" + } + }, + { + "cell_type": "code", + "source": [ + "nucleo_rico = ['ahorrar', 'economizar', 'rico', 'negocio', 'beneficios']\n", + "nucleo_pobre = ['malgastar', 'derrochar', 'pobre']" + ], + "metadata": { + "id": "COuj18rtIZT0" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "Seguimos ahora con las palabras a evaluar" + ], + "metadata": { + "id": "IO4x6QT5I3JV" + } + }, + { + "cell_type": "code", + "source": [ + "procedencia = ['alemán', 'australiano', 'argentino', 'boliviano', 'americano', 'nigeriano']\n", + "\n", + "explorador_de_sesgos_2.calculate_bias(procedencia, nucleo_pobre, nucleo_rico)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 729 + }, + "id": "uO9qcBLFJAHn", + "outputId": "b35f82dc-d1a7-43bb-a96d-6f5ae889df9f" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAALICAYAAABiqwZ2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deZhlZ1kv7N9DGkkI0ISkBUSShhAMESWQApmEcAiORwQJRsRIhGM+EImAXIqfHuSgnzKoeERBggcTARXCJKCGIdARg5B0QzoDIeBhkCFAIyEymIDJ8/2xV5k3bXVXddJdu7r7vq+rrlp7jc9ae61Vv3r3u/eu7g4AADBzs3kXAAAAa4mADAAAAwEZAAAGAjIAAAwEZAAAGKybdwH7msMOO6w3btw47zIAAPZ7W7Zs+VJ3b9jV5QTk3Wzjxo3ZvHnzvMsAANjvVdWnbsxyulgAAMBAQAYAgIGADAAAAwEZAAAGAjIAAAwEZAAAGAjIAAAwEJABAGAgIAMAwEBABgCAga+aBubqgo9/ft4lALvRfe96h3mXADeZFmQAABgIyAAAMBCQAQBgICADAMBAQAYAgIGADAAAAwEZAAAGAjIAAAwEZAAAGAjIAAAwEJABAGAgIAMAwEBABgCAgYAMAAADARkAAAYCMgAADARkAAAYCMgAADAQkAEAYCAgAwDAQEAGAICBgAwAAAMBGQAABgIyAAAMBGQAABgIyAAAMBCQAQBgICADAMBAQAYAgIGADAAAAwEZAAAGAjIAAAwEZAAAGAjIAAAwEJABAGAgIAMAwEBABgCAgYAMAAADARkAAAYC8naq6ilVdZt51wEAwHzs1QG5qj5ZVYftxvWdmORO3f1vu2udAADsXfbqgLwHHJTkOfMuAgCA+dlrAnJVvbmqtlTVpVV16hLTf6aqzq+qC6vq5VV1wDT+a1X1omm5d1XV/apqU1V9vKoeOc2zsarem+QZSTZX1QOn8cdP876+qj5SVa+pqlrN/QYAYHXtNQE5yRO7+7gkC0lOq6pDFydU1T2SnJTkQd19bJJrkzx+mnxwknd393cn+WqS307yiCSPTvK8aZ4vJnlEd98nyU8necmw3XsneXqSY5LcNcmDti+sqk6tqs1VtXnbtm27a38BAJiDdfMuYBecVlWPnobvnOSoYdrDkxyX5IKpgfegzEJvknwzydnT8MVJrunub1XVxUk2TuPXJXlxVR2d5FtJjh7WfX53fyZJqurCaZl/HAvr7tOTnJ4kCwsLfZP2EgCAudorAnJVHZ/khCQP6O5vVNWmJAeOsyQ5s7t/bYnFv9Xdi6H1uiTXJEl3X1dVi/v/jCTbuvtJ07irh+WvGYavzV5yzAAAuHH2li4W65NcOYXjo5Pcf7vp5yQ5saq+PUmq6nZVdcQurP+QJIt9I05OcsBNLRgAgL3T3hKQz06yrqouS/L8JO8fJ3b3h5P8RpJ3VNVFSd6Z5I67sP6XJTmlqrZm1r3i67ulagAA9jp1fe8DdoeFhYXevHnzvMuAvcYFH//8vEsAdqP73vUO8y4B/lNVbenuhV1dbm9pQQYAgFUhIAMAwEBABgCAgYAMAAADARkAAAYCMgAADARkAAAYCMgAADAQkAEAYCAgAwDAQEAGAICBgAwAAAMBGQAABgIyAAAMBGQAABgIyAAAMBCQAQBgICADAMBAQAYAgIGADAAAAwEZAAAGAjIAAAwEZAAAGAjIAAAwEJABAGAgIAMAwEBABgCAgYAMAAADARkAAAYCMgAADARkAAAYCMgAADAQkAEAYCAgAwDAQEAGAICBgAwAAAMBGQAABgIyAAAMBGQAABism3cBwP7tvne9w7xLAIAb0IIMAAADARkAAAYCMgAADARkAAAYCMgAADAQkAEAYCAgAwDAQEAGAICBgAwAAAMBGQAABgIyAAAMBGQAABgIyAAAMBCQAQBgICADAMBAQAYAgIGADAAAAwEZAAAGAjIAAAwEZAAAGAjIAAAwWDfvAoD92//9wpXzLgGSJEfe/pB5lwCsEVqQAQBgICADAMBAQAYAgIGADAAAAwEZAAAGAjIAAAwEZAAAGAjIAAAwEJABAGAgIAMAwEBABgCAgYAMAAADARkAAAYCMgAADARkAAAYCMgAADAQkAEAYCAgAwDAQEAGAICBgAwAAAMBGQAABgIyAAAMBGQAABgIyAAAMBCQAQBgICADAMBAQAYAgIGADAAAAwEZAAAGAjIAAAwEZAAAGAjIAAAwEJABAGAgIAMAwEBABgCAgYAMAAADARkAAAYCMgAADARkAAAYCMgAADBYEwG5qjZW1SW7MP+mqlqYhv+uqm67k3m/o6pevzvqBABg37du3gXcVN39I8tM/1ySE1epHAAA9nJrogV5sq6qXlNVl1XV66vqllX18Kr6UFVdXFWvrKpbbL9QVX2yqg6rqudX1VOH8c+tqmeNrdPT8Hur6oPTzwOn8cdPrdKvr6qPTHXUNG3ZGgAA2HespYD8XUle2t33SPJvSZ6Z5IwkJ3X392TW2v2UnSz/2iQ/OTz+yWnc6ItJHtHd90lyUpI/GqbdO8nTkxyT5K5JHlRVB66khqo6tao2V9Xmbdu2rWxvAQBYk9ZSQP50d583Db86ycOTfKK7PzqNOzPJQ3a0cHd/KMm3T32O75Xkyu7+9Haz3TzJK6rq4iRnZRaGF53f3Z/p7uuSXJhkY2ahfdkauvv07l7o7oUNGzbswi4DALDWrKU+yL3d468kOXQX13FWZv2N75D/2nqcJM9I8oUk98rsn4Orh2nXDMPXZm0dGwAAVslaakE+vKoeMA3/dJLNSTZW1d2mcScnOXeZdbw2yU9lFpLPWmL6+iRXTK3EJyc5YJn1XX4jagAAYC+2lgLy5UmeWlWXJTkkyYuT/FySs6YuEdcl+dOdraC7L01y6ySf7e4rlpjlpUmeUFVbkxyd5OvLrO/qXa0BAIC9W3Vv37OBm2JhYaE3b9487zJgr/F/v3DlvEuAJMmRtz9k3iUAu1lVbenuhV1dbi21IAMAwNwJyAAAMBCQAQBgICADAMBAQAYAgIGADAAAAwEZAAAGAjIAAAwEZAAAGAjIAAAwEJABAGAgIAMAwEBABgCAgYAMAAADARkAAAYCMgAADARkAAAYCMgAADAQkAEAYCAgAwDAQEAGAICBgAwAAAMBGQAABgIyAAAMBGQAABgIyAAAMBCQAQBgICADAMBAQAYAgIGADAAAAwEZAAAGAjIAAAwEZAAAGAjIAAAwEJABAGAgIAMAwEBABgCAgYAMAAADARkAAAbr5l0AsH878vaHzLsEALgBLcgAADAQkAEAYCAgAwDAQEAGAICBgAwAAAMBGQAABgIyAAAMBGQAABgIyAAAMBCQAQBgICADAMBAQAYAgIGADAAAAwEZAAAGAjIAAAwEZAAAGAjIAAAwEJABAGAgIAMAwEBABgCAgYAMAACDdfMuANi/fWrbVfMugb3UERvWz7sEYB+lBRkAAAYCMgAADARkAAAYCMgAADAQkAEAYCAgAwDAQEAGAICBgAwAAAMBGQAABgIyAAAMBGQAABgIyAAAMBCQAQBgICADAMBAQAYAgIGADAAAAwEZAAAGAjIAAAwEZAAAGAjIAAAwEJABAGAgIAMAwEBABgCAgYAMAAADARkAAAYCMgAADARkAAAYCMgAADAQkAEAYCAgAwDAQEAGAICBgAwAAAMBGQAABgIyAAAMBGQAABgIyAAAMBCQAQBgICADAMBAQAYAgIGADAAAg/0mIFfVbavqF4bH31FVr59nTQAArD1rOiBX1QG7cXW3TfKfAbm7P9fdJ+7G9QMAsA+Ya0CuqjdX1ZaqurSqTp3Gfa2qfr+qtiZ5QFU9qao+WlXnV9UrquqPp/k2VNUbquqC6edB0/jnVtUrq2pTVX28qk6bNvf8JEdW1YVV9aKq2lhVl0zLnFJVb6yqs6vqY1X1wqHGx1XVxVV1SVW9YFUPEAAAq27dnLf/xO7+clUdlOSCqnpDkoOTfKC7f7mqviPJq5PcJ8lXk7w7ydZp2f+d5MXd/Y9VdXiStye5xzTt6CQPS3LrJJdX1cuSPDvJPbv72CSpqo3b1XJsknsnuWZa5iVJrk3ygiTHJbkyyTuq6lHd/eZxwSncn5okhx9++E0/KgAAzM28A/JpVfXoafjOSY7KLJS+YRp3vyTndveXk6Sqzkpy92naCUmOqarFdd2mqm41Df9td1+T5Jqq+mKS26+glnO6+6ppOx9OckSSQ5Ns6u5t0/jXJHlIkhsE5O4+PcnpSbKwsNAr3HcAANaguQXkqjo+s5D7gO7+RlVtSnJgkqu7+9oVrOJmSe7f3Vdvt95k1gq86NqsbD9vzDIAAOxj5tkHeX2SK6dwfHSS+y8xzwVJHlpVh1TVuiSPGaa9I8nTFh9U1bHLbO+rmXW52BXnT9s/bHrD4OOSnLuL6wAAYC8yz4B8dpJ1VXVZZm+ge//2M3T3Z5P8TmZB9bwkn0xy1TT5tCQLVXXR1CXiyTvbWHf/a5LzpjfbvWglBXb3FZn1XX5PZn2ft3T336xkWQAA9k7Vvba7zFbVrbr7a1ML8puSvLK73zTvunZkYWGhN2/ePO8yYK/xqW1XLT8TLOGIDevnXQKwxlXVlu5e2NXl1vTnIE+eW1UXJrkkySey3RvkAABgd1rzb0Tr7mfNuwYAAPYfe0MLMgAArBoBGQAABgIyAAAMBGQAABgIyAAAMBCQAQBgICADAMBAQAYAgIGADAAAAwEZAAAGAjIAAAwEZAAAGAjIAAAwEJABAGAgIAMAwEBABgCAgYAMAAADARkAAAYCMgAADARkAAAYCMgAADAQkAEAYCAgAwDAQEAGAICBgAwAAAMBGQAABgIyAAAMBGQAABgIyAAAMBCQAQBgICADAMBAQAYAgIGADAAAAwEZAAAGAjIAAAxWFJCr6uCqutk0fPeqemRV3XzPlgYAAKtvpS3I/5DkwKq6U5J3JDk5yRl7qigAAJiXdSucr7r7G1X1pCQv7e4XVtWFe7IwYP9wxIb18y4BAG5gpS3IVVUPSPL4JH87jTtgz5QEAADzs9KA/PQkv5bkTd19aVXdNcl79lxZAAAwHyvqYtHd5yY5d3j88SSn7amiAABgXnYakKvqrUl6R9O7+5G7vSIAAJij5VqQf2/6/RNJ7pDk1dPjxyX5wp4qCgAA5mWnAXnqWpGq+v3uXhgmvbWqNu/RygAAYA5W+ia9g6c35iVJquouSQ7eMyUBAMD8rPRzkJ+eZFNVfTxJJTkiyal7rCoAAJiTZQPy9BXT65McleToafRHuvuaPVkYAADMw7JdLLr7uiS/0t3XdPfW6Uc4BgBgn7TSPsjvqqpnVdWdq+p2iz97tDIAAJiDlfZBPmn6/dRhXCe56xLzAgDAXmul36R3lz1dCAAArAUrCshVdfMkT0nykGnUpiQv7+5v7aG6AABgLlbaxeJlSW6e5KXT45Oncf9jTxQFAADzstKAfN/uvtfw+N1VtXVPFAQAAPO00k+xuLaqjlx8MH2r3rV7piQAAJifnbYgV9XTk7wvybMzazX+xDRpY5In7tnSAABg9S3XxeI7k/xhknsk+ViSLyd5T5I3dPfn9nBtAACw6nYakLv7WUlSVd+WZCHJA5Mcn+TXquor3X3MHq8QAABW0UrfpHdQktskWT/9fC7JxXuqKAAAmJfl+iCfnuS7k3w1yQcy64/8B9195SrUBuwHPrXtqnmXwF7qiA3r510CsI9a7lMsDk9yiySfT/LZJJ9J8pU9XRQAAMzLcn2Qf6iqKrNW5Acm+eUk96yqLyf5p+7+zVWoEQAAVs2yfZC7u5NcUlVfSXLV9PPfk9wviYAMAMA+Zbk+yKdl1nL8wCTfyqwP8vuSvDLepAcAwD5ouRbkjUnOSvKM7r5iz5cDAADztVwf5GeuViEAALAWLPcpFgAAsF8RkAEAYCAgAwDAQEAGAICBgAwAAAMBGQAABgIyAAAMBGQAABgIyAAAMBCQAQBgICADAMBAQAYAgIGADAAAAwEZAAAGAjIAAAwEZAAAGAjIAAAwEJABAGAgIAMAwEBABgCAgYAMAAADARkAAAYCMgAADARkAAAYCMgAADAQkAEAYCAgAwDAQEAGAICBgAwAAAMBGQAABgIyAAAMBGQAABgIyAAAMBCQAQBgICADAMBgTQfkqjq2qn7kRiy3saoumYYXquqPdn91AADsi9bNu4BlHJtkIcnfbT+hqtZ1938st4Lu3pxk8x6oDQCAfdAebUGuqjdX1ZaqurSqTp3GfW2YfmJVnTENP7aqLqmqrVX1D1X1bUmel+Skqrqwqk6qqudW1auq6rwkr5pait9bVR+cfh64RA3HV9XbpuH7VdU/VdWHqup9VfVd0/hTquqNVXV2VX2sql44LP+4qrp4qu0Fe/J4AQAwf3u6BfmJ3f3lqjooyQVV9YadzPucJD/Y3Z+tqtt29zer6jlJFrr7F5Okqp6b5JgkD+7uf6+qWyZ5RHdfXVVHJfmrzFqcd+QjSb6/u/+jqk5I8jtJHjNNOzbJvZNck+TyqnpJkmuTvCDJcUmuTPKOqnpUd795XOkU/k9NksMPP3ylxwYAgDVoTwfk06rq0dPwnZMctZN5z0tyRlW9LskbdzLfW7r736fhmyf546o6NrMwe/dl6lmf5MwpTPe0/KJzuvuqJKmqDyc5IsmhSTZ197Zp/GuSPCTJDQJyd5+e5PQkWVhY6GVqAABgDdtjAbmqjk9yQpIHdPc3qmpTkgMzC6aLDlwc6O4nV9X3JfnRJFuq6rgdrPrrw/Azknwhyb0y6y5y9TJl/VaS93T3o6tqY5JNw7RrhuFrs/b7ZwMAsAfsyT7I65NcOYXjo5Pcfxr/haq6R1XdLMli63Kq6sju/kB3PyfJtsxanL+a5NbLbOOK7r4uyclJDlhBTZ+dhk9ZwT6cn+ShVXVYVR2Q5HFJzl3BcgAA7KX2ZEA+O8m6qrosyfOTvH8a/+wkb0vyviRXDPO/aPHNcNO0rUnek+SYxTfpLbGNlyZ5QlVtTXJ0bti6vJQXJvndqvpQVtBC3N1XTPW+Z6pnS3f/zXLLAQCw96puXWZ3p4WFhd682afKwUp9attV8y6BvdQRG9bPuwRgjauqLd29sw9wWNKa/qIQAABYbQIyAAAMBGQAABgIyAAAMBCQAQBgICADAMBAQAYAgIGADAAAAwEZAAAGAjIAAAwEZAAAGAjIAAAwEJABAGAgIAMAwEBABgCAgYAMAAADARkAAAYCMgAADARkAAAYCMgAADAQkAEAYCAgAwDAQEAGAICBgAwAAAMBGQAABgIyAAAMBGQAABgIyAAAMBCQAQBgICADAMBAQAYAgIGADAAAAwEZAAAGAjIAAAwEZAAAGAjIAAAwEJABAGAgIAMAwGDdvAsA9m9HbFg/7xIA4Aa0IAMAwEBABgCAgYAMAAADARkAAAYCMgAADARkAAAYCMgAADAQkAEAYCAgAwDAQEAGAICBgAwAAAMBGQAABgIyAAAMBGQAABgIyAAAMBCQAQBgICADAMBAQAYAgIGADAAAAwEZAAAGAjIAAAzWzbsAYP/26S9dNe8SWAV3Pmz9vEsAWDEtyAAAMBCQAQBgICADAMBAQAYAgIGADAAAAwEZAAAGAjIAAAwEZAAAGAjIAAAwEJABAGAgIAMAwEBABgCAgYAMAAADARkAAAYCMgAADARkAAAYCMgAADAQkAEAYCAgAwDAQEAGAICBgAwAAAMBGQAABgIyAAAMBGQAABgIyAAAMBCQAQBgICADAMBAQAYAgIGADAAAAwEZAAAGAjIAAAwEZAAAGAjIAAAwEJABAGAgIAMAwEBABgCAgYAMAAADARkAAAYCMgAADARkAAAYCMgAADDYpwJyVb1v3jUAALB32ycCclWtS5LufuC8awEAYO+2agG5qt5cVVuq6tKqOnUa97WqetE07l1Vdb+q2lRVH6+qR07zHDDNc0FVXVRV/880/viqem9VvSXJhxfXN2zvV6vq4qraWlXPn8b9/LSerVX1hqq65TT+jKr6o6p637TtE6fxNW37kmldJ63W8QIAYD5WswX5id19XJKFJKdV1aFJDk7y7u7+7iRfTfLbSR6R5NFJnjct96QkV3X3fZPcN8nPV9Vdpmn3SfJL3X33cUNV9cNJfjzJ93X3vZK8cJr0xu6+7zTusmndi+6Y5MFJ/nuS50/jfiLJsUnuleSEJC+qqjtuv2NVdWpVba6qzdu2bbsxxwYAgDViNQPyaVW1Ncn7k9w5yVFJvpnk7Gn6xUnO7e5vTcMbp/E/kORnq+rCJB9Icui0bJKc392fWGJbJyT58+7+RpJ095en8fecWp0vTvL4JN89LPPm7r6uuz+c5PbTuAcn+avuvra7v5Dk3MxC+g109+ndvdDdCxs2bNiFQwIAwFqzbjU2UlXHZxZaH9Dd36iqTUkOTPKt7u5ptuuSXJMk3X3dYr/iJJXkad399iXW+fVdLOWMJI/q7q1VdUqS44dp14yr38X1AgCwj1itFuT1Sa6cwvHRSe6/C8u+PclTqurmSVJVd6+qg5dZ5p1Jfm7oY3y7afytk1wxrevxK9j2e5OcNPWD3pDkIUnO34XaAQDYy6xKC3Jm3SieXFWXJbk8s24WK/VnmXW3+GBVVZJtSR61swW6++yqOjbJ5qr6ZpK/S/L/JvmfmXXT2Db9vvUy235Tkgck2Zqkk/xKd39+F2oHAGAvU9f3cGB3WFhY6M2bN8+7DNhrfPpLV827BFbBnQ9bP+8SgP1QVW3p7oVdXW6f+BxkAADYXQRkAAAYCMgAADAQkAEAYCAgAwDAQEAGAICBgAwAAAMBGQAABgIyAAAMBGQAABgIyAAAMBCQAQBgICADAMBAQAYAgIGADAAAAwEZAAAGAjIAAAwEZAAAGAjIAAAwEJABAGAgIAMAwEBABgCAgYAMAAADARkAAAYCMgAADARkAAAYCMgAADAQkAEAYCAgAwDAQEAGAICBgAwAAAMBGQAABgIyAAAMBGQAABgIyAAAMBCQAQBgICADAMBAQAYAgMG6eRcA7N/ufNj6eZcAADegBRkAAAYCMgAADARkAAAYCMgAADAQkAEAYCAgAwDAQEAGAICBgAwAAAMBGQAABgIyAAAMBGQAABgIyAAAMBCQAQBgICADAMBAQAYAgIGADAAAAwEZAAAGAjIAAAwEZAAAGAjIAAAwEJABAGAgIAMAwGDdvAsAZq7+ypfmXcJcHHjbw+ZdAgDcgBZkAAAYCMgAADAQkAEAYCAgAwDAQEAGAICBgAwAAAMBGQAABgIyAAAMBGQAABgIyAAAMBCQAQBgICADAMBAQAYAgIGADAAAAwEZAAAGAjIAAAwEZAAAGAjIAAAwEJABAGAgIAMAwEBABgCAgYAMAAADARkAAAYCMgAADARkAAAYCMgAADAQkAEAYCAgAwDAQEAGAICBgAwAAAMBGQAABgIyAAAMBGQAABgIyAAAMBCQAQBgICADAMBAQAYAgIGADAAAAwEZAAAGAjIAAAzWZECuqudV1Qm7aV3fUVWv3x3rAgBg37du3gUspbufszvWU1XruvtzSU7cHesDAGDfN9cW5KraWFWXVdUrqurSqnpHVR1UVWdU1YnTPD9SVR+pqi1V9UdV9bZp/MFV9cqqOr+qPlRVPz6NP6Wq3lJV705yzrSNS4btvbeqPjj9PHAaf3xVbaqq10/bek1V1TTt4dP6L562d4u5HCwAAFbFWuhicVSSP+nu707ylSSPWZxQVQcmeXmSH+7u45JsGJb79STv7u77JXlYkhdV1cHTtPskObG7H7rdtr6Y5BHdfZ8kJyX5o2HavZM8PckxSe6a5EHT9s9IclJ3f09mLe5P2X4HqurUqtpcVZu3bdt2Y44BAABrxFoIyJ/o7gun4S1JNg7Tjk7y8e7+xPT4r4ZpP5Dk2VV1YZJNSQ5Mcvg07Z3d/eUltnXzJK+oqouTnJVZGF50fnd/pruvS3LhVMd3TfV9dJrnzCQP2X6l3X16dy9098KGDRu2nwwAwF5kLfRBvmYYvjbJQStcrpI8prsvv8HIqu9L8vUdLPOMJF9Icq/M/jm4eid1rIVjAwDAKlsLLcg7c3mSu1bVxunxScO0tyd52tBX+N4rWN/6JFdMrcQnJzlgBdvfWFV3mx6fnOTclZUOAMDeaE0H5O7+9yS/kOTsqtqS5KtJrpom/1ZmXSYuqqpLp8fLeWmSJ1TV1sy6b+yopXlx+1cn+bkkZ03dMq5L8qc3Zl8AANg7VHfPu4adqqpbdffXppbiP0nyse5+8bzr2pGFhYXevHnzvMtgL3T1V7407xLm4sDbHjbvEgDYR1XVlu5e2NXl1nQL8uTnpzfiXZpZF4mXz7keAAD2YWv+jWhTa/GabTEGAGDfsje0IAMAwKoRkAEAYCAgAwDAQEAGAICBgAwAAAMBGQAABgIyAAAMBGQAABgIyAAAMBCQAQBgICADAMBAQAYAgIGADAAAAwEZAAAGAjIAAAwEZAAAGAjIAAAwEJABAGAgIAMAwEBABgCAgYAMAAADARkAAAYCMgAADARkAAAYCMgAADAQkAEAYCAgAwDAQEAGAICBgAwAAAMBGQAABgIyAAAMBGQAABgIyAAAMBCQAQBgICADAMBAQAYAgIGADAAAg3XzLgCYOfC2h827BAAgWpABAOAGBGQAABgIyAAAMBCQAQBgICADAMBAQAYAgIGADAAAAwEZAAAGAjIAAAwEZAAAGFR3z7uGfUpVfTXJ5fOuA/YihyX50ryLgL2E6wV2zXd19613daF1e6KS/dzl3b0w7yJgb1FVm10zsDKuF9g1VbX5xiyniwUAAAwEZAAAGAjIu9/p8y4A9jKuGVg51wvsmht1zXiTHgAADLQgAwDAQEAGAICBgHwTVdXtquqdVfWx6fchO5jv7Kr6SlW9bbVrhLWgqn6oqi6vqn+uqmcvMf0WVfXaafoHqmrj6lcJa8MKrpeHVNUHq+o/qurEedQIa8UKrpdnVtWHq+qiqjqnqo5Ybp0C8k337CTndPdRSc6ZHi/lRUlOXrWqYA2pqgOS/EmSH05yTJLHVdUx2832pCRXdvfdkrw4yQtWt0pYG6jomX0AAA6uSURBVFZ4vfxLklOS/OXqVgdrywqvlw8lWeju703y+iQvXG69AvJN9+NJzpyGz0zyqKVm6u5zknx1tYqCNeZ+Sf65uz/e3d9M8teZXTuj8Vp6fZKHV1WtYo2wVix7vXT3J7v7oiTXzaNAWENWcr28p7u/MT18f5LvXG6lAvJNd/vuvmIa/nyS28+zGFij7pTk08Pjz0zjlpynu/8jyVVJDl2V6mBtWcn1Aszs6vXypCR/v9xKfdX0ClTVu5LcYYlJvz4+6O6uKp+bBwCwxlTVzyRZSPLQ5eYVkFegu0/Y0bSq+kJV3bG7r6iqOyb54iqWBnuLzya58/D4O6dxS83zmapal2R9kn9dnfJgTVnJ9QLMrOh6qaoTMmvYfGh3X7PcSnWxuOnekuQJ0/ATkvzNHGuBteqCJEdV1V2q6tuS/FRm185ovJZOTPLu9k1G7J9Wcr0AM8teL1V17yQvT/LI7l5RQ6aAfNM9P8kjqupjSU6YHqeqFqrqzxZnqqr3JjkrszcefaaqfnAu1cIcTH2KfzHJ25NcluR13X1pVT2vqh45zfZ/khxaVf+c5JnZ8SfCwD5tJddLVd23qj6T5LFJXl5Vl86vYpifFf59eVGSWyU5q6ourKpl/+H0VdMAADDQggwAAAMBGQAABgIyAAAMBGQAABgIyAAAMBCQ2e9U1aaqWtiN69tYVT+9u9a3xPqPr6q37an172CbX1vN7e1MVX2yqg6bdx37g919bewPqup9q7y9R1bVPvERiDdlX6rqlKr6491d03bbuEVVvWv6WLCTqurPquqYncy/zzw3+CY92B02JvnpJH+50gWqat302Y273fbr3pPbWsn299VtckM39ryrqsrsI0ev26MF7iHd/cCbuo6qOqC7r13BfOu6+y3ZR740ZC/Yl3snSXcfOz1+7c5m3gv2h12gBZk1oapuVlU/tsJ5z6iql1XV+6vq41ML6yur6rKqOmOY72VVtbmqLq2q/7WDdT2pqj5aVedX1SsWWySq6seq6gNV9aGpBeH20/iHTq0JF07Tbp3Zl8N8/zTuGVOL8nur6oPTzwOnZY+fxr8lyYeX2ccfqqqPVNUHk/zEMP7gaV/Pn7b/49P4U6rqLVX17iTnLPH4dlX15qq6aDpu3zstd6uq+vOqunia9phhW/9fVW2d5l/c/x0dl+dW1auq6rwkr9rJfm2c9us10/P1+qq65TTt4dN6L5728RbDor8yjT+/qu42nAd/WlUfSPLCqjqyqs6uqi3TcT56Z8d4f1ZVz6mqC6rqkqo6fQqpix47HeePVtX3T/MfOJwnH6qqh03jlzvvblVV50zXwcXD+bqxqi6vqr9Icklu+DWx29e65PNaVbevqjdN5+jW4Tp75rRfl1TV04ftXTZd45dW1Tuq6qBp2rHTOX7RtL5DpvGbqurFNbuHXFazL+Z4Y1V9rKp+e6jva9Pv59X194bPVtWfT+PfPNV+aVWdOi5XVb9fVVuTPGAn+7/9ef6fLae7cgyWOR8+WVX/a3ieFo/xju43t6yq11XVh6ftf6CmVx6q6nHTOi6pqhcM2/ihaf1bq+qc4fxZ3JeNVfXu6Xk4p6oOX67uJHeenqePVdVvDtv6manmC6vq5VV1wHDMl7qvbaiqN9Tsmrigqh5UVd+e5NVJ7jut58gaXmG5sftTVY+djs3WqvqHFexjqurBVXXoSuZlN+puP37m+pPZP2pnJnnBCuc/I8lfJ6kkP57k35J8z7SeLUmOnea73fT7gCSbknzv9HhTkoUk35Hkk0lul+TmSd6b5I+neQ7J9V+k8z+S/P40/NYkD5qGb5XZqzDHJ3nbUN8tkxw4DR+VZPM0fHySrye5yzL7d2CST0/LVpLXLa4/ye8k+Zlp+LZJPprk4CSnJPnMsM/bP35Jkt+chv9bkgun4Rck+cNh24dMvzvJj03DL0zyG8scl+dOx/6gZfZt47TuxWP4yiTPGvb57tP4v0jy9Gn4k0l+fRr+2eFYnJHkbUkOmB6fk+Soafj7Mvuq6rmf32vxZ/G8mIZfNTzXm4bn9EeSvGsa/uUkr5yGj07yL9Nzttx5ty7Jbabhw5L883ROb0xyXZL7r6DWJZ/XzFrzFs+RA5KsT3Jckouna+JWSS7NrBVwY5L/yPX3htfl+uvooiQPnYaft3g9TMfiBdPwLyX5XJI7JrnFtI+HTtO+tl29t51qOG481kkOyuyfgcXlOslPrmD/tz/PT8n196kVH4NltvHJJE+bhn8hyZ9Nwzu63zwrycun8fecju3iPfVfkmyYnvt3J3nU9PjTme59250vi/vy1iRPmIafmOTNy9R8SpIrkhw6HNuFJPeY1nXzab6XJvnZ4ZgvdV/7yyQPnoYPT3LZNHx8bnhv3zRt40bvz/Tc3GnxmK7wev2xJOcvnjt+VudHFwvWgicnOTnJh6vqR7eb9rHufvQSy7y1u7uqLk7yhe6+OElq9nWrG5NcmOQnpxabdZn9YTsmsz+Gi+6X5Nzu/vK07FlJ7j5N+84kr62qOyb5tiSfmMafl+QPquo1Sd7Y3Z+pGzS+JZmF7T+uqmOTXDusM0nO7+5PbL/Ado5O8onu/thU16uTLLY8/UCSR1bVs6bHB2Z2Q0+Sdy7uyxKPH5zkMUnS3e+uqkOr6jaZfT36Ty0u0N1XToPfzOyPcjILvo9Y5rgkyVu6+9+X2bck+XR3nzcNvzrJaUneOe3zR6fxZyZ5apI/nB7/1fD7xcO6zurua6vqVkkemNnXiC5OG1uguaGHVdWvZPbP3O0yC1Fvnaa9cfq9JbNrKZmdPy9Jku7+SFV9Ktef1zs77yrJ71TVQzILxHdKcvtp2qe6+/07K3KZ5/W/ZfYPU3rWPeGqqnpwkjd199en5d+Y5Psze9n7E9194bhvVbU+s5By7jT+zCRnDSUsvlx+cZJLu/uKab0fz6zV+1+3q7cyO6f/oLu3TKNPq6rFe9idM/vH918zuze8YWf7Pzirl+6CsSvH4EPLbGN83hdftdrR/ebBSf73tN1LqmrxvnrfJJu6e9u07dckeci0r/+weO/b7nxZ9IBhu6/KLMAu553d/a/Dfj44s7B+XJILpnPmoCRfnObf0X3thCTHDOfYbaZzb0fufxP257wkZ1TV63L9Mf9PVfWrmf093N7hSV6W5Cd3Uhe7kYDMWvAXmV30f97dZ65wmWum39cNw4uP11XVXTJr5bhvd19Zs64XB+5CTS/J7I/cW6rq+MxaSNPdz6+qv82sde28qvrBJZZ9RpIvJLlXZq3aVw/Tvr4LNSylkjymuy+/wciq71ti3TdlW9/q7sXvob82198rljwuu7i97b/ffiXfd987GF7c5s2SfKWv7yvIDlTVgZm1qi1096er6rm54bWxeD2Nz/vO7Oy8e3xmrW3Hdfe3quqTw7ZWcr7szud1vE9cm1lwWukyS95nlpj/uUk+092L3SuOzyx8PaC7v1FVm3L9/l+9g9C7lJt631iJpZ73Hd1vVqGcFVnqXlJJzuzuX1ti/h3d126W2asZ4716j+xndz95ul//aJItVXXcYsifpr8gs1f2xjrulVnI/p+7vSB2SB9k5q67v5bZzWLDblztbTL7o3LV1M/sh5eY54IkD62qQ6pqXaYW1sn6JJ+dhp+wOLKqjuzui6eb2AWZtfZ+Ncmtt1v2ip696ejkzF76XNLUN+1O243+SGatW0dOjx83THt7kqdNLVWpqnvvaN3beW9mYWXxj/aXuvvfMmu5fepQzyHLrGfJ47K9qrrTYr+8JRxeVYt9Ln86yT8muTyzfb7bNP7kJOcOy5w0/P6n7Vc47csnquqx0/Zr+qPCf7UY0L40tZKduIJlxvPn7pm1Zl2+0yVm1if54hSOH5bkiB3NWFV/UVX3G8ct87yek+Qp0/gDptbg9yZ5VM36yB6c5NHTuCV191VJrqypr3X+63m3YjV7D8UJmb0ismh9kiuncHx0Zi2PO1r+d4eW5pXapWOwg/vNzuzofnNeppbMmn2qw/dM48/P7J56WM36/T4us+P5/iQPmRouUlW3W2Jb78v1r2Y9fqj50VX1uzuo7xE1e3/FQZl15ThvOiYn1qwPcabpOzzvJu9I8rTFB9OrfztzU/bnyO7+QHc/J8m27KT//eAeSU7c/h8V9iwBmTWhu7/e3b+3G9e3NbOXFD+SWf+y85aY57OZ9bE7f5r+ySRXTZOfm9nLuluSfGlY7Ok1e4PFRUm+leTvM+u2cW3N3nTxjMxa555QszffHJ0dtP5U1c2S3C3JDV6em1oxTk3ytzV7k94Xh8m/lVkXjotq1p3kt1ZyPKb9OW6q+/m5Ptz+dpJDpn3amuRhK1jPUsdle3fM7KXOpVye5KlVdVlmfZpfNu3zz03rvjizFro/HZY5ZKr9lzJroV/K45M8adqPSzPrn852uvsrSV6RWZ/Nt2f2j95yXprkZtNz89okp3T3NcsskySvSbIwLfezmV2PO/K9mfXz3d6OntdfyqyryMWZvVx+THd/MLM+u+cn+UBmfWmX61rwhCQvms6vYzPrh3xjPDOzLiSLbw57XpKzM3tF67LMrruddSn5niSf38VtrvgY7Oh+s4wd3W9emmRDVX04s3vIpUmumrqgPDvJe5JsTbKlu/9m6nJxapI3Ts/jUp8G8bQkPzc9DydP+5YkR2b2PpOlnJ9ZN5WLkryhuzd394eT/EaSd0zremdm96OdOS2z8/SiaZ+evLOZb+L+vKimNzFmFqK3LlNbuvuvh+5nrJLFN9vAfqmqbtXdX5takN+U2RuR3rRK275nkid29zNXY3urqap+Mcm/9Oxjj8bxGzN708s951EXa1PN+sP/n+5+7LxrmZeqent3L9Vla3etf7fdb6bW4Zt399XTK13vSvJd3f3Nm7ruJbb16iTPWOzXDKtFQGa/VlW/l9nLogdm9jLbL7WLYo8RkGHvV7OPt3xPZq3LleRXu/vv51sV7F4CMgAADPRBBgCAgYAMAAADARkAAAYCMgAADARkAAAY/P9BVZiFiNuClAAAAABJRU5ErkJggg==\n" + }, + "metadata": {}, + "execution_count": 9 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "De esta forma observamos como efectivamente a traves de los embeddings, los nigerianos cargan con un mayor núcleo de pobreza, mientras que los demás paises a comparación un núcleo de riqueza en el cual los alemanes van a la cabeza por los ejemplos dados." + ], + "metadata": { + "id": "BzDbUp3aLjsJ" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Explorando nuevas palabras\n" + ], + "metadata": { + "id": "Q5hPC4bTMacS" + } + }, + { + "cell_type": "markdown", + "source": [ + "Las palabras utilizadas en los ejemplos anteriores pueden sentirse arbitrarias, sin embargo evidencian sesgos latentes. Existen muchas otras palabras, como por ejemplo de profesiones, que se encuentran mas cercanas a un núcleo que otro, cuando no seberia de ser así, para ello contamos con la posibilidad de explorar estas palabras en un plano para conocer que tan cercanas estan entre ellas e incluso conocer vecinos que podemos utilizar para profundizar la evaluacion de sesgos (podriamos denominar esto un tipo de *feedback*).\n", + "\n", + "Examinemos primero las palabras de profesiones en el plano, para conocer sus distancias. De encontrarse relativamente cercas entre sí significaria que contienen un significado similar; no en el sentido de ser intercambiables, sino en el sentido de verse inmersas en contextos similares." + ], + "metadata": { + "id": "vuTOCNGgCu7K" + } + }, + { + "cell_type": "code", + "source": [ + "explorador_de_palabras.plot_projections_2d(profesiones, figsize=(10, 10))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 729 + }, + "id": "nT_hNxw_QF5y", + "outputId": "e27a4db8-914d-4450-a95a-ce12ae4e5a0d" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsUAAALICAYAAACXVY3GAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdebhWZaH//88CgQ2KgoADIm4nUBFHAjUR5KiYhXM55pDn6y+/+rXBY44nPSY4dTp1rlIbDAqnLKej5SwOWQ6YmFM5AJmWJjgEakx7/f5A9nG7QUGBTd6v13XtC/a91vPc9/MQV28X915PVdd1AACgZO3aegEAANDWRDEAAMUTxQAAFE8UAwBQPFEMAEDxVmrrBawoevbsWTc2Nrb1MgAAWEYefvjhaXVd91rYMVH8jsbGxkycOLGtlwEAwDJSVdWfFnXM9gkAAIonigEAKJ4oBgCgePYUAwAsB3PmzMkLL7yQf/zjH229lI+9hoaG9OnTJx06dFjsx4hiAIDl4IUXXkjXrl3T2NiYqqraejkfW3VdZ/r06XnhhRey/vrrL/bjbJ8AAFgO/vGPf6RHjx6CeBmrqio9evRY4ivyohgAYDkRxMvHh3mfRTEAAMUTxQAAFE8UAwB8TIwbNy7HHXfcIo8fccQR+cUvftFqfOLEiTn++OOX5dJWeO4+AQDwT2revHlp3779R36eQYMGZdCgQUthRf+8XCleAV144YXZZJNN0qlTp1RVlalTp7b1kgCApeyCCy7If//3fydJvvKVr2TEiBFJkjvvvDOHHHJIrrjiigwcODCbb755TjrppObHrbLKKjnhhBOy5ZZb5re//W3Gjh2bfv36ZfDgwbnvvvs+cN7bb789gwYNSr9+/XLjjTcmSe6666585jOfSZI8+OCD2X777bP11ltnhx12yB//+MckyRNPPJHBgwdnq622yhZbbJFnnnlmoc//5ptv5tOf/nS23HLLbL755vnZz36WJGlsbMzXvva1DBw4MIMHD86zzz6bJLnhhhsyZMiQbL311tlll13y8ssvJ0lmzpyZI488MgMHDswWW2yRq6++Okly6623Zvvtt88222yTz372s5k5c+aSvfGLIIpXMBMmTMixxx6bTTbZJBdffHHGjx+fXr16tfWyAIClbOjQobn33nuTzN++MHPmzMyZMyf33ntv+vXrl5NOOil33nlnJk2alIceeijXXXddkvnROWTIkDz66KPZcMMNc8YZZ+S+++7Lr3/96zz55JMfOO/UqVPz4IMP5pe//GW++MUvtrp12SabbJJ77703jzzySM4666yceuqpSZKLL744X/rSlzJp0qRMnDgxffr0Wejz33zzzendu3ceffTRPP7449l9992bj6222mp57LHHctxxx+XLX/5ykmTHHXfM/fffn0ceeSQHHnhgzj///CTJN77xjebzf//732fEiBGZNm1azj777Nx+++353e9+l0GDBuVb3/rWEr7zC2f7xArmtttuS5L8+Mc/zuqrr97GqwEAlpVtt902Dz/8cP7+97+nU6dO2WabbTJx4sTce++9GTVqVIYPH958YeyQQw7JPffck7333jvt27fPfvvtlyR54IEHWpx3wAEH5Omnn37feT/3uc+lXbt22XjjjbPBBhvkD3/4Q4vjb7zxRg4//PA888wzqaoqc+bMSZJsv/32GT16dF544YXsu+++2XjjjRf6/AMHDswJJ5yQk046KZ/5zGcydOjQ5mMHHXRQ869f+cpXksz/UJMDDjggf/3rXzN79uzmD9y4/fbbc+WVVzY/tnv37rnxxhvz5JNP5pOf/GSSZPbs2dl+++0X493+YK4Ur2BeeumlJFnqQTxnzpwV6mMlZ8yY0dZLAIA21aFDh6y//voZN25cdthhhwwdOjQTJkzIs88+m8bGxkU+rqGh4SPtI37vPXzf+/2///u/Z+edd87jjz+eG264obkfDj744PzP//xPOnfunD322CN33nnnQp+/X79++d3vfpeBAwfm9NNPz1lnnbXQuRb8/v/9v/+X4447Lo899li+//3vv2+v1HWdXXfdNZMmTcqkSZPy5JNP5pJLLlmyN2ARRPGHNGvWrIwZMyYDBgxIQ0NDunXrllGjRuWRRx5pcd5dd92Vqqoybty4jB07NgMGDEinTp2y3nrrNf/zQDL/nzKqqsrYsWOTzP8fSlVVGT58ePM5f/3rX3PMMcekb9++6dixY3r37p2jjz46f/vb31rMeeaZZ6aqqjzxxBP56le/mj59+qShoSH3339/xo0bl6qqcscdd+Sss87Keuutl86dO2fIkCG5//77kyR33313dtxxx6y88spZe+21841vfGOh78HEiROzzz77pGfPnunUqVP69++f0aNHZ+7cuS3OGz58eBobGzN58uTsv//+WX311bPqqqs2H//973+fffbZJz169EhDQ0M222yznH/++Zk3b96S/8EAwD+RoUOH5pvf/GZ22mmnDB06NBdffHG23nrrDB48OHfffXemTZuWefPm5YorrsiwYcNaPX7IkCG5++67M3369MyZMyc///nPP3DOn//852lqaspzzz2XyZMnp3///i2Ov/HGG1lnnXWSzL+bxQKTJ0/OBhtskOOPPz577bVXfv/73y/0+f/yl7+kS5cuOfTQQ3PiiSfmd7/7XfOxBfuLf/aznzVf4X33fD/5yU+az911113zve99r/n71157Ldttt13uu+++5v3Ib7755gdeGV9ctk98CHPmzMnuu++e3/zmN/n85z+f4447Lm+88UZ++MMf5pOf/GTuueeeVj/BefHFF+fll1/OUUcdlW7duuXSSy/NSSedlD59+uTggw9Or169Mn78+PzgBz/Ivffem/HjxydJ1lxzzSTJ888/n+233z6zZ8/OUUcdlQ033DDPPvtsLrrookyYMCETJ07Maqut1mLOQw45JJ07d84JJ5yQqqqy9tprN//Q3sknn5x58+blS1/6UmbPnp3//M//zG677Zaf/vSnOeqoo3L00UfnkEMOyVVXXZWvf/3rWX/99XPooYc2P/cvf/nL7Lvvvtloo41ywgknZPXVV89vf/vbfP3rX8+kSZNa/aWcOXNmhg0blk9+8pMZPXp0c8hPnDgxw4YNS4cOHXLsscdmrbXWyg033JCTTjopjz76aC677LKl+mcHACuSoUOHZvTo0dl+++2z8sorp6GhIUOHDs3aa6+dc889NzvvvHPqus6nP/3p7LXXXq0ev/baa+fMM8/M9ttvn27dumWrrbb6wDn79u2bwYMH5+9//3suvvjiNDQ0tDj+ta99LYcffnjOPvvsfPrTn24ev+qqqzJ+/Ph06NAha621VvNe4/d67LHHcuKJJ6Zdu3bp0KFDLrroouZjr732WrbYYot06tQpV1xxRZL5F/M++9nPpnv37hkxYkSmTJmSJDn99NNz7LHHZvPNN0/79u1zxhlnZN999824ceNy0EEHZdasWUmSs88+O/369fvA1/2B6rr2VdfZdttt68X1rW99q05S33zzzS3G33jjjXrdddethw0b1jw2YcKEOkm99tpr16+//nrz+Jtvvln37Nmz3m677Vo8x+GHH17P/2Npac8996x79epV//nPf24x/tBDD9Xt27evzzjjjOaxM844o05SDxs2rJ4zZ06L88eOHVsnqbfeeut61qxZzePXX399naReaaWV6oceeqh5fNasWfVaa63VYp1vv/12veaaa9ZDhw5t9fwL3psJEyY0jw0bNqxOUp922mmtXtcOO+xQt2/fvn700Uebx5qamurPfvazdZL69ttvb/UYAPhn9OSTT7b1EtrUeuutV7/yyivLbb6Fvd9JJtaLaEHbJz6ESy+9NJtsskm23XbbTJs2rflr9uzZ2XXXXfPrX/86b7/9dovHHHnkkS2u5Hbp0iXbbbfdIm9n8m5vvPFGbrzxxuy5555paGhoMWdjY2M22mij3Hrrra0e9+UvfzkrrbTwfww45phj0rFjx+bvF2yCHzJkSIur3B07dszgwYNbrPO2227Lyy+/nCOPPDKvv/56i/XsscceSbLQ9fzbv/1bi+//9re/5Te/+U323HPPbLHFFs3jVVXltNNOS5Jce+21H/j+AAB8VLZPfAhPPfVU3n777fe9Vdq0adOy7rrrNn+/wQYbtDqnR48emT59+gfO98c//jFNTU255JJLFrmZfGHP/37/lPDe87t3754kzT/x+d5j717nU089lST5whe+sMjnX3CPwQV69eqVbt26tRhb8M8jAwYMaPX4TTfdNO3atcvkyZMXOQcAsHCjR49utZXxs5/9bPNFp6Vh+vTp+Zd/+ZdW43fccUd69OjRanxF/9wFUfwh1HWdgQMHvu998d4bzB/lp0TnX+1PDj300Bx++OELPadz586txrp06bLI51zUehZnnQvWc8EFFyxy71Lv3r0Xey0AwNJ12mmnLdUAXpgePXpk0qRJy3SO5UkUfwgbb7xxXnnllYwYMSLt2i37HSgbbbRRqqrK7Nmzs8suuyzz+T7IgvsSrrzyyh9pPQuuSj/xxBOtjv3hD39IU1PTQq+AAwAsbfYUfwiHHXZYXnrppUVeKX7v1oGPqkePHtljjz1yzTXXNN827d3qus4rr7yyVOd8PyNHjswaa6yRc889N6+++mqr42+//fZi3Yd4jTXWyA477JAbbrghjz/+ePN4Xdc555xzkiT77LPP0ls4AMAiuFL8IXzpS1/KbbfdlhNPPDF33nlnRowYkVVXXTXPP/987rjjjjQ0NGTChAlLdc6LLrooO+64Y3baaaccdthh2XrrrdPU1JTJkyfn+uuvz2GHHZYzzzxzqc65KCuvvHJ++tOfZu+9907//v3zhS98IRtttFFef/31/OEPf8g111yTa6+9tsU9lhflO9/5ToYNG5ahQ4c235LtxhtvzC233JKDDz54oXuVAACWNlH8IXTo0CG//OUvc+GFF2b8+PE544wzkszfRzt48OBF7vv9KNZdd908/PDDOe+883L99dfn0ksvTUNDQ9Zdd92MGjUqn/vc55b6nO9n5MiReeihh3Luuefm0ksvzSuvvJLu3btnww03zFe/+tUWd5N4P4MGDcpvfvObnHHGGbnwwgvz5ptvZoMNNsh5552XE044YRm/CgBgabv55pvzpS99KfPmzcu//uu/5uSTT27rJS2WasEPTZVu0KBB9cSJE9t6GQDAx9RTTz2VTTfdtK2XsUzNmzcv/fr1y2233ZY+ffrkE5/4RK644opsttlmy30tC3u/q6p6uK7rQQs7355iAIBCXXbZZWlsbEy7du3S2Nj4kT9J9sEHH8xGG22UDTbYIB07dsyBBx6Y66+/fimtdtkSxawQmpqact999+WII47IqFGjcuONN2bmzJltvSwA+Ni67LLLcvTRR+dPf/pT6rrOn/70pxx99NEfKYxffPHFFp/T0KdPn7z44otLY7nLnChmhfDQQw9l5513zk9+8pPceOONGTVq1EI/FQ8AWDpOO+20vPXWWy3G3nrrrWV+f+MVlShmhXDrrbdmzpw5LcbOPffcVn9ZAYCl4/nnn1+i8cWxzjrr5M9//nPz9y+88ELWWWedD/18y5MoZoWwsA9B+SifAggAvL++ffsu0fji+MQnPpFnnnkmU6ZMyezZs3PllVdmzz33/NDPtzyJYlYIu+22Wzp27Nhi7JRTTvHx0ACwjIwePbrV/8926dIlo0eP/tDPudJKK+W73/1uRo4cmU033TSf+9znMmDAgI+61OXCfYpZIQwaNCh33313xo8fn+nTp+fII4/Mjjvu2NbLAoCPrUMOOSTJ/L3Fzz//fPr27ZvRo0c3j39Ye+yxR/bYY4+lscTlShSzQqiqKtttt1222267tl4KABTjkEMO+cgR/HFh+wQAAMUTxQAAy4lPEl4+Psz7LIoBAJaDhoaGTJ8+XRgvY3VdZ/r06WloaFiix9lTDACwHPTp0ycvvPBCXnnllbZeysdeQ0ND+vTps0SPEcUAAMtBhw4dsv7667f1MlgE2ycAACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAACKJ4oBACieKAYAoHiiGACA4oliAIBl5Nvf/nbGjRvX1stYLv7ZX2tV13Vbr2GFMGjQoHrixIltvQwA4GOksbExjY2Nueuuu9p6KcvcP8Nrrarq4bquBy3smCvFAAAriBkzZrT1EooligEA3jFjxoycfvrpGTJkSHr27JlOnTplo402ysknn5y33nqr+bympqZ8+9vfzhZbbJGuXbtm1VVXTf/+/XPUUUdlzpw5SZKqqvKnP/0pd999d6qqav6aOnVqkvlXVocPH55HHnkkI0eOzGqrrZYtttiieY577rknu+66a1ZbbbV07tw522yzTS655JJWax4+fHgaGxvzl7/8JQcddFC6d++eLl26ZOTIkXn66ac/1OtLknHjxqWqqoVe+V0w5wIf9FpvvfXWHHDAAdlggw3SuXPndOvWLbvttlvuvvvuJfnjWaZWausFAACsKF588cX86Ec/yn777ZeDDz44K620Uu6+++6cf/75eeSRR3LLLbckSUaPHp2vf/3rGTVqVL74xS+mffv2mTJlSv7nf/4ns2bNSocOHTJ+/Ph85StfSc+ePXPaaac1z9GrV6/m3z///PMZMWJEPvvZz2a//fbLzJkzkyQ33HBD9tlnn6y11lo54YQT0rVr11x55ZX513/910yePDmjR49use4333wzO+20U7bbbruMGTMmU6ZMyXe+853stddeefzxx9O+ffslen1L6oNe67hx4/Lqq6/msMMOS58+fZrX8S//8i+ZMGFChg4d+qHmXarquvZV19l2221rAKBss2bNqmfPnt1q/PTTT6+T1A888EBd13W99dZb15tuuukHPt96661XDxs2bJHHktQ//OEPW4zPnTu37tu3b73aaqvVL774You17bDDDnW7du3qp59+unl82LBhdZL6vPPOa/E8559/fp2kvvnmm5f49dV1XY8dO7ZOUk+YMKHV+cOGDavXW2+9xX6tM2fObDX20ksv1T169Kg/9alPLfQxy0KSifUiWtD2CQCAd3Ts2DEdOnRIksydOzevvfZapk2bll122SVJ8sADDyRJVltttbz44ov59a9//ZHmW3311XPkkUe2GHv44Yfz/PPP5wtf+EJ69+7dYm1f+9rX0tTUlOuvv77FY9q1a5fjjz++xdiIESOSJM8888wSv76lbeWVV27+/cyZMzN9+vS0b98+Q4YMWWZzLilRDADwLhdeeGG22GKLdOrUKauvvnp69eqV4cOHJ0lee+21JMmYMWPS0NCQoUOHZp111skhhxySyy+/PLNnz16iuTbccMPmrQ0LTJkyJUkyYMCAVucvGJs8eXKL8d69e6ehoaHFWI8ePZIk06dPX+LXt7Q999xzOfDAA9O9e/d07do1PXv2TK9evfKrX/1qmc25pOwpBgB4x7e+9a2ccMIJ2W233XL88cend+/e6dixY1588cUcccQRaWpqSpJsv/32ee6553LLLbdkwoQJmTBhQi6//PKcffbZ+fWvf53VV199sebr0qXLUln3e8P63ep33X53cV9fMv+H5xZl7ty5i722mTNnZqeddsqbb76ZL3/5yxk4cGC6du2adu3a5Zxzzsmdd9652M+1LIliAIB3jB8/Po2NjbnpppvSrt3//oP6zTff3OrcVVZZJfvtt1/222+/JPOvwB577LG55JJLcuKJJyZ5/7BclA022CBJ8sQTT7Q69uSTT7Y4Z0ktyetbEPavvvpqq2NTpkxp3oaxwKJe6x133JG//OUv+fGPf9xqq8jpp5++xK9hWbF9AgDgHe3bt09VVS2urs6dOzfnnntui/OmTZvW6rHbbLNNkpYRucoqqyw0Kt/PNttsk759+2bs2LF56aWXmsfnzJmTCy64IFVVZa+99lqi51xgcV9fkvTr1y9Jcvvtt7cYv+KKK/KXv/yl1fmLeq0LrmK/e85k/m3aVpT9xIkrxQAAzfbff/+ccsop+dSnPpV99903f//733P55Ze3uiq66aabZrvttsuQIUPSu3fv/PWvf80PfvCDdOzYMQceeGDzedttt10uueSS/Pu//3s23XTTtGvXLqNGjWrxg2fv1b59+3z3u9/NPvvsk0984hM5+uij07Vr1/zsZz/L/fffn1NPPTUbb7zxMn19SdK/f//ssssu+f73v5+6rrPVVltl0qRJufbaa7PRRhs134/5g17rjjvu2HxrualTp6ZPnz6ZNGlSxo8fn4EDB+axxx77UK9lqVvUbSlK+3JLNgBg7ty59ZgxY+oNN9yw7tixY923b9/6xBNPrJ988sk6SX3GGWfUdV3X55xzTj106NC6V69edceOHes+ffrU+++/f/3www+3eL6XX3653nfffevu3bvXVVXVSeopU6bUdf3+tzCr67q+66676l122aXu2rVr3alTp3qrrbaqf/SjH7U6b2G3R6vrup4yZUqLNS/J61vgr3/9a73//vvXXbt2rVdeeeV69913r5988smFzvl+r/XRRx+tR44cWXfr1q1eZZVV6mHDhtX33HNPffjhh9fzc3T5yPvckq2q33Mpu1SDBg2qJ06c2NbLAABgGamq6uG6rgct7Jg9xQAALFd//vOfM2XKlCW6i8WyJooBAFgu3njjjXzve9/LwIEDs8kmm+Skk07KCy+80NbLSiKKAQBYTu67774cd9xxeeONNzJ79ux861vfylVXXdXWy0oiigEAWE5uu+22VmOXXHJJZsyY0QaraUkUAwCwXGy00UatxjbffPNWH1HdFkQxAADLxS677JL111+/+ftVVlklJ5xwwkLvk7y8+fAOAACWi/79++fOO+/MI488ktmzZ2fgwIHZbLPN2npZSUQxAADLUWNjYxobG9t6Ga3YPgEAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTwp3Xy0AAB4hSURBVBQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMbShu+66K1VVZdy4cW29FAAomiiGFczUqVNz5plnZtKkSR/L+QBgRbRSWy8ASrbTTjvl7bffTocOHZrHpk6dmv/4j/9IY2Njttpqq2W+huU9HwCsiFwphkWo6zozZ85cpnO0a9cuDQ0Nad++/TKdBwB4f6KYj7UZM2bk9NNPz5AhQ9KzZ8906tQpG220UU4++eS89dZbzee9e2/v9773vWy22WZpaGjIN7/5zSTJP/7xj5x44onp3bt3OnfunMGDB+fWW2/NEUcckaqqWszZ2NiY4cOHt1rLwvYPv3ds3Lhx2XnnnZMkRx55ZKqqSlVVLZ6vrutcdNFF2XbbbdOlS5esssoq2XnnnTNhwoSFvgdXX311hg8fnm7duqVLly7p379/jj/++MyePXux5nvzzTdzyimnZMMNN0ynTp2y1lpr5bDDDsuf/vSnxf1jAIAVnu0TfKy9+OKL+dGPfpT99tsvBx98cFZaaaXcfffdOf/88/PII4/klltuaXH+t7/97UyfPj3/5//8n6y11lpZd911kyQHHXRQrrvuuowaNSojR47Mc889l3333Tfrr7/+Ul3vTjvtlFNPPTVjxozJ0UcfnaFDhyZJ1lxzzeZzPv/5z+eKK67I/vvvnyOPPDKzZs3KZZddll133TXXXHNN9txzz+ZzTzvttIwZMyabbbZZvvKVr2TttdfOc889l6uvvjpnnXXWB843Z86cjBw5Mvfdd1/233//nHDCCXnmmWdy0UUX5dZbb83EiRPTp0+fpfoeAECbqOvaV11n2223rfn4mTVrVj179uxW46effnqdpH7ggQfquq7rCRMm1Enq7t271y+//HKLc2+55ZY6SX344Ye3GL/22mvrJPX8v0b/a7311quHDRvWas4Fc4wdO3aJxxa45ppr6iT197///Rbjc+bMqbfddtu6sbGxbmpqquu6rh944IE6Sb3zzjvXb7/9dovzm5qams97v/l+8IMf1EnqE088scX4jTfeWCepDz300FaPAYAVVZKJ9SJa0PYJPtY6duzY/ENsc+fOzWuvvZZp06Zll112SZI88MADLc4/7LDDssYaa7QYu+6665IkJ554YovxvffeO/37919WS1+oSy+9NF27ds3ee++dadOmNX+9/vrrGTVqVKZOnZpnnnkmSXLZZZclSc4555w0NDS0eJ4F2yQ+yLXXXpt27drllFNOaTH+6U9/OltttVWuv/76NDU1LaVXBwBtx/YJPvYuvPDCXHzxxXniiSdaBdxrr73W4vt+/fq1evzkyZPTrl27hR7bdNNN88c//nHpLvh9PPXUU5kxY0aL7RTv9fLLL6dfv3555plnUlVVttxyyw8935QpU9K7d+9079691bEBAwZk0qRJmTZtWqv/kACAfzaimI+1b33rWznhhBOy22675fjjj0/v3r3TsWPHvPjiizniiCNaRXKXLl0+8pyLugI7d+7cj/zcdV2nV69eufzyyxd5zuabb95iLYtzRRgASieK+VgbP358Ghsbc9NNN6Vdu//dLXTzzTcv9nNssMEGaWpqytNPP50BAwa0OPbUU0+1On/11VfPq6++2mp88uTJizXf+0XsxhtvnKeffjrbbbddVllllfd9nn79+uWmm27Ko48+msGDB3+o+TbYYIPcfPPNef3119OtW7cWx5588smsuuqq6dmz5/uuAwD+GdhTzMda+/btU1VV5u+tn2/u3Lk599xzF/s59tprryTJBRdc0GL8uuuuW+jWiX79+uUPf/hDXnzxxeaxWbNm5Xvf+95izbcgdhcW1ocddliamppa7fFd4OWXX27+/cEHH5wkOfXUUzN79uxW5y54T95vvr333jtNTU2t3q+bbropjzzySPbcc88W/7EBAP+sXCnmY23//ffPKaeckk996lPZd9998/e//z2XX355i0+Q+yAjR47MqFGj8pOf/CSvvvpqdt999zz33HP5/ve/n8033zyPP/54i/OPO+64XHnlldlll13yxS9+MbNnz8748eMXe2vGZpttlq5du+bCCy9Mly5d0q1bt6yxxhoZMWJE823Yvvvd7+Z3v/tdPvOZz6Rnz5554YUX8tvf/jbPPvts8xXpwYMH56STTsp5552XbbbZJgcccEDWWmutTJkyJb/4xS/y4IMPplu3bu873xFHHJGf/OQnOe+88zJ16tTstNNOefbZZ3PhhRdmzTXXzJgxYxb/DwMAVmSLui1FaV9uyfbxNHfu3HrMmDH1hhtuWHfs2LHu27dvfeKJJ9ZPPvlknaQ+44wz6rp+/9uS1XVdv/XWW/VXv/rVes0116wbGhrqT3ziE/Utt9xSH3744a1uyVbXdT1u3Li6X79+dYcOHerGxsb6vPPOq++4447Fvv3aL3/5y3rrrbeuO3XqVCdpdYu3n/70p/WOO+5Yd+3ate7UqVO93nrr1fvss0995ZVXtlrL5ZdfXu+www71KqusUnfp0qXu379//aUvfameNWvWYs03c+bM+uSTT67XX3/9ukOHDnWvXr3qQw89tJ46der7vvcAsKLJ+9ySrarf9c/KJRs0aFA9ceLEtl4G/2QWXEn19wgAVnxVVT1c1/WghR2zGRAAgOLZUwwstrquM3Xq1Lz99ttZb731svLKK7f1kgBgqXClGFgsM2bMyEUXXZQtttgiAwYMyOc+97k8/fTTbb0sAFgqRDF8BOPGjStmP/HEiRNz7LHHZubMmUmSX/3qV/nmN7+ZOXPmtPHKAOCjE8XAYnniiSdajV111VX529/+1garAYClSxQDi2WdddZpNTZw4MCsuuqqbbAaAFi6RDGwWD7xiU9kl112af6+S5cuOe+889K1a9c2XBUALB3uPgEslj59+uTSSy/NY489lhkzZmSTTTbJpptu2tbLAoClQhQDi23NNdfMmmuu2dbLAIClzvYJAACKJ4oBACieKAYAoHiiGACA4v3TR3FVVcOrqqqrqjqirdcCAMA/p3/6KF6Yqqoaq6o6s6qqrZbHfFOnTs2ZZ56ZSZMmLY/pAABYyj4OUXxPks5Jxr9rrDHJGUmWWxT/x3/8hygGAPgntUyjuJpvlWU5R13XTXVd/6Ou63nLch4AAD6+PjCKq6rqWlXV2VVVPVBV1bSqqmZVVfVsVVXnVlXV5V3nNe/trarq2KqqnkzyjyT/9s7xhqqqLqiq6i9VVb1dVdWDVVXtVlXVuKqq6vfMObWqqrsWspZW+4ffO/bOrxPeOTz2nWP1u5/vnVg/pqqqh6uqequqqpl//OMfM2HChCzM1VdfneHDh6dbt27p0qVL+vfvn+OPPz6zZ8/OuHHjsvPOOydJjjzyyFRVlaqqMnz48CRJU1NTRo8enZ122ilrrbVWOnbsmL59++aYY47J9OnTP+jtBwBgOVicT7RbJ8m/Jrk6yeVJ5iYZluRrSbZOMvI95385SY8kP0zyUpI/vzN+RZK9k9yQ5JYkGya5JsmUj/QKWrsnyZgkpyb5QZJ73xl/+V3njE9yUJJfJBmbpNO8efO+ueuuu+aaa67Jnnvu2XziaaedljFjxmSzzTbLV77ylay99tp57rnncvXVV+ess87KTjvtlFNPPTVjxozJ0UcfnaFDhyZJ86d+zZ49OxdccEH222+/7LXXXll55ZXz0EMP5ZJLLsmvf/3rPPzww+nYseNSfgsAAFgidV2/71eSjkk6LGT8G0nqJIPf+X74O9+/mmSN95y72zvHxr1nfO93xuv3jE9NctdC5lwwxxFLOvauY/u8c+zod49vs8029bbbbls3NjbWTU1NdV3X9QMPPFAnqXfeeef67bffrt+tqamp+bwJEybUSeqxY8fW79XU1FS/9dZbrcZ/9KMf1Unqn/3sZ62OAQCw9CWZWC+ieT9w+0Rd17Prup6TJFVVrVRVVfeqqnomuf2dU4a85yE/rev6b+8Z2/udXy94z3Nfl+SPH7SGpezQJDOSXFdVVc8FX/PmzcuoUaMyderUPPPMM0mSyy67LElyzjnnpKGhocWTLNgm8UGqqkrnzp2TJPPmzcvrr7+eadOmZcSIEUmSBx54YOm9MgAAPpTF2T6Rqqr+b5IvJhmQ1vuQu7/n+6cX8hQbJGlaxLGnkvRfnHUsJZsm6ZqW2yny6KOP5tFHH02SvPzyy+nXr1+eeeaZVFWVLbfc8iNNeNVVV+U///M/88gjj2TOnDktjr322msf6bkBAPjoPjCKq6r6apL/THJrkv9O8pckszN/r/G4tI7kt5bCuupFjC9WxH+AKskrSQ5+9+DGG29824UXXpgk2Xzzzf/35MW8Irwo11xzTQ444IAMHjw43/nOd7LuuuumoaEh8+bNy+67756mpqYP/dwAACwdixOZn8/8Pb6fquu6ueCqqtp9CeaZnPnx3C/JE+85tulCzn81yeoLGd9gMedbVFQnyTPvrOP+uq5nLhgcNGhQdtlllxYn9uvXLzfddFMeffTRDB48eJFP+H7RPH78+DQ0NGTChAnp0qX5Zh35wx/+8IEvAgCA5WNx7lM8L/Mjs7n8qqpaKcnJSzDP9e/8euK7B6uq2jsL3zrxdJJNqqpa513ndkpy7GLOtyB2FxbWP838133Owh748sv/u6vi4IPnX0w+9dRTM3v27Fbnzt+vnayyyvxbMb/66qutzmnfvn2qqmpxRbiu65x99tmL8TIAAFgeFudK8S8yPyBvqqrqmiSrZv7Wgznv+6h3qev6lqqqbkhyeFVVqye5OfNvyfb/JXk8yebvech3kxyY5Paqqi7O/DtgfD6LvzXjycz/Ybr/W1XVW0leT/K3uq7vrOv6F1VVjU1yXFVV2yS5Mcm0tddeO7vttlueffbZTJ48OUkyePDgnHTSSTnvvPOyzTbb5IADDshaa62VKVOm5Be/+EUefPDBdOvWLZtttlm6du2aCy+8MF26dEm3bt2yxhprZMSIEdl///1z9dVXZ8SIETnssMMyZ86cXHfddXnrraWxywQAgKVhcaL4gsy/SnxUku9k/r2Hf5b59/d9cgnmOiDJ2UkOSbJrkseS7Jv5gd0iiuu6vu+dD+E49Z35X0xyUZKJSe74oInqun67qqoD35nv20k6Jbk7yZ3vHP9CVVUTkhyd5JQkHadPn55VVlkl55zT8gLyueeemy233DLf/e53c/7556epqSnrrrtu9thjj+btEJ07d86VV16Z008/PV/+8pcza9asDBs2LCNGjMiBBx6YGTNm5L/+67/yb//2b+nevXtGjRqVc889Nz169FiCtw8AgGWlWrAFoM0WUFXjkhxe1/WH/2m2pWDQoEH1xIkT23IJAAAsQ1VVPVzX9aCFHVucPcUAAPCxtjRuccYSeO655/KrX/0q9957b0aOHJldd901ffv2betlAQAUTRQvR6+88koOP/zw3HfffUmSn//85znooIPywx/+MCuvvHIbrw4AoFxtvn2irusj2no/8fLy1FNPNQfxAldccUXzx0oDANA22jyKS7KoT6/zqXYAAG1LFC9Hm266abbYYosWY5/61Key0UYbtdGKAABI7ClertZcc81cddVVufzyy3Prrbdmn332yf77759VV121rZcGAFC0Nr9P8Ypied+neN68eWnfvv1ymw8AoHTuU7wCEsQAACsOUQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFAAAUTxQDAFA8UQwAQPFEMQAAxRPFQNEuvPDCbLLJJunUqVOqqsrUqVPbekkAtIGV2noBAG1lwoQJOfbYY7PXXnvlpJNOSocOHdKrV6+2XhYAbUAUA8W67bbbkiQ//vGPs/rqq7fxagBoS7ZPAMV66aWXkmSpB/GcOXPyj3/8Y6k+50cxY8aMtl4CwApPFAMrvFmzZmXMmDEZMGBAGhoa0q1bt4waNSqPPPJIi/PuuuuuVFWVcePGZezYsRkwYEA6deqU9dZbL+eff37zeVOnTk1VVRk7dmySpKqqVFWV4cOHN5/z17/+Ncccc0z69u2bjh07pnfv3jn66KPzt7/9rcWcZ555ZqqqyhNPPJGvfvWr6dOnTxoaGnL//fdn3Lhxqaoqd9xxR84666yst9566dy5c4YMGZL7778/SXL33Xdnxx13zMorr5y111473/jGNxb6HkycODH77LNPevbsmU6dOqV///4ZPXp05s6d2+K84cOHp7GxMZMnT87++++f1VdfPauuumqSpKmpKaNHj85OO+2UtdZaKx07dkzfvn1zzDHHZPr06R/uDwfgY8L2CWCFNmfOnOy+++75zW9+k89//vM57rjj8sYbb+SHP/xhPvnJT+aee+7JoEGDWjzm4osvzssvv5yjjjoq3bp1y6WXXpqTTjopffr0ycH/f3v3ExLl9sdx/DOZ4p/qamZmMfwytdoUijEaZYZUhqBFRUWKolLQykiDINAWBYZptEmIJHCEyMgSEiIpFwlRKrUINCrhGoQyUkqlOOac3+LScCe1gpSZ2/N+wSz8PmfO+c4I8uF45pkjRxQTEyOn06mrV6/q8ePHcjqdkqTY2FhJ0sDAgDZv3iy3263S0lIlJCTozZs3qq+vV0dHh7q7u/XXX3/5rJmfn6+wsDCVl5fLZrMpLi7O+6G906dPa2pqSmVlZXK73aqtrdWuXbvU2Nio0tJSHTt2TPn5+WpublZlZaXi4+NVUFDgnbutrU379u1TYmKiysvLtXTpUj158kSVlZV68eKFbt265dPL58+flZmZqS1btuj8+fPeIO92u1VTU6P9+/drz549ioiIUFdXlxoaGtTZ2amenh6FhITM6e8PAP4zjDE8jFFqaqoBEHjq6uqMJHP//n2f+ujoqLHb7SYzM9Nb6+joMJJMXFycGRkZ8da/fPlili1bZtLT033mKCoqMv/8GfSVl5dnYmJizLt373zqXV1dJigoyFRVVXlrVVVVRpLJzMw0k5OTPuOvX79uJJmUlBQzMTHhrbe2thpJZuHChaarq8tbn5iYMCtWrPDpc3x83MTGxpqMjIxp8397bzo6Ory1zMxMI8mcOXNm2uvyeDxmbGxsWv3atWtGkrl58+a0awDwJ5HUbWbJghyfABDQmpqatH79eqWmpmp4eNj7cLvd2rlzpzo7OzU+Pu7znOLiYp+d3PDwcKWnp+v169c/XW90dFT37t1TXl6eQkNDfdZcvXq1EhMT9eDBg2nPO3HihBYunPmfb8ePH/fZgc3IyJAkpaWl+exyh4SEyOFw+PTZ3t6uoaEhFRcXa2RkxKefnJwcSZqxn4qKimk1m82msLAwSdLU1JR3vqysLEnS06dPf/r+AMCfiuMTAAJab2+vxsfHf3irtOHhYdntdu/Pa9asmTYmOjr6l87Nvnr1Sh6PRw0NDWpoaJhxzEzzr127dtY5vx8fFRUlSYqPj582NioqyqfP3t5eSVJJScms8w8NDfn8HBMTo8jIyBnHNjc3q7a2Vs+fP9fk5KTPtY8fP866BgD86QjFAAKaMUYbNmxQXV3drGO+D8xBQUG/tZ4kFRQUqKioaMYx33Zb/y08PHzWOWfr51f6/NZPTU2NkpOTZxyzcuXKX+qlpaVFhw4dksPh0OXLl2W32xUaGqqpqSnt3r1bHo/np/0AwJ+KUAwgoCUlJcnlcikrK0sLFsz/ia/ExETZbDa53W7t2LFj3tf7maSkJElSRETEb/fjdDoVGhqqjo4On+Dc19f3W/MCwJ+AM8UAAlphYaEGBwdn3Sn+/ujA74qOjlZOTo5aWlq8t037N2OMXC7XnK75I9nZ2Vq+fLmqq6v14cOHadfHx8d/+T7EQUFBstlsPjvCxhidO3duzvoFgP8qdooBBLSysjK1t7fr1KlTevTokbKysrRkyRINDAzo4cOH3p3PuVRfX6+tW7dq27ZtKiwsVEpKijwej/r7+9Xa2qrCwkKdPXt2TtecTUREhBobG7V3716tW7dOJSUlSkxM1MjIiPr6+tTS0qI7d+743GN5NgcOHNDt27eVlZWlwsJCTU5O6u7duxobG5v/FwIAAY5QDCCgBQcHq62tTVeuXJHT6VRVVZWkf87ROhyOWc/9/g673a6enh5duHBBra2tampqUmhoqOx2u3Jzc3Xw4ME5X/NHsrOz1dXVperqajU1NcnlcikqKkoJCQk6efKkNm7c+EvzHD58WJ8+fdKlS5dUUVGhqKgo5ebmqrq6WtHR0fP8KgAgsNm+fYjD6jZt2mS6u7v93QYAAADmic1m6zHGbJrpGmeKAcCCJiYm1N/fr/fv3/u7FQAICIRiALCYt2/f6ujRo0pKSlJycrJu3Lgx7QtQAMBqCMUAYCFfv35VXV2dnE6nPB6PXC6Xjhw5op6eHn+3BgB+RSgGAAsZHBxUU1PTtPrLly/90A0ABA5CMQBYyKJFi5SQkDCt/qOv0QYAKyAUA4CFREZG6uLFiwoODvbW0tLS5HA4/NgVAPgf9ykGAIvZvn27nj17pt7eXi1evFgpKSlatWqVv9sCAL8iFAOAxSxYsEDJyclKTk72dysAEDA4PgEAAADLIxQDAADA8gjFAAAAsDxCMQAAACyPUAwAAADLIxQDAADA8gjFAAAAsDxCMQAAACyPUAwAAADLIxQDAADA8gjFAAAAsDxCMQAAACyPUAwAAADLIxQDAADA8gjFAAAAsDxCMQAAACyPUAwAAADLIxQDAADA8gjFAAAAsDxCMQAAACyPUAwAAADLIxQDAADA8gjFAAAAsDxCMQAAACyPUAwAAADLIxQDAADA8gjFAAAAsDybMcbfPQQEm83mkvS3v/sAAADAvPmfMSZmpguEYgAAAFgexycAAABgeYRiAAAAWB6hGAAAAJZHKAYAAIDlEYoBAABgeYRiAAAAWB6hGAAAAJZHKAYAAIDlEYoBAABgef8HuVNLmjShG4cAAAAASUVORK5CYII=\n" + }, + "metadata": {}, + "execution_count": 10 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Podemos ver aquí como arquitect**o**, arquitect**a** y enfermer**a** se encuentran cercanas entre sí, mientras que enfermer**o** y *astronauta* más distantes y tironeando del espacio.\n", + "\n", + "Veamos ahora, 2 palabras vecinas de cada profesion para explorar y conocer nuevas que nos permitan detallar más aún las palabras a evaluar en busca de sesgos." + ], + "metadata": { + "id": "kf_rJHSUTRzA" + } + }, + { + "cell_type": "code", + "source": [ + "explorador_de_palabras.plot_projections_2d(profesiones, n_neighbors=2, figsize=(10, 10))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 729 + }, + "id": "4O-nAKduUKJj", + "outputId": "7b197a40-df9c-44b2-b1bb-2cf475c0b944" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsUAAALICAYAAACXVY3GAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXCc9WH/8c+z0mpX921pdVuyZPkQvoQPYVMMpE0gbtIkQBLS0rRM0hkINBdkAm1oAp20adKSJtN0moNOQ0mgSUiclBSMTTCWb5DjQ5Z1ayVLsrS6rHu1+/z+kLU/ryXbsi1bxt/3a8aD9eyzz/PdZQa/+fq737Vs2xYAAABgMsd8DwAAAACYb0QxAAAAjEcUAwAAwHhEMQAAAIxHFAMAAMB4kfM9gHejtLQ0u6CgYL6HAQAAgEt08ODBbtu20889ThRfhoKCAh04cGC+hwEAAIBLZFlW80zHWT4BAAAA4xHFAAAAMB5RDAAAAOOxphgAAOAa8Pv9am1t1ejo6HwPxQhut1s5OTlyOp2zOp8oBgAAuAZaW1sVHx+vgoICWZY138O5odm2LZ/Pp9bWVi1cuHBWz2H5BAAAwDUwOjqq1NRUgvgasCxLqamplzQrTxQDAABcIwTxtXOp7zVRDAAAAOMRxQAAADAeUQwAAHADee655/Twww+f9/E///M/1//8z/9MO37gwAE98sgjV3No1zV2nwAAAHgXCwQCioiIuOLrlJeXq7y8fA5G9O7ETDEAAMA8+cY3vqFvf/vbkqTPfvazuv322yVJ27dv1/33368XXnhBZWVlWr58uR5//PHQ8+Li4vT5z39eK1as0O7du/WjH/1IJSUlWrt2rXbt2nXR+27btk3l5eUqKSnRr3/9a0nSG2+8ofe///2SpH379mnDhg1atWqVKioqVFNTI0k6evSo1q5dq5UrV+qmm25SbW3tjNcfGhrS3XffrRUrVmj58uX66U9/KkkqKCjQY489prKyMq1du1Z1dXWSpK1bt2rdunVatWqV7rzzTnV2dkqSBgcH9clPflJlZWW66aab9LOf/UyS9Oqrr2rDhg1avXq17rnnHg0ODl7aGz8DohgAZtDQ0CCv1zvfw7gmTHqtwPVm06ZN2rlzp6TJ5QuDg4Py+/3auXOnSkpK9Pjjj2v79u2qqqrS/v379fLLL0uajM5169bp0KFDKioq0le+8hXt2rVLb731lo4dO3bR+zY1NWnfvn36zW9+o7/6q7+atnVZaWmpdu7cqXfeeUdf/epX9eUvf1mS9L3vfU+PPvqoqqqqdODAAeXk5Mx4/d/+9rfKysrSoUOHdOTIEb33ve8NPZaYmKjDhw/r4Ycf1l//9V9LkjZu3Kg9e/bonXfe0Uc/+lH94z/+oyTpa1/7Wuj83//+97r99tvV3d2tp59+Wtu2bdPbb7+t8vJyfetb37rEd346lk8AwAwaGhoUExOj3Nzc+R7KVWfSawWuN2vWrNHBgwc1MDAgl8ul1atX68CBA9q5c6e2bNmi2267Tenp6ZKk+++/X2+++aY++MEPKiIiQh/+8IclSXv37g0777777tOJEycueN97771XDodDxcXFKiws1PHjx8Me7+/v1wMPPKDa2lpZliW/3y9J2rBhg5555hm1trbqQx/6kIqLi2e8fllZmT7/+c/r8ccf1/vf/35t2rQp9NjHPvax0D8/+9nPSpr8YpP77rtP7e3tGh8fD33hxrZt2/STn/wk9Nzk5GT9+te/1rFjx3TLLbdIksbHx7Vhw4ZZvNsXxkwxAMyBiYmJ+R4CgHchp9OphQsX6rnnnlNFRYU2bdqkHTt2qK6uTgUFBed9ntvtvqJ1xOfu4Xvuz3/zN3+jzZs368iRI9q6dWtoJvnjH/+4fvWrXyk6Olp33XWXtm/fPuP1S0pK9Pbbb6usrExPPvmkvvrVr854r6nff+Yzn9HDDz+sw4cP69///d8v+KUbtm3rPe95j6qqqlRVVaVjx47pBz/4waW9ATNgphjADWFiYkJ1dXXq6urS8PCwJiYmFB0dLY/Ho5KSktAfHrZtq7GxUV6vV8PDw5Ikl8ul1NRUlZWVyeFwaOvWrZKkkZGR0O8l6Y477lBMTIy2bdummJgYLVu2TNXV1ert7VVUVJTuuOMOSZLP51Ntba16e3sVDAZDX+ual5cXNubKykoNDw9r48aNOnbsmE6dOqVgMKiUlBSVlZUpNjb2kl+fJHm9XlVVVamiokKpqakz3vPOO++UpIu+1q6uLrW0tKivr0+jo6OKiIhQUlKSiouLp1379OnTqqmpUW9vr8bHx+V0OhUXF6eioiJlZGRcxr9VwAybNm3SP/3TP+mHP/yhysrK9LnPfU5r1qzR2rVr9cgjj6i7u1vJycl64YUX9JnPfGba89etW6dHH31UPp9PCQkJeumll7RixYoL3vOll17SAw88oMbGRjU0NGjx4sXas2dP6PH+/n5lZ2dLmtzNYkpDQ4MKCwv1yCOPqKWlJbSk4VwnT55USkqKPvGJTygpKUnf//73Q4/99Kc/1Ze+9CX99Kc/Dc3wnn2///zP/wyd+573vEff/e539S//8i+SpN7eXq1fv14PPfSQ6urqtGjRIg0NDamtrU0lJSUXe6sviCgGcEMYHR1VS0uLPB6PsrOz5XA45PP5VFdXp/7+fq1fv16SVFtbq5qaGmVkZCg/P1+WZWl4eFgdHR0KBoNyOBxatWqVjh49qqioqLC/GnS5XKHfj4yMaPfu3fJ4PPJ4PAoEApKkzs5O7d+/Xy6XS0VFRYqMjFRbW5sOHTqk4eFhlZaWho07EAiosrJSSUlJKi0t1fDwsBobG7Vv3z7ddtttoVmU2b6+S3Wx1+r1euX3+5WTk6Po6GiNjo6qublZu3fvVkVFhVJSUiRN/vXl7t27JUn5+fmKjo7W+Pi4+vv71dfXRxQDF7Bp0yY988wz2rBhg2JjY+V2u7Vp0yZ5PB59/etf1+bNm2Xbtu6++2594AMfmPZ8j8ejp556Shs2bFBSUpJWrlx50Xvm5eVp7dq1GhgY0Pe+9z253e6wxx977DE98MADevrpp3X33XeHjr/44ov6r//6LzmdTmVmZobWGp/r8OHD+uIXvyiHwyGn06l/+7d/Cz3W29urm266SS6XSy+88IIk6amnntI999yj5ORk3X777WpsbJQkPfnkk3rooYe0fPlyRURE6Ctf+Yo+9KEP6bnnntPHPvYxjY2NSZKefvrpK45iy7btK7qAicrLy+0DBw7M9zAAnCUYDEqSHI7wVWHHjx9XbW2tNm3apKSkJL355psKBALavHnzBa83NRtcUVEx42MjIyNasWJF2Oyvbdt6/fXXNTExodtuuy30h0wwGNTu3bvV29urzZs3h2aAKysr5fP5tGTJEi1atCh0nfr6eh07dkzr168PrRGc7euTLm2m+GKvdaatnsbGxvTGG28oKSlJ69atkyR1dHRo//79WrNmjbKysi701gLGqq6u1pIlS+Z7GPOqoKBABw4cUFpa2jW530zvuWVZB23bnrb3HGuKAdwQHA5HKBht25bf79f4+HgoKnt7eyVJkZGRGh0dVU9PzxXdz+l0TvtgWn9/v0ZGRpSbmxs26+JwOFRUVCTbttXR0RH2HMuyVFhYGHZs6g+Ls7cYmu3rm2tnB/HExITGx8dlWZaSkpLC7ul0OiVJp06dYn01gHcllk8AuGE0NTWpublZp0+f1rl/Czb1yeklS5Zo//792rVrl9xut1JTU5WRkSGPxzNtFvZCYmNjp30wZWqNcnx8/LTzp45NnTPF5XJNu+9UYE6N+VJe31wbGhrS8ePH1dXVdcF7pKamKicnR16vV21tbUpKSlJaWpqysrJmfD8AXH3PPPOMXnrppbBj99xzj5544ok5u4fP5wt9nuJsr7/++rS/qZIm/zt2vSKKAdwQGhoadPToUaWnp2vhwoVyu92yLEujo6OqqqoKReTUerWuri51d3fL5/Opra1NcXFx2rhxYyhIL2Yuvj1Kmv6J77OdHb6zfX0XcylL5iYmJlRZWalAIKCFCxcqISFBkZGTf2zU1dWpu7s77PxVq1Zp0aJFOnXqlHw+n+rr61VbW6tly5aFtlcCcO088cQTcxrAM0lNTVVVVdVVvce1QhQDuCF4vV7FxMRo3bp1YaF56tSpaedGRkaGPiAnTc5cHD58WC0tLSoqKpJ04Vg9n5iYGEmTuzCca+rY1DmX6lJeX1RUlKTJD7+da3h4+KJbMU3p7u7W6OioVq5cOW2pyNS3W50rPj5e8fHxKioqCn0BQXV1NVEM4LrHmmIAN4SZws627dBXiE6ZKRQTExOnPRYREXHJSxISExMVHR0tr9cb+kS0NPkhufr6eklSZmbmJV1zymxfn6TQB/nOnclta2ubce/P873WqXueO7vc1dU1bQ2z3++fdp7T6VRMTIwCgUBodw4AuF4xUwzghpCVlaXq6mrt3btXHo9Hfr9fbW1t09br7tixQ8nJyUpOTpbL5dLY2Jiam5vlcDhCe2RKk8ssWlpadPz48dCa2MzMzAsum7AsS2VlZdq/f7/efPNN5efnKzIyUidPnlRvb6+Ki4vD9h6+Gq9PkuLi4pSenq7m5mbZtq3ExET19/ero6NDsbGxoZ0sLvZaU1JS5HK5dOzYMY2MjMjtdmtgYECtra1KSEjQwMBA6Bper1cNDQ3yeDyKiYkJbRnX1dWlrKysOVtuAgBXC1EM4IYwtbuD1+vVkSNH5HK5lJWVpby8PO3YsSPsvM7OTjU0NGhiYkJRUVFKTk5WcXGxEhISQueVlpbK7/erqakpNIs69YUWF5KRkaENGzaotrZW9fX1CgaDiouLm7Z929V6fVNWrVqlw4cPq62tTa2trUpNTVVFRYV+//vfT/uw34Ve6/r163Xs2DE1NjaGAnvdunVqaWkJi+K0tDT19/ers7NTo6OjsixLMTExWrp0KUsnAAP99re/1aOPPqpAIKAHH3xQX/rSl+Z7SBfFPsWXgX2KAQDApTJln+JAIKCSkhK99tprysnJ0c0336wXXnhBS5cuveZjYZ9iAAAAXNTzzz+vgoICORwOFRQU6Pnnn7/ia+7bt0+LFi1SYWGhoqKi9NGPflS//OUv52C0VxfLJwAAc6anp0cnTpxQX1+fUlNTVVxcHPqmPQDXl+eff16f+tSnQkuqmpub9alPfUqSdP/991/2ddva2sJ2rMnJydHevXuvbLDXADPFAIA5MTw8rP3794e+6KOjo0MHDhyYcccPAPPviSeemPYZg+Hh4au+t/H1iigGAMyJU6dOTQvgkZGRaVvDAbg+tLS0XNLx2crOzpbX6w393NraGra7z/WKKAYAADDQ+XbEuZKdciTp5ptvVm1trRobGzU+Pq6f/OQn+uM//uMruua1QBQDAOZERkZG6Nv0psTExCg9PX2eRgTgQp555plp20zGxMTomWeeuaLrRkZG6jvf+Y7+6I/+SEuWLNG9996rZcuWXdE1rwU+aAcAmBPR0dG6+eabVV9fr76+PqWkpKi4uFhOp3O+hwZgBlMfpnviiSfU0tKivLw8PfPMM1f0Ibspd911l+66664rvs61RBQDAOZMSkqKUlJS5nsYAGbp/vvvn5MIvhGwfAIAAADGI4oBAACuEb5J+Nq51PeaKAYAALgG3G63fD4fYXwN2LYtn88nt9s96+ewphgAAOAayMnJUWtrq7q6uuZ7KEZwu93KycmZ9flEMQAAwDXgdDq1cOHC+R4GzoPlEwAAADAeUQwAAADjEcUAAAAwHlEMAAAA4xHFAAAAMB5RDAAAAOMRxQAAADAeUQwAAADjEcUAAAAwHlEMAAAA4xHFAAAAMB5RDAAAAOMRxQAAADAeUQwAAADjEcUAAAAwHlEMAAAA4xHFAAAAMB5RDAAAAOMRxQAAADAeUQwAAADjEcUAAAAwHlEMAAAA4xHFAAAAMB5RDAAAAOMRxQAAADAeUQwAAADjEcUAAAAwHlEMAAAA4xHFAAAAMB5RDAAAAOMRxQAAADAeUQwAAADjEcUAAAAwHlEMAAAA4xHFAAAAMB5RDAAAAOMRxQAAADAeUQwAAADjEcUAAAAwHlEMAAAA4xHFAAAAMB5RDAAAAOMRxQAAADBe5HwPwLKsAkkLJcVoMtJft217eD7HBAAAALPMaxRblpUmqUxSh6Q6SbaksfkcEwAAAMwz3zPFaWf+WWXbtn9eRwIAAABjzfeaYrckzXUQW5blsCxrvl9byMTExHwPAQAAABcwq5niM4FZJClbUqykgKQeSTW2bfefdV6qpApJVWcOFZ05f0xSk23bdWfOi5F0x1nP23Lmtz7btivPHHNLKpG0QJJL0rikU5KO27Y9dtZzF5857w1JeZKyzpy/+8x9VkraLSnlzOMuSQOSjti23XtmzKWSEiVNnBnniRnegyRJxZJSFi1apO3btys3N1eLFi2SZVmh8yorKzU8PKyKigodO3ZM3d3d8vv92rJl8iUODAyopqZGPp9PgUBAMTExys3NVVFRUdh1RkZGVFNTo+7ubo2NjSkyMlKxsbHKz89Xbm7uBf99AQAA4NJcNIrPBPF6ScmSWiU1nXlevqRbLMuqtG2775yn5WsyPls0GZrZkpZYljVi23abJiP5nTPnpZz5vc4cl2VZ0ZI2anImu0XSkCbjukBSqmVZO2eYXV6tyVivP+taMWd+v0SSJanhzDWLJK23LOsdTUZzs6Q2TQb1Ysuyhm3bbj3rPciQVH5mHA1ut1spKSmqqalRf3+/ysvLwwYSCAS0a9cupaSkqLS0VOPj45Kkvr4+VVZWyuFwqKCgQC6XS52dnaqurtbAwIBWr14tSbJtW3v27NHo6KgKCgoUGxuriYkJDQwMqKenhygGAACYY7OZKS6QlCppj23bXVMHLctqknSbpKWSKs95TrSkN6bC1bKsFkl3anKXiTbbtgOSWs980C7l7AA9Y7km4/V3tm2PnnXPdk3GcqGkmnOe45e027Zt+6zzk6d+K+kt27aDZ44PSrpZk6H71lTUnzXOAk3+D8DU/xSskNQnqdK2bbu8vFwrV65UQkKCjh49Kp/Pp9TU1NBAxsfHVVxcrNLS0rABHj16VMFgUBs3blRCQoIkaeHChTp48KDa2tqUl5entLQ0nT59WoODg1qyZIkWLVokAAAAXF2zWXebI2lQUr9lWVFTv848t0tSimVZEec8x3v2TO6ZCO7V5GzvBVmW5ZSUockdKYLn3HNYk7O16TM8teHsID5H01QQn+E788/es2e5z5xz7jjT9f9nvZ2WZUUFg0GNj49rwYIFkqSuri6dq6ioKOznsbEx9fT0KCMjIxTEU4qLiyVJ7e3tkiSn0zk5SJ9PY2NsxgEAAHC1zWamOE5ShKQ/usA5UZJGzvp5pn2Gx8+cdzGxmpzZzTvzayYzXX/oAtcMO9+2bf+Z9bszXcev8HHGn/nnyqkDAwMD+r//+7/QCeeGa1RUVChsQwMYnrxVfHy8zhUXFyfLskLnREdHq7i4WHV1dXrttdeUkJCgtLQ0ZWVlKSkp6QIvEwAAAJdjNlFsafKDaccucM6505nnm7GdjalPm7We+TWTwCyPXWw8lzLOY5p8HxQbG6v169eHHnC73WEnRkScO3F+6UpLS5WXl6fOzk719PSopaVF9fX1WrRokZYsWXLF1wcAAMD/N5soHtTk8oHuCyxPmEtTM76Os9cwz6Op8QSmxlNeXq709JlWcJxfTMzkZ/5Onz497bHBwUHZth065+znLFy4UAsXLlQwGNSePXtUV1enwsJCuVyuy3gpAAAAmMls1hS3ajKKC2d60LKsOa0z27bHJXVK8pz1Qblz7zmbZRhz5ZQmZ8IXnVnvHCYQCMxqH2KXy6WUlBR1dnZOC+O6ujpJksfjkST5/X4Fg8GwcxwOh+Li4kKPAwAAYO7MZqa4UZMfNlt6ZreIbk1usxatyW+kC2r67hNX6rCkWyRVWJbVKqlfk8sqYiRlajLUz9194qqwbTtwZuu2tZJutyyrpaysTPX19RocHFR7e7tuvvnmsN0nzmfZsmWqrKzUrl27wrZk6+rqUnZ2ttLSJr/gz+fz6dChQ/J4PIqLi1NkZKT6+vrU0tKi5OTkUBwDAABgblw0im3bDlqWtVeT25TlSFp85qFRTW5T5p3rQdm2PWJZ1puSFmkygnM0uWZ4VJOzyCfn+p4XGU/XmfEUS8oZGRlRfX29YmJiVFhYOG03ifNJSkrSxo0bVVNTo6amptCXdyxZsiRst4qEhAR5PB75fD61tbXJtu3Qh+8KC2ecsAcAAMAVsK7NMuEbS3l5uX3gwIH5HgYAAAAukWVZB23bLj/3+GzWFAMAAAA3NKL4Otff36+Ojg6Njo5e/GQAAABcltl80A7zIBgM6vDhw/J6vbJtW06nU2VlZcrOzp7voQEAANxwmCm+TrW3t6ulpUVTa779fr+OHDmi8fHxeR4ZAADAjYcovk719vZOOzY+Pq7+/v55GA0AAMCNjSi+Tp377XbS5Bd4zHQcAAAAV4Yovk5lZ2crMTEx7FhhYaFiY2PnaUQAAAA3Lj5od51yuVxav369Tp48qZGREaWkpGjBggXzPSwAAIAbElF8HYuKilJBQcF8DwMAAOCGx/IJAAAAGI8oBgAAgPGIYgAAABiPKAYAAIDxiGIAAAAYjygGAACA8YhiAAAAGI8oBgAAgPGIYgAAABiPKAYAAIDxiGIAAAAYjygGAACA8YhiAAAAGI8oBgAAgPGIYgAAABiPKAYAAIDxiGIAAAAYjygGAACA8YhiAAAAGI8oBgAAgPGIYgAAABiPKAYAAIDxiGIAAAAYjygGAACA8YhiAAAAGI8oBgAAgPGIYgAAABiPKAYAAIDxiGIAAAAYjygGAACA8YhiAAAAGI8oBgAAgPGIYgAAABiPKAYAAIDxiGIAAAAYjygGAACA8YhiAAAAGI8oBgAAgPGIYgAAABiPKAYAAIDxiGIAAAAYjygGAACA8YhiAAAAGI8oBgAAgPGIYgAAABiPKAYAAIDxiGIAAAAYjygGAACA8YhiAAAAGI8oBgAAgPGIYgAAABiPKAYAAIDxiGIAAAAYjygGAACA8YhiAAAAGI8oBgAAgPGIYgAAABiPKAYAAIDxiGIAAAAYjygGAACA8YhiAAAAGI8oBgAAgPGIYgAAABiPKAYAAIDxiGIAAAAYjygGAACA8YhiAAAAGI8oBgAAgPGIYgAAABiPKAYAAIDxiGIAAAAYjygGAACA8YhiAAAAGI8oBgAAgPGIYgAAABiPKAYAAIDxiGIAAAAYjygGAACA8YhiAAAAGI8oBgAAgPGIYgAAABiPKAYAAIDxiGIAAAAYjygGAACA8YhiAAAAGI8oBgAAgPGIYgAAABiPKAYAAIDxiGIAAAAYjygGAACA8YhiAAAAGI8oBgAAgPGIYgAAABiPKAYAAIDxiGIAAAAYjygGAACA8YhiAAAAGI8oBgAAgPGIYgAAABiPKAYAAIDxiGIAAAAYjygGAACA8YhiAAAAGI8oBgAAgPGIYgAAABiPKAYAAIDxiGIAAAAYjygGAACA8YhiAAAAGI8oBgAAgPGIYgAAABiPKAYAAIDxiGIAAAAYjygGAACA8YhiAAAAGI8oBgAAgPGIYgAAABiPKAYAAIDxiGIAAAAYjygGAACA8YhiAAAAGI8oBgAAgPGIYgAAABiPKAYAAIDxiGIAAAAYjygGAACA8YhiAAAAGI8oBgAAgPGIYgAAABiPKAYAAIDxiGIAAAAYjygGAACA8YhiAAAAGI8oBgAAgPGIYgAAABiPKAYAAIDxiGIAAAAYjygGAACA8YhiAAAAGI8oBgAAgPGIYgAAABiPKAYAAIDxiGIAAAAYjygGAACA8YhiAAAAGI8oBgAAgPGIYgAAABiPKAYAAIDxiGIAAAAYjygGAACA8YhiAAAAGI8oBgAAgPGIYgAAABiPKAYAAIDxiGIAAAAYjygGAACA8YhiAAAAGI8oBgAAgPGIYgAAABiPKAYAAIDxiGIAAAAYjygGcEl8Pp+2bt0qr9c730MBAGDOEMUArtjw8LBqamo0MDBwQ94PAHDji5zvAQB4d0lJSdHdd98ty7JCx0ZGRnTixAnFxMQoISHhqo/hWt8PAHDjY6YYuMFMTExc1etbliWHwxEWxQAAvNtZtm3P9xjedcrLy+0DBw7M9zBwg5qYmFBdXZ26uro0PDysiYkJRUdHy+PxqKSkRBEREZIm1/ZWVlZq5cqVCgQCamxs1PDwsBYtWqTFixcrGAzq+PHjamtr0/j4uBISElRaWqq2tjZ5vV5t2bIldM9t27YpJiZGFRUVYWM5+x65ubkzHvN6vaqqqpr2OlJTU8Ou19TUpJaWFg0ODkqSkpKSVFJSorS0tGnPbW9vV2NjowYGBhQMBuV2u7VgwQItXbpUbW1tF71fIBDQiRMndPLkSY2OjsrpdCo9PV2lpaWKjo4OPce2bTU2Nsrr9Wp4eFiS5HK5lJqaqrKyMjkczBsAwI3GsqyDtm2Xn3uc5RPAdWZ0dFQtLS3yeDzKzs6Ww+GQz+dTXV2d+vv7tX79+rDzGxoaND4+rvz8fLlcrlD0HTx4UB0dHcrIyNCCBQs0NDSk/fv3KyYmZk7Hm5qaquLiYtXW1io/P18pKSmSJuNyyttvv62TJ0/K4/EoNzdXwWBQbW1t2rNnj8rLy5WZmRk69/jx46qtrVV8fLwKCwvlcrk0PDys9vZ2LV68+KL3CwaD2rNnj3p6euTxeFRUVKShoSE1NTWpq6tLt956q9xutySptrZWNTU1ysjIUH5+vizL0vDwsDo6OhQMBoliADAIUQxcZ2JiYnTnnXeGBVlBQYFiY2NVW1urvr4+JSUlhR4bGRnR5s2bwyK0q6tLHR0dys3N1cqVK0PHU1NTtX///jkfb3p6umpra5WcnKycnJywxzs6OtTW1qabbrpJ+fn5oeOFhYXauXOnjh49Gorivr4+1dbWKi0tTevWrQt7D5YsWSJJoVnf892vtbVVPT09Kioq0tKlS0PH09LStG/fPlVXV2vVqlWhscXFxWnt2rVh15i6FwDAHEyDANcZh8MRikHbtuX3+2lq8VgAACAASURBVDU+Pq709HRJUm9vb9j5ubm5YUEsTcaeJBUVFYUdz8zMVFxc3NUa+oxaW1sVGRmpzMxMjY+Ph375/X5lZmZqeHhYQ0NDoXMlqbS09LJnadvb22VZloqLi8OOZ2RkKCEhQR0dHZpaNhYZGanR0VH19PRcwSsEANwImCkGrkNNTU1qbm7W6dOnde66f7/fH/ZzbGzstOcPDQ3JsqwZH4uLiwut670WTp8+rYmJCb366qvnPWdsbEyxsbGhOE5MTLzs+w0PD8vlcsnpdE57LD4+XgMDAxofH5fL5dKSJUu0f/9+7dq1S263W6mpqcrIyJDH42HpBAAYhigGrjMNDQ06evSo0tPTtXDhQrndblmWpdHRUVVVVU2L5KkP3l2J8+0kEQwGr/jakhQVFaXVq1ef9/H4+PiLjuVqSE5O1u23366uri51d3fL5/Opra1NcXFx2rhx44xhDQC4MRHFwHXG6/UqJiZG69atCwvEU6dOzfoasbGx6urq0tDQUFhwSppxltjpdE6bgZYU2pHhSkzNACcnJysy8sL/yYmLi9OpU6c0MDAQtm76UsTExKirq0t+v39a1A4ODioyMlJRUVGhY5GRkfJ4PPJ4PJImZ+kPHz6slpaWactPAAA3Lv5+ELjOzDRTatu26urqZn2NqQ+u1dfXhx3v6OiYMYqnllSMjo6GjgWDQTU1Nc3qflOxO1NY5+bmyrZtHT9+fMbnjo2NhX6fnZ0tSaqurr7gLPWF7ufxeGZ8v06dOqX+/n5lZmaG3uPx8fFpz59aujHTYwCAGxczxcB1JisrS9XV1dq7d688Ho/8fr/a2touaY1renq6MjIy5PV6NT4+HtqSrbm5WfHx8Tp9+nTY+QUFBWpra9Pu3buVn58v27bV2to666UZcXFxioyMVFNTkyIiIhQZGSmXy6W0tLTQNmyNjY3q7+/XggUL5HK5NDIyot7eXg0NDemOO+6QNLl38aJFi1RXV6c333xTWVlZcrvdGh4e1smTJ7Vp0yY5nc4L3i8nJ0der1d1dXUaHh5WampqaEs2l8ul0tLS0Lh37Nih5ORkJScny+VyaWxsTM3NzXI4HKFABwCYgSgGrjNFRUWybVter1dHjhyRy+VSVlaW8vLytGPHjllfZ82aNaEv7+jq6lJCQoJuvvlmtbW1TYvilJQUrVy5UrW1taqurpbb7VZ+fr6SkpK0e/fui94rIiIidL8jR44oGAwqNTU19MUcK1euVFpampqbm1VXV6dgMCiXy6XExMRp258tWbJECQkJampqUn19vWzbVnR0tDIyMkKRfqH7ORwOrV+/PvTlHR0dHYqMjFRWVta0L+8oKipSZ2enGhoaNDExoaioKCUnJ6u4uJivjwYAw/CNdpeBb7TDu1lVVdW0b7QDAMAU5/tGO9YUAwAAwHgsnwBgvImJidDXQE8tHZn6+mgAgBmIYgDGO3LkiLxeb+jn9vZ2VVRUXPa2cACAdx+iGDDMypUrtXLlyvkexnVjaGhIbW1tYccCgYBaW1uJYgAwCGuKARgtEAjMuCdyIBCYh9EAAOYLUQzAaPHx8UpOTp52PD09fR5GAwCYL0QxAKNZlqUVK1ZowYIFioiIkNvt1tKlS5WVlTXfQwMAXEOsKQZgvPj4eK1bt06jo6OKjIwMfY00AMAc/JcfAM5wu93zPQQAwDxh+QQAAACMRxQDAADAeEQxAAAAjEcUAwAAwHhEMQAAAIxHFAMAAMB4RDEAAACMRxQDAADAeEQxAAAAjEcUAwAAwHhEMQAAAIxHFAMAAMB4RDEAAACMRxQDAADAeEQxAAAAjEcUAwAAwHhEMQAAAIxHFAMAAMB4RDEAAACMRxQDAADAeEQxAAAAjEcUAwAAwHhEMQAAAIxHFAMAAMB4RDEAAACMRxQDAADAeEQxAAAAjEcUAwAAwHhEMQAAAIxHFAMAAMB4RDEAAACMRxQDAADAeEQxAAAAjEcUAwAAwHhEMQAAAIxHFAMAAMB4RDEAAACMRxQDAADAeEQxAAAAjEcUAwAAwHhEMQAAAIxHFAMAAMB4RDEAAACMRxQDAADAeEQxAAAAjEcUAwAAwHhEMQAAAIxHFAMAAMB4RDEAAACMRxQDAADAeEQxAAAAjEcUAwAAwHhEMQAAAIxHFAMAAMB4RDEAAACMRxQDAADAeEQxAAAAjEcUAwAAwHhEMQAAAIxHFAMAAMB4RDEAAACMRxQDAADAeEQxAAAAjEcUAwAAwHhEMQAAAIxHFAMAAMB4RDEAAACMRxQDAADAeEQxAAAAjEcUAwAAwHhEMQAAAIxHFAMAAMB4RDEAAACMRxQDAADAeEQxAAAAjEcUAwAAwHhEMQAAAIxHFAMAAMB4RDEAAACMRxQDAK5LX/va15SXlyen0ynLslRdXT3fQwJwA4uc7wEAAHCul19+WX/7t3+rW2+9VY8++qicTqeys7Pne1gAbmBEMQDguvPKK69Ikl588UVlZGTM82gAmIDlEwCA605nZ6ckzXkQj42NaXh4eE6veSV6e3vnewgAziCKAQCXbWRkRJ/73OdUUFCgqKgoxcXFadOmTXrzzTfDzvvlL38py7L0rW99S9/85jdVUFAgp9OpjIwMPfbYY6HzqqurZVmWfvnLX0qSLMuSZVlavXp16JzGxkbde++9WrBggZxOp1JTU/XhD39YXq837J4PP/ywLMvSvn379MADDyg9PV0xMTF67bXX9K1vfUuWZennP/+5HnnkEWVkZMjlcmnp0qV69dVXJUm/+tWvdNNNN8ntdis1NVWPPvrojO/Bjh07dNtttykxMVFOp1O5ubn63Oc+J7/fH3be6tWrlZmZqaNHj+qOO+5QfHy8UlJSQo9XVlbqtttuU0JCgqKiolRQUKDHHntMExMTl/FvBsClYvkEAOCyjI2N6ZZbbtHhw4e1ZcsWPfjgg+rv79fzzz+vP/zDP9Qrr7yizZs3hz3nBz/4gXp6evTRj35USUlJevHFF/WNb3xDeXl5evjhh5Wdna1nn31WP/zhD3Xo0CE9++yzkiSPxyNJOnHihCoqKjQxMaF77rlHixYtUm1trf77v/9be/fuVVVVldLS0sLu+fGPf1xut1uf/vSnZVmWcnNzVV9fL0l64oknFAgE9OCDD2p8fFz/8R//oQ9+8IP67ne/q0cffVT33Xef7r33Xv385z/Xt7/9bRUVFemRRx4JXfvHP/6xPvnJTyo7O1sPPvigUlNTtWfPHj377LP6/e9/r23btoWNZWRkRLfddptWrVqlxx9/XKdOnZI0Gdbve9/7FBkZqU984hPKzMzUK6+8om984xs6fPhwaDkJgKvItm1+XeKvNWvW2ABguieeeMKWZP/kJz8JO+7z+ez09HR71apVoWMvv/yyLclOSUmxu7q6QscHBgbsxMREe9myZWHX2LJliz35R1S4W2+91U5MTLRra2vDjm/fvt12OBz2Qw89FDr20EMP2ZLsVatW2ePj42Hnf/Ob37Ql2cXFxfbIyEjo+HPPPWdLsiMiIuzt27eHjo+MjNgpKSlh4xwaGrKTk5PtFStWTLv+1Hvz8ssvh46tWrXKlmR/+tOfnva6ysrKbIfDYe/atSt0LBgM2nfeeactyf7Zz3427TkALo+kA/YMfcfyCQDAZXnppZeUl5enTZs26eTJk6Ffo6OjuuWWW3To0CENDg6GPeeee+4Jm8mNj49XWVnZtKUPM+nu7tZbb72l22+/XTExMWH3XLx4sbKzs/W73/1u2vM+85nPyOl0znjNv/zLv5Tb7Q79/L73vU+StHTp0rBZbrfbreXLl4eN82c/+5l6e3v1p3/6p+rq6gobz4c+9CFJ0v/+7/9Ou+fXvva1sJ+9Xq8OHz6sW2+9VRUVFaHjlmXpqaeekjT5XgO4ulg+AQC4LM3NzRobG7vgVmnt7e0qLi4O/VxYWDjtnOTkZA0MDFz0focOHVIwGNQvfvEL/eIXv5jxnJnW3y5fvvy81zx7bJK0YMECSVJubu60cxMTE8PGefjwYUnSF77wBX3hC1+Y8fpTyyPOvkZ6enrYsePHj0uSSktLpz1/zZo1cjgcam5uPu9rADA3iGIAwGWxbVuFhYX6h3/4h/Oec24wR0Ze/h87wWBQknTXXXfpk5/85IznxMbGTjsWFxd33mtGRERc0vGzTf4trPSlL31Ja9asmfGc/Pz8sJ/PnpUGcH0higEAlyUnJ0d9fX36kz/5k1lF5JVavny5LMuS3+/XRz7ykat+v4uZmtmNjY29ovFMXWdqxvhsb7/9toLB4LS4BjD3WFMMALgs9957r3p6evTkk0/O+HhLS8uc3s/j8aiiokLbt28PbZt2Ntu21dbWNqf3vJB77rlHSUlJ+td//dfQvspnGxwcnNU+xLm5uSorK9POnTu1d+/e0HHbtvXVr341dC8AVxczxQCAy/LUU09px44d+vrXv67f/e53+oM/+AMlJCSoublZb731lqKiovT222/P6T1/9KMfaePGjbr77ru1ZcsWrVy5UsFgUA0NDXrttdf04Q9/WN/5znfm9J7nk5CQoO9973v6sz/7My1evFgf+chHVFxcrN7eXtXU1Gjbtm368Y9/rA984AMXvdazzz6r973vfbrzzjt1//33y+Px6JVXXtHevXv13ve+N/TBPQBXD1EMALgsLpdLO3fu1NNPP60XX3xR//zP/yxJSktLU1lZ2XnX/V6J4uJivfPOO3ryySf16quv6te//rWioqK0YMEC3XHHHXrggQfm/J4Xct9996mgoEB/93d/p5dffln9/f2Ki4tTTk6O/uIv/kLr16+f1XU2b96s119/XV/+8pf1/PPPa3R0VFlZWfriF7+ov//7v7/KrwKAJFlTHxTA7JWXl9sHDhyY72EAAADgElmWddC27fJzj7OmGAAAAMZj+QQAANeRsbExHT16VJK0bNkyuVyueR4RYAZmigEAuE40NjbqoYce0tq1a7V27Vo9/PDDamxsnO9hAUYgigEAuE78/Oc/1w9+8AMFAgEFAgF9//vfP++39wGYW0QxAADXia1bt0479pvf/GYeRgKYhygGAOA6sWrVqmnHVq5cOQ8jAcxDFAMAcJ342Mc+ptzc3NDPubm5uvfee+dxRIA52H0CAIDrxNq1a/Xqq6/q4MGDkqQ1a9aotLR0nkcFmIEoBgDgOlJaWkoIA/OA5RMAAAAwHlEMAAAA4xHFAAAAMB5RDAAAAOMRxQAAADAeUQwAAADjEcUAAAAwHlEMAAAA4xHFAAAAMB5RDAAAAOMRxQAAADAeUQwAAADjEcUAAAAwHlEMAAAA4xHFAAAAMB5RDAAAAOMRxQAAADAeUQwAAADjEcUAAAAwHlEMAAAA4xHFAAAAMB5RDAAAAOMRxQAAAHPM6/WqoaFhvoeBS0AUAwAAzDGi+N2HKAYAAIDxIud7AAAA4OoLBoNqaGhQW1ubhoaGZFmWYmNjlZubq4ULF4bOGx4eVk1Njbq6uuT3++V2u5Wdna3i4mJFRESEzvP7/Tpx4oQ6Ojo0OjqqiIgIxcTEKDs7W0VFRaFrvf766yopKVF8fLxqa2s1ODio6OhoFRcXKzc3VyMjIzp69Ki6u7tl27YyMjJ00003KTIyPFEGBgZUU1Mjn8+nQCCgmJgY5ebmqqioSJZlhc6rqqqS1+vVe9/7XlVXV6u9vV0TExNKSkrS0qVLlZycHDrXtm3V1dXp1KlTGhoakt/vl8vl0oIFC1RaWqqoqKjQuT6fT5WVlVq5cqVyc3PDxjZ1zy1btkiStm3bppGREUnS1q1bQ+dVVFQoNTVVfX19ampqUk9Pj0ZHR2VZlhISElRUVKTMzMzL/neMK0MUAwBwgwsGg9qzZ498Pp/S09OVk5Mjh8Oh06dPq6OjIxTFIyMj2rlzpyYmJlRQUKDY2Fj5fD7V1taqp6dHGzZsCAXogQMH5PP5VFBQoISEBAUCAZ0+fVrd3d2hKJ7S2dmp5uZmFRQUyOl0qqWlRVVVVXI4HKqurlZaWpqWLFmivr4+tbS0KCIiQitWrAg9v6+vT5WVlXI4HCooKJDL5VJnZ6eqq6s1MDCg1atXT3vNe/fuVVRUlEpKSuT3+1VfX699+/bpjjvuCAW3bduqr6+Xx+NRZmamIiMj1dfXJ6/Xq56eHt16661yOC79L9WXL1+u6upqjY+Pa9myZaHjcXFxkqT29nYNDg4qKytLMTExGh8fl9fr1f79+7V69WplZ2df8j1x5YhiAABucA0NDfL5fCouLlZpaWnYY7Zth34/FXLr1q3TggULJEkFBQWKjo5WfX29vF6v8vLy5Pf71d3drYKCAi1fvvyi9x8cHNTmzZsVHR0tScrOztZrr72mt99+W8uWLVNhYaEkKT8/X+Pj42ptbdWyZctC8Xr06FEFg0Ft3LhRCQkJkqSFCxfq4MGDamtrU15entLS0sLumZiYqLKystDPcXFxofPz8/MlSQ6HQ+95z3vCZsDz8/OVnJysQ4cOqaOjQ1lZWbN7k8+SmZmphoYGBQIB5eTkTHu8pKQk7J5Tr+d3v/udTpw4QRTPE9YUAwBwg2tra5PT6VRJScm0x6Zmfm3bVmdnpxITE0NBPKW4uFiWZamjo0OSFBERIYfDod7eXg0PD1/0/pmZmaEglqSoqCjFxcXJsiwVFBSEnZuamqpgMBhafjA2Nqaenh5lZGSEgvjscUmTM6/nmgrtKVPRPDQ0FHZ8Kk5t25bf79f4+Hjo3N7e3ou+tstxdhAHAgGNj48rEAgoLS1Ng4ODmpiYuCr3xYUxUwwAwA1uaGhICQkJF1wKMD4+romJCcXHx097zOl0yuVyhYLS4XBo+fLlOnLkiF5//XXFx8crLS1NmZmZ02ZsJSkmJua81zx3TE6nMzQeSaHonmlcU2E9U5ife8+p9cFT151y8uRJ1dfXa2BgQMFgMOwxv98/7bpzYWxsTMePH1dnZ6fGxsamPe73+6etqcbVxzsOAAAuWX5+vjIyMnTq1Cn5fD6dPHlSjY2NysrK0po1a8LOPfuDcLM5Phdmc+329nYdPHhQSUlJWrZsmaKjo0ORvmfPnlnf69yYvpg9e/ZocHBQCxcuVFJSUuh/BLxer9ra2sKWtODaIYoBALjBxcbGanBwUMFg8LyzxVFRUYqMjNTp06enPeb3+zU2NqbExMSw4263W3l5ecrLy5Nt23rnnXfU1tamoqIiJSUlzcnYp2Z8ZxrX4OCgbNuecSZ6NlpbW+VwOFRRURG2pGFwcHDauVPhOtPs8WyWkEwZGBjQwMCASkpKtHjx4rDHWlpaZn0dzD3WFAMAcIPLyckJbaF2PpZlKSMjQ/39/Tp16lTYY3V1dbJtO7RdWCAQUCAQmPb8qTW/c7nswOVyKSUlRZ2dndPCuK6uTpLk8Xgu69qWZcmyrGkzszO9TzExMbIsS11dXWHHe3p6Zlx7HBkZOeP7cL4Z7KmdQDB/mCkGAOAGt3DhQnV0dKi2tlZ9fX1asGBBaEu2wcFBbdiwQZK0ZMkSdXV1af/+/WFbsp08eVKpqamh/XmHhoa0a9cueTwexcfHy+l0anBwUE1NTYqJiVFKSsqcjn/ZsmWqrKzUrl27wrZk6+rqUnZ29ozrmGfD4/Govb1du3fvVk5OjmzbVkdHx7TglyYjNzc3Vy0tLXr77beVmpqqoaEhtbS0KCEhQQMDA2HnJycnq7OzU4cPHw69H2lpaYqLi1N8fLzq6uoUCAQUFxenwcFBNTc3Kz4+Xv39/Zf1WnDliGIAAG5wDodDGzZsUH19vdra2lRdXa2IiIjQl3dMiY6O1qZNm1RTU6PW1lZNTEzI7XaruLg4tAOF9P+XTXR3d4ciMjo6Wvn5+SoqKpq23diVSkpK0saNG1VTU6OmpqbQl3csWbJk2p7IlyI7O1uBQED19fU6duyYnE6nMjIytHTpUv32t7+ddv7UnsPt7e3q6OhQYmKi1q5dq5aWlmlRXFhYqOHhYbW3t6u5uVm2bYe+vGPdunU6evSovF6vAoGA4uPjtWrVKvX39xPF88hiMfelKy8vtw8cODDfwwAAAMAlsizroG3b5eceZ00xAADAPAkGgxoYGJhxazZcWyyfAAAAmAc9PT06cuSIBgYGFBkZqcLCwrBlKri2mCkGAAC4xgKBgKqqqtTf3x/6Nr2amhp2oJhHRDEAAMA11t/fP+0rpyWpu7t7HkYDiSgGAAC45pxO54xfpDL1ddS49ohiAACAayw+Pl7Z2dlhx1wu17RjuHb4oB0AAMA8KCsrU1JSknw+n9xut3JzcxUXFzffwzIWUQwAADAPIiIiVFBQoIKCgvkeCsTyCQAAAIAoBgAAAIhiAAAAGI8oBgAAgPGIYgAAABiPKAYAAIDxiGIAAAAYjygGAACA8YhiAAAAGI8oBgAAgPGIYgAAABiPKAYAAIDxiGIAAAAYjygGAACA8YhiAAAAGI8oBgAAgPGIYgAAABiPKAYAAIDxiGIAAAAYjygGAACA8YhiAAAAGI8oBgAAgPGIYgAAABiPKAYAAIDxiGIAAAAYjygGAACA8YhiAAAAGI8oBgAAgPGIYgAAABiPKAYAAIDxiGIAAAAYjygGAACA8YhiAAAAGI8oBgAAgPGIYgAAABiPKAYAAIDxiGIAAAAYjygGAACA8YhiAAAAGI8oBgAAgPGIYgAAABiPKAYAAIDxiGIAAAAYjygGAACA8YhiAAAAGI8oBgAAgPGIYgAAABiPKAYAAIDxiGIAAIAL2LZtmyorKy967Go5fvy4XnnlFVVWVmpwcFC1tbXav3//VbmX1+vV1q1b5fP5rsr1r2eR8z0AAAAAzCwQCKiurk4lJSXq7+/XG2+8IcuydPPNN8/30G44RDEAAMAluv3226/JfRwOhzZv3qzY2FhJkt/vl2VZiowk4eYa7yj+X3t3HldVtfcP/LM5nMNhlBlEJlHAecIEB1DJsgk1tcfqdknzqVfeyizzpuZTPT0533rqPmnWzSQxG+7VlBxSU9Qcc0BTBGRGAZFBkMkzcNbvD3/nXLcHFBQF3Z/363VeL11n7b3WPmR8WHz32kRERNRCNjZ3pwJVkiRLIAYAtVp9V8ZtTSaTCcDd+8xuFUMxEREREYD6+nqcOXMGFy9eBAB4eHigZ8+ejfb99ddf4eDggCFDhljaKioqkJmZiaqqKhgMBmg0Gri4uCAsLAxubm6WfgaDAVlZWSguLkZ9fT1sbW3h5eWFbt26wcHBwdLv3LlzOHHiBAYPHoyqqirk5eXhypUrsLe3R2hoKAICAmRzKioqwvnz53H58mXodDrY2trC3d0d4eHhcHFxsbqGgoICZGdno66uDvb29ggODm4ydNfV1SEjIwOlpaUwGAzQarXo1KkTQkNDoVKpLP0yMjJw9uxZjBgxAgUFBSgqKoJOp8PgwYPh4eHR4jneTQzFREREpHgGgwEHDhxAfX09goKC4OzsjPLychw8eBANDQ03Pb6mpgaHDh2CnZ0dOnfuDDs7O+h0OlRUVODy5cuWUGwwGLB//37U19cjICAAzs7O0Ol0yMvLw2+//YaYmBjY29vLzp2eno6GhgYEBQXBxsYG+fn5OHHiBBwdHeHu7m7pl5ubC41Gg6CgINjZ2aG2thb5+fnYv38/YmJiZCvOOTk5SE1NhYuLC7p164aGhgZkZ2fDzs7O6trq6+vx22+/wWg0Ijg4GI6OjigvL0dmZiYqKiowePBgSJIkO+b48eNQqVTo0qULAFjO25I53m0MxURERKR45hXTfv36WVZgg4ODkZqaipycnJseX1paioaGBkRERMDV1bXJfhkZGaitrUV0dLRsZTQgIAC7d+9GRkYG+vXrJzumoaEB0dHRlvIDPz8/7Ny5E3l5ebJQHBUVJVu1NZ93z549yMnJQe/evQFcDebp6elwcnLCsGHDLMcEBgZi165dVnNOS0uDXq9HZGQkvL29LZ+Nvb09srOzce7cOQQGBsqOUavVjYbl5s6xLbTv4g4iIiKiu6C4uBh2dnbw9/eXtZtXOm/GfOPbhQsXLDW0jSksLISHhwe0Wi30er3lpVKp4ObmhtLSUqtjOnfuLKvH1Wq1cHR0RE1NjazftWHTaDRCr9dDo9HAyckJly5dsrxnDvCdO3eWHaPVaq2uXwiBkpISdOjQwRKIzUJDQyFJEi5cuGA155CQEKtA3JI5tgWuFBMREZHi1dXVwdXV1SrIabXaZt3c1qlTJxQWFiIzMxM5OTlwc3ODl5cXOnXqZCmH0Ol00Ov1KC0txbZt2xo9T2NB8to6YzONRoP6+npZW1VVFTIyMlBWVmZV8nHtOerq6gAATk5OVue9vk2v18NoNMLZ2dmqr1qttpRAXK+pMojmzrEtMBQTERER3SYbGxtERUWhsrISFy9eREVFBTIyMpCRkYGIiAj4+vpa+np5eTV7BRpoPCgDV1dxzerr63HgwAHY2toiLCwMTk5OllXZ1NRUGI3GW7yyW3N9iUR7nOP1GIqJiIhI8RwcHFBbWwshhCyEXrlyBQaDodnncXV1tdQU19fXY+/evUhPT4evry80Gg3UajUMBgO8vLxadf7FxcUwGo144IEH4OnpKXtPr9fLyi/MK7I1NTVWfa8vydBoNLC1tUV1dbXVmAaDATqdDh06dGj1ObYF1hQTERGR4vn6+kKn0+H8+fOy9uzs7GYdr9frrdrs7e2h0Wgs70mShE6dOqGyshLFxcWNnken07Vw5rCcuzEFBQVW5/Ty8oJKpUJubq6shOHKlSsoLCy0Oq+Pjw+qqqosW9WZZWVlQQghWwVvrTm2Ba4UExERkeJ17doVhYWFOHnyJCorKy1bsl26dAkajeamx2dmZuLixYvw8fGxrMSWlJSgpqYGXbt2tfTr1q0bKioqcPToUfj5+cHNzQ02Njaor69HSUkJXF1drXafaA5vb2+oVCqkpKQgODgYGo0GFRUVKCkpgaOjo+zm4GHoXAAAIABJREFUP7VajfDwcJw5cwb79u1DQEAAGhoakJeXB0dHR1RVVcnO3b17d5SWluLIkSOyLdmKiorg4eFhtV9ya8yxLTAUExERkeKp1WoMHToUqampltViDw8PDB48GAcPHrzp8b6+vrhy5YrlYRUqlQqOjo7o27evbLsytVqNYcOGITs7G0VFRbhw4QJsbGyg1Wrh7u5utbVZczk6OiIyMhLp6enIysqCJElwc3PD0KFDcerUKcvNdWZdunSBra0tsrOzkZaWBnt7e3Tp0gVqtRonTpyQ9bW3t0d0dDQyMjJw/vx5GI1GaLVahIaGWnaguBNzvNuka4u0qXkGDhwojh492tbTICIiIqIWkiTpmBBi4PXtrCkmIiKi+9onn3yChISEtp7GXaGka21tXCm+BVwpJiIiuncEBwcjODgYu3fvbuup3HH3yrXqdDpcvHgRDQ0N8Pb2vqt7FDe1UsyaYiIiIqJrVFdXN/qwCmodly9fxpEjRyw1xLa2toiIiLB6Yt7dxvIJIiIialeqq6sxb948REZGwtPTE3Z2dujatStmz54tuxnLZDLhk08+QZ8+feDs7AwXFxeEh4dj6tSplr2FJUlCfn4+9uzZA0mSLK+8vDwAV1dWR4wYgZSUFIwePRodOnRAnz59LGPs3bsXDz30EDp06AB7e3sMGDAAK1eutJrziBEjEBwcjKKiIjzzzDNwc3ODg4MDRo8ejbNnz97S9QFAQkICJElqdOXXPKbZza51+/btmDRpEkJCQmBvbw9XV1c8/PDD2LNnT0u+PLctJydHdp1GoxEZGRlo6+oFrhQTEd2jMjIycPbsWTz44INt+njUc+fO4cSJExgyZAg8PDzabB50/ygsLMRXX32FCRMm4Nlnn4WtrS327NmDJUuWICUlxfKI5Pnz5+Pdd99FXFwcXn75Zcveu0lJSdDpdFCr1UhMTMQbb7wBT09PvPPOO5Yxrn14RkFBAWJjY/HUU09hwoQJlgdY/Pzzz3jyySfh6+uLmTNnwtnZGd9//z3+8z//Ezk5OZg/f75s3rW1tYiJiUFUVBQWLFiA3NxcfPrppxg7dixOnz5teXpbc6+vpW52rQkJCaioqEB8fDz8/f0t83jwwQeRnJyM6OjoWxq3pS5fvmzVVl1dDaPR2KxHat8xQgi+WviKiIgQRERtLT09XSQlJYna2to2nUdBQYFISkoSZWVlLT42PT1dFBcX34FZ0b1Mp9MJvV5v1T5v3jwBQBw+fFgIIUT//v1F9+7db3q+oKAgMXz48CbfAyD+8Y9/yNqNRqMIDAwUHTp0EIWFhbK5DRkyRNjY2IizZ89a2ocPHy4AiMWLF8vOs2TJEgFA/PLLLy2+PiGEWLVqlQAgkpOTrfoPHz5cBAUFNftaa2pqrNouXLggPDw8xKOPPtroMXfCyZMnRVJSkuy1b9++uzY+gKOikXzH8gkiIrot/v7+ePzxx+Hu7t7iY8+ePYsLFy7cgVnRvcz8OGTg6q/WL126hLKyMowaNQoAcPjwYQBAhw4dUFhYiH379t3WeO7u7pgyZYqs7dixYygoKMALL7wAPz8/2dz++te/wmQyYePGjbJjbGxsMH36dFlbbGwsgKsP92jp9bU2R0dHy59rampQXl4OlUqFyMjIOzZmY0JCQuDk5GT5u0ajQXh4+F0bvyksnyAiuscYjUbY2raf/32b6xaJWtPy5cuxYsUKpKamWj3p7NKlSwCABQsWYNy4cYiOjoafnx9GjBiBxx9/HBMnTmzWU+jMunTpYiltMMvNzQUA9OzZ06q/uS0nJ0fW7ufnB61WK2szlxSVl5e3+PpaW3Z2Nt555x1s27YNlZWVsvfu5r9hJycnDBs2DKWlpWhoaICXl5fV59YW2s//VYmIFOJGtcC//vorHBwcMGTIEABXaxoDAgLg7++PjIwMVFVVwdXV1fI+ADQ0NOD06dMoKiqCwWCAi4sLunfvDk9PT9m5i4qKcP78eVy+fBk6nQ62trZwd3dHeHg4XFxcGp1Hnz59kJqaioqKCgBXaxN79+4NOzs7S9/GaopNJhMyMzNRWFiIK1euWJ7Y5e3tjR49eqCurg47d+60HH/u3DnL+eLi4lo8X7q/fPzxx5g5cyYefvhhTJ8+HX5+ftBoNCgsLMTkyZMtIXLw4MHIzs7Gtm3bkJycjOTkZKxduxYffvgh9u3b1+zfXrRWTf71wfpa4pqbyJp7fcCNw6rRaGz23GpqahATE4Pa2lrMmDEDvXv3hrOzM2xsbLBw4ULs2rWr2edqDWq1WrYC3x4wFBMRtXOVlZUoLi5GYGAgAgICrN5PSUmBJEno2rUrjEYj8vPzcejQIURGRspuJsrNzYVGo0FQUBDs7OxQW1uL/Px87N+/HzExMbJfrQLAlStXcODAAfj6+qJHjx6oqqpCfn4+jEYjoqKibjjnU6dOoaCgAP7+/nB3d4cQArW1tSgrKwMA2NnZoX///khJSYG7uzuCgoKsztHS+dL9IzExEcHBwdi6dStsbP5d6fnLL79Y9XVycsKECRMwYcIEAFdXYF955RWsXLkSs2bNAnBrq6AhISEAgNTUVKv3zpw5I+vTUi25PnOwN/9geq3c3FyrG9OautadO3eiqKgIX3/9tVWpyLx581p8DfcjhmIionauuroaUVFRsoB7LUmSMHToUMs318DAQOzatQunT5/GyJEjLf2ioqKsVrICAgKwZ88e5OTkoHfv3rL3amtrERERIVvNMW/vVFNTI6sJvF5xcTG8vb3Rv3//Rt9XqVTw9/dHSkoKHB0d4e/vb9WnpfOl+4dKpYIkSbLVVaPRiEWLFsn6lZWVWf1GZMCAAQDkIdLJyanRUHkjAwYMQGBgIFatWoW//vWv8PX1BQAYDAYsXboUkiRh7NixLTqnWXOvDwDCwsIAXP3tzfjx4y3t3333HYqKiqx+oGzqWs3/lq4dE7i6TdvdrCduzxiKiYjaORcXlyYDMXB1tera1SatVgt/f3/k5+fLwuu1AdNoNMJkMkGj0cDJyanRGkatVmv1601PT0/k5eWhtrb2hqFYrVajurr6th6C0NL50v1j4sSJmDNnDh599FGMHz8ely9fxtq1a61WRbt3746oqChERkbCz88PxcXF+PLLL6HRaPD0009b+kVFRWHlypX4r//6L3Tv3h02NjaIi4u74W8bVCoVPvvsMzz55JN44IEH8NJLL8HZ2Rk//PADDh06hLlz5yI0NPSOXh8AhIeHY9SoUfjiiy8ghEC/fv1w4sQJ/PTTT+jatatlP+abXeuwYcMsW8vl5eXB398fJ06cQGJiInr37o1Tp07d0rXcTxiKiYjauRuFTwCNhk7zMdeG16qqKmRkZKCsrAwNDQ2y/o3VVDbWZr55Sa/X33BOPXv2REpKCnbv3g0HBwd4enrCx8cHPj4+zf5VdkvnS/ePWbNmQQiBlStX4vXXX4evry8mTZqEKVOmoEePHpZ+M2fOxJYtW/D3v/8dVVVV8Pb2RlRUFObMmYO+ffta+s2fPx8VFRVYtmwZKisrIYRAbm7uTUtw4uLisHPnTnz44YdYunQp9Ho9unfvjq+++gpTp06949dnlpiYiNdeew3ffvstEhMTER0djeTkZEybNs3yYI6bXWtwcDC2bduGv/71r/i///s/GI1GREREYMuWLVi5ciVDMQDp+mV0urmBAweKo0ePtvU0iOgedfbsWWRkZDR6o92OHTvg6OhodaNdv379rM5jvmFv+PDhVjee5eTkIDU1FYMGDYKPjw/q6+uxe/du2NraonPnznBycrKsxKampsJoNFq2gwKsb/gzKy8vx4EDB9CvXz9LfXNTD+8wGAwoKSlBeXk5ysrKUFdXB3d3dwwePNiyst3U9bV0vkREzSVJ0jEhxMDr27lSTER0l5l/RXr9rz1NJhN0Ol2LbyCrrq62CsXmJ3KZz1VcXAyj0YgHHnjAqgZTr9fLyi9ai1qthr+/v6VeOC0tDVlZWbhw4cJN7zpvi/kSkbLx/ypERHeZuZyhtLRU1p6dnW11E0xz5OTkyLZwunLlCgoLC+Hk5GQZq6mShYKCAuh0uhaPeSNCCKvAD8AS3K99z9bWttFSjLs5XyKlqq6uxsmTJ5GamnrTkigl4EoxEdFd5unpCScnJ2RkZMBgMMDBwQHl5eWorKxs0QMHzIQQ2L9/Pzp16mTZkq2hoQG9evWy9PH29oZKpUJKSgqCg4Oh0WhQUVGBkpISODo6Wj084HYYjUZs374dvr6+6NChAzQaDerq6pCfnw+1Wg0fHx9LXzc3N5SVlSErKwv29vYAgE6dOt3V+RIpUXZ2NmbMmIFNmzZBpVLhtddew+zZs2X/PpWGK8VERHeZJEkYNGgQPDw8kJubi7S0NAghMGTIkBtu/t+U/v37w83NDVlZWcjMzIRWq7Xao9jR0RGRkZFwcHBAVlYW0tLSoNfrMXTo0FZ/kpRKpUJISAjq6uqQlZWFU6dO4fz58/Dx8UF0dLRsvN69e8Pd3R2ZmZk4fvw4jh8/ftfnS6REiYmJ2LRpE4CrDwD65JNPsHfv3jaeVdvijXa3gDfaERER0b3KvPe5+SEkZq+88go+++yzNprV3dPUjXZcKSYiIiJSEAcHB8TExFi1N/WwHaVgKCYionavqKgIR44cweHDh5Gfn39LNyQS0VUqlQp/+ctfZE+SHDp0KGJjY9twVm2PN9oREVG7VlhYiJSUFEsQvnjxIoxGI7p06dLGMyO6d/Xu3Rv79+9HWloaNBoNevbsCW9v77aeVptiKCYionatsZXhvLw8hISENPvpeERkLTAwEIGBgW09jXaD5RNERNSuGY3GRttYQkFErYmhmIiI2rWOHTtatfn5+fGpdkTUqlg+QURE7VpISAgMBgMKCgpgMpng5+eHsLCwtp4WEd1nGIqJiKhdU6lU6NGjB0JDQyGEuKWn/hER3QxDMRER3RPUanVbT4GI7mMsyCIiIiIixWMoJiIiIiLFYygmIiIiIsVjKCYiIiIixWMoJiIiIiLFYygmIiIiIsVjKCYiIiIixWMoJiIiIiLFYygmIiIiIsVjKCYiIiIixWMoJiIiIiLFYygmIiIiIsVjKCYiIiIixWMoJiIiIiLFYygmIiIiIsVjKCYiomY5d+4cfv75Z5SXl7f1VO4pu3fvhiRJSEhIaOupENENMBQTERHdZXl5eXj//fdx4sSJ+3I8onuRbVtPgIiI6H4WExOD+vp6qNVqS1teXh7++7//G8HBwejXr98dn8PdHo/oXsSVYiIialUmkwkmk6mtp9EsQgjU1NTc0TFsbGyg1WqhUqnu6DhEdHsYiomIWpHJZEJWVhb27NmDLVu2YOvWrdi7dy9yc3Nl/erq6pCSkoLt27dj8+bN2LlzJ9LT09HQ0CDrl5GRgZ9//hnV1dVITU3F9u3bsWXLFhw8eNAS5oqLi7F3715s3rwZv/76K/Lz863mVVRUhN9//x2//vorNm/ejG3btuHIkSO4fPlyo9dRUFCA5ORkbN68Gbt27UJOTk6j/a6f344dO7BlyxZcunQJAKDX63Hq1Cns2LEDmzdvxo4dO3Dq1Cno9XrZecz1ymVlZcjOzsbOnTstY587d+6G1/PPf/4TzzzzDHr16gUPDw/Y2dmha9eumD17Nurq6izHXFvbu2zZMvTo0QNarRZ/+9vfAABXrlzBrFmz4OfnB3t7ewwaNAjbt2/H5MmTIUmSbPzg4GCMGDHCal6N1Q9f35aQkICRI0cCAKZMmQJJkiBJkux8Qgh8/vnniIiIgIODA5ycnDBy5EgkJyc3+nVYt24dRowYAVdXVzg4OCA8PBzTp0+HXq9v1ni1tbWYM2cOunTpAjs7O/j6+iI+Pr7R/5aI7lcsnyAiaiUmkwmHDh1CeXk5vLy84O/vDxsbG1RXV+PChQvo3LkzAKC+vh6//fYbjEYjgoOD4ejoiPLycmRmZqKiogKDBw+2CmEnTpyASqVCaGgo9Ho9srOzcejQIXTr1g1nzpxBcHAwAgICUFBQgD/++APOzs5wd3e3HJ+bmwuNRoOgoCDY2dmhtrYW+fn52L9/P2JiYuDo6Gjpm5OTg9TUVLi4uKBbt25oaGhAdnY27Ozsmrz248ePQ6VSoUuXLgAAOzs7GAwG7Nu3D7W1tQgMDESHDh1QVVWFvLw8lJWVITo6Gra28m9D5h8MgoKCYGNjg/z8fJw4cQKOjo5NXo+NjQ127NiBwYMHY+jQoQgPD8ehQ4ewZMkSpKSkYNu2bbIxPvnkE5SXl+PFF1+Er68vAgICAADPPPMMNmzYgLi4OIwePRrZ2dkYP3685evWWmJiYjB37lwsWLAAL730EqKjowEAPj4+lj5//vOf8d1332HixImYMmUKdDodvv32Wzz00ENYv349xowZY+n7zjvvYMGCBejRowfeeOMNdOzYEdnZ2Vi3bh0++OCDm45nMBgwevRo7N+/HxMnTsTMmTORmZmJzz//HNu3b8fRo0fh7+/fqp8BUbskhOCrha+IiAhBRHS9zMxMkZSUJNLS0qzeM5lMlj8fO3ZMJCUliZKSElmf1NRUkZSUJPLz8y1t6enpIikpSRw+fFjWNycnRyQlJYktW7aIuro6S7tOpxObNm0Sx44dk/U3Go1Wc6qurhabNm0Sf/zxh6VNr9eLzZs3i127dsmOqa+vF5s3bxZJSUmirKzMan779++XXaMQQqSlpYmkpCSRm5sra8/NzbX6nAoKCkRSUpLYvXu3aGhokI17s+vR6XRCr9dbXc+8efMEAMtnl5ycLAAINzc3q89+27ZtAoB4/vnnZe0//fSTACCufrv8t6CgIDF8+HBxPfMYq1atanGb2fr16wUA8cUXX8jaDQaDiIiIEMHBwZbP+vDhwwKAGDlypKivr5f1N5lMln43Gu/LL78UAMSsWbNk7Zs2bRIAxHPPPWd1DNG9DMBR0Ui+Y/kEEVErKSwshFqtRlhYmNV75pVfIQRKSkrQoUMHeHt7y/qEhoZCkiRcuHDB6vjrVyvNq6Y+Pj6wt7e3tGs0Gjg5OVnVyV5bz2o0GqHX6y19zaUOAFBaWoqGhgZ07txZdoxWq73hamFISIjV6nZxcbFlNfdaQUFB0Gg0TV6njc2/vzVptVo4Ojre8HpsbGwghIBGo4FWq0VBQQHKysowatQoAMDhw4dlx8bHx1t99hs2bAAAzJo1S9Y+btw4hIeHN3ndd8KaNWvg7OyMcePGoayszPKqrKxEXFwc8vLykJmZCQD49ttvAQALFy6EVquVncdcJnEzP/30E2xsbDBnzhxZ++OPP45+/fph48aN90yNONHtYPkEEVErqa2thYuLiyzUXU+v18NoNMLZ2dnqPbVabSltuJ6Dg4NV38baze/V19fL2qqqqpCRkYGysjKruuVrz2GuwXVycrI6b2NtZteWX1x7LldXV6tgJkkSnJycUFVVZXVMY9ej0Whuej3m+u1z585ZBbhrQz+ARn9oycnJgY2NTaPvde/eHRkZGVbtd0paWhqqq6tl5RTXKykpQVhYGDIzMyFJEvr27XvL4+Xm5sLPzw9ubm5W7/Xs2RMnTpxAWVmZ1Q8SRPcbhmIiontAUyt+TbVf/Q3hVfX19Thw4ABsbW0RFhYGJycny0pramoqjEbjbc+vtXZWuJXrWbNmDVasWIERI0bgqaeegqurKyIjI1FYWIjJkydbheTGgndrzbM1PkshBLy8vLB27dom+/Tq1Us2l+asCBPRjTEUExG1EvOv+U0mU5OrxRqNBra2tqiurrZ6z2AwQKfToUOHDq06r+LiYhiNRjzwwAPw9PSUvafX62VzNQfGmpoaq74t3brM/HkIIWShTfz/bdBuNZxefz0bN25EcHAwdu7ciV9//RU2NjYYNWoUfvnll2afMyQkBCaTCWfPnkXPnj1l76WlpVn1d3d3R0VFhVV7U7t0XO9GITY0NBRnz55FVFTUDVfngaur3lu3bsXJkycxaNCgWxovJCQEv/zyCyorK+Hq6ip778yZM3BxcbH6b4HofsSaYiKiVuLv7w+DwYCzZ8822UeSJPj4+KCqqgoXL16UvZeVlQUhBHx9fVt1Xk0FooKCAuh0Olmbl5cXVCoVcnNzZWUWV65cQWFhYYvG9fX1hV6vR0FBgaw9Pz8fer3+lq/z+utRqVSQJAn5+fmW6zEajVi0aFGzzzl27FgAwNKlS2XtGzZsaLR0IiwsDOnp6bLPRKfTYdmyZc0azxx2GwvW8fHxMJlMVjW+ZiUlJZY/P/vsswCAuXPnWm1zB/x7hf1G440bNw4mk8nq89q6dStSUlIwZsyYG5YEEd0vuFJMRNRKOnfujAsXLiAzMxOVlZXw9va2bMlWU1ODwYMHA7hao1paWoojR47ItmQrKiqCh4eHZYuw1uLt7Q2VSoWUlBQEBwdDo9GgoqICJSUlcHR0lJUXqNVqhIeH48yZM9i3bx8CAgLQ0NCAvLw8ODo6NloH3JQuXbqgqKgIp06dQmVlpWVLtnPnzsHJyQldu3aV9T916hTGjBmDVatWYfLkyc2+ngcffBBLlizBhAkTMHz4cNTU1OCtt96SPUHuZkaPHo24uDh88803qKiowCOPPILs7Gx88cUX6NWrF06fPi3r/+qrr+L777/HqFGj8PLLL0Ov1yMxMbHZq989evSAs7Mzli9fDgcHB7i6usLb2xuxsbGWbdg+++wzHD9+HE888QQ8PT1x/vx5HDx4EFlZWZYV6UGDBuHtt9/G4sWLMWDAAEyaNAm+vr7Izc3Fv/71L/z+++9wdXW94XiTJ0/GN998g8WLFyMvLw8xMTHIysrC8uXL4ePjgwULFjT7cyS6l/FHPyKiVmJjY4PBgwejW7duuHLlCtLS0pCeno7Kykp07NjR0s/e3h7R0dHw8/PD+fPnkZqaisrKSoSGhiIyMrLV60MdHR0RGRkJBwcHZGVlIS0tDXq9HkOHDrXasQC4Gmb79OmDhoYGpKWl4dy5c+jSpUuL9+tVq9UYNmwYgoKCcPHiRZw+fRoXL15EUFAQhg4darVHcWPy8vKwcuVKZGVlNXk9MTExmDZtGiorK7Fs2TIkJSXh4YcfxurVq1s03x9++AFTp07Frl278MYbb+C3337D+vXrERERYdV36NChSEhIgMlkwqxZs7B8+XI899xzzQ6Q9vb2+P777+Hi4oIZM2bgmWeewQcffGB5/+uvv8bq1athY2ODhQsX4rXXXsM333wDJycnLFy4UHauRYsWYe3atejQoQOWLFmCGTNmYP369XjssccsIf1G46nVamzbtg2zZ8/G77//jhkzZmDNmjV46qmncPjw4Vb/IY2ovZKuvXmBmmfgwIHi6NGjbT0NIqL7islkgl6vh1qttty4t3v3bowcOfKmq8etpbHxzCup/H5JdH+QJOmYEGLg9e1cKSYiopsy3xx3J9nY2ECr1d7SThYMrER0uxiKiYgUorq6GvPmzUNkZCQ8PT1hZ2eHrl27Yvbs2Zb9iYGrq6WSJCEhIQHLli1Djx49oNVq8be//Q3A1ZvuZs2aBT8/P9jb22PQoEHYvn07Jk+ebFX6ERwcjBEjRljN5doxmmpLSEjAyJEjAQBTpkyxbD127fnq6uowd+5chIWFWR70MXLkSCQnJzf6Gaxbtw4jRoyAq6srHBwcEB4ejunTp0Ov1zc5nnkXC5PJhPnz5yMmJga+vr7QaDQIDAzEtGnTUF5e3qKvRXtlMplw+PBhvP3225YSksZu4CO6H/FGOyIihSgsLMRXX32FCRMm4Nlnn4WtrS327NmDJUuWICUlBdu2bZP1/+STT1BeXo4XX3wRvr6+ltrSZ555Bhs2bEBcXBxGjx6N7OxsjB8/vsU1xzcTExODuXPnYsGCBXjppZcQHR0NALKHWowfPx47duzAkCFDEBsbC6PRiCNHjuChhx7C+vXrMWbMGEvfd955BwsWLECPHj3wxhtvoGPHjsjOzsa6devwwQcfNDne6tWrsWPHDuj1eixduhQTJkzA2LFj4ejoiCNHjmDlypXYt28fjh07Bo1G06qfwd32+++/IyYmBgaDAQDw6aefYufOnZYfFojua409+5mvG78iIiJu/mBtIqJ2RqfTCb1eb9U+b948AUAcPnxYCCFEcnKyACDc3NxESUmJrO+2bdsEAPH888/L2n/66ScBQFz9tvJvQUFBYvjw4VZjmsdYtWpVi9vMvv32WwFA/OUvfxFJSUmW19GjR0VERIQIDg4WJpNJCCHE4cOHBQAxcuRIUV9fLzuPyWSy9LvReCaTSdTV1Vm1f/XVVwKA+OGHH6zeu9fMnDnT8nU0v8aNGyeMRmNbT42o1QA4KhrJdyyfICJSCI1GY9mmzGg04tKlSygrK8OoUaMAAIcPH5b1j4+Pt3q074YNGwAAs2bNkrWPGzcO4eHhd2rqjfrhhx9gb2+PqKgoXL582fKqra1FXFwc8vLykJmZCQD49ttvAQALFy602nGjuU+EkyQJ9vb2AICGhgZUVlairKwMsbGxAKw/v3tRY48YNz+Aheh+x/IJIiIFWb58OVasWIHU1FSrxx9funRJ9vewsDCr43NycmBjY9Poe927d2/0QRd3SmZmJurr6xEfH99kn5KSEoSFhSEzMxOSJKFv3763NeaPP/6Ijz76CCkpKZYSA7PrP7970aRJk7BixQpZ2/Tp05u1fR7RvY7/lRMRKcTHH3+MmTNn4uGHH8b06dPh5+cHjUaDwsJCTJ482Sok3+pjmK/V1Aqs0Wi87XMLIeDl5YWFCxeioqICdnZ28PHxgYeHh6VPr169ZHO5nT2g169fj0mTJmHQoEH49NNPERAQAK1Wi4aGBjzyyCNWn9+9aMiQIdi+fTs+/vhj6HQ6vPHGG5aVcKL7HUMxEZFCJCYmIjg4GFu3bpU9tte8u0JzhISEwGQy4ezZs+jZs6fsvbS0NKv+7u7ujT7Sf+bsAAAOsklEQVRa2PxEtpu5UYgNDQ3F2bNnMWnSJMtjjJsSFhaGrVu34uTJkxg0aNAtjZeYmAitVovk5GTZDwzp6ek3HPteotFo8NBDD2HkyJEwmUz3/I2DRC3BmmIiIoVQqVSQJElWH2o0GrFo0aJmn2Ps2LEAgKVLl8raN2zY0GjpRFhYGNLT01FYWGhp0+l0WLZsWbPGM4fdxoJ1fHw8TCYT5syZ0+ixJSUllj8/++yzAIC5c+c2usWY+TO50Xjmz+/aFWEhBD788MNmXcu9xNbWloGYFIcrxURECjFx4kTMmTMHjz76KMaPH4/Lly9j7dq1lpvvmmP06NGIi4vDN998g4qKCjzyyCPIzs7GF198gV69euH06dOy/q+++iq+//57jBo1Ci+//DL0ej0SExObXZrRo0cPODs7Y/ny5XBwcICrqyu8vb0RGxuLiRMnYsqUKfjss89w/PhxPPHEE/D09MT58+dx8OBBZGVlWVakBw0ahLfffhuLFy/GgAEDMGnSJPj6+iI3Nxf/+te/8Pvvv8PV1fWm461btw6xsbGIj4+HwWDAhg0bZHs8E9E9rLEtKfjilmxEdP8xGo1iwYIFokuXLkKj0YjAwEAxa9YscebMGQFAvPfee0KIG29LJoQQdXV14s033xQ+Pj5Cq9WKBx54QGzbtk08//zzVluyCSFEQkKCCAsLE2q1WgQHB4vFixeLnTt3Nnv7tc2bN4v+/fsLOzs7AcBqi7fVq1eLYcOGCWdnZ2FnZyeCgoLEk08+Kb7//nuruaxdu1YMGTJEODk5CQcHBxEeHi5ef/11odPpmjXel19+Kbp37y7s7OyEr6+vePHFF0V5eXmj29QRUfuEJrZkkwS3WWmxgQMHiqNHj7b1NIiI2pXJkyfjm2++4fZdRNSuSZJ0TAgx8Pp21hQTERHdIr1ej9LS0lbZTYOI2hZDMRER0S34448/MHXqVEREROC11167r3ahIFIi3mhHRETUQufPn8cTTzyBc+fOAQBWrFiBY8eOYevWrbJ9kono3sGVYiIiahUJCQmKqSc+e/asJRCbHTlyBNnZ2W00IyK6XQzFRERELWRvb2/VJkkStFptG8yGiFoDQzEREVELde/eHePHj5e1TZ8+HWFhYW00IyK6XawpJiIiaiFXV1f8/e9/x9NPP43U1FQMGDAAUVFRXCkmuodxn+JbwH2KiYiIiO5N3KeYiIiIiKgJDMVEREREpHgMxURERESkeAzFRERERKR4DMVEREREpHgMxURERESkeAzFRERERKR4DMVEREREpHgMxURERESkeAzFRERERKR4DMVEREREpHgMxURERESkeAzFRERERKR4DMVEREREpHgMxURERESkeAzFRERERKR4DMVEREREpHgMxURERESkeAzFRERERKR4DMVEREREpHgMxURERESkeAzFRERERKR4DMVEREREpHgMxURERESkeAzFRERERKR4DMVEREREpHgMxURERESkeAzFRERERKR4DMVEREREpHgMxURERESkeAzFRERERKR4DMVEREREpHgMxURERESkeAzFRERERKR4DMVEREREpHgMxURERESkeAzFRERERKR4DMVEREREpHgMxURERESkeAzFRERERKR4DMVEREREpHgMxURERESkeAzFRERERKR4DMVEREREpHgMxURERESkeAzFRERERKR4DMVEREREpHgMxURERESkeAzFRERERKR4DMVEREREpHgMxURERESkeAzFRERERKR4DMVEREREpHgMxURERESkeAzFRERERKR4DMVEREREpHgMxURERESkeAzFRERERKR4DMVEREREpHgMxURERESkeAzFRERERKR4DMVEREREpHgMxURERESkeAzFRERERKR4DMVERETt3PLly9GtWzfY2dlBkiTk5eW19ZSI7ju2bT0BIiIialpycjJeeeUVjB07Fm+//TbUajW8vLzaelpE9x2GYiIionZsx44dAICvv/4a7u7ubTwbovsXyyeIiIjasQsXLgBAqwdig8GAK1eutOo5b0d1dXVbT4EUjqGYiIioFeh0OixYsAA9e/aEVquFq6sr4uLikJKSIuu3e/duSJKEhIQErFq1Cj179oSdnR2CgoKwZMkSS7+8vDxIkoRVq1YBACRJgiRJGDFihKVPcXExpk2bhsDAQGg0Gvj5+eGll17CxYsXZWO+//77kCQJqampePPNN+Hv7w+tVotDhw4hISEBkiRh586d+OCDDxAUFAR7e3tERkbi0KFDAIA9e/Zg2LBhcHR0RMeOHfE///M/jX4GR48exZNPPglPT0/Y2dkhPDwc8+fPh9FolPUbMWIEgoODkZOTg4kTJ8Ld3R0uLi4AAJPJhPnz5yMmJga+vr7QaDQIDAzEtGnTUF5efmtfHKJmYPkEERHRbTIYDHjkkUdw4MAB/PnPf8arr76Kqqoq/OMf/8DQoUOxd+9eDBw4UHbMihUrUFJSgqlTp8LV1RVr1qzB22+/DX9/fzz77LPw8vJCYmIivvzyS/z2229ITEwEAPj4+AAACgoKMHjwYOj1ekydOhVdunRBVlYWPv/8cyQnJ+Po0aPo0KGDbMw//elPsLe3x8yZMyFJEjp27Gi5aW/27NloaGjA66+/Dr1ej48++ggPP/wwVq9ejalTp+Kll17Cn/70J/z4449499130blzZzz33HOWc2/evBnjx49H165dMXPmTLi7u+PgwYN49913ceLECfzzn/+UzaWmpgbDhw/H0KFDMX/+fEuQ1+v1WLp0KSZMmICxY8fC0dERR44cwcqVK7Fv3z4cO3YMGo2mVb9+RAAAIQRfLXxFREQIIiIis48//lgAEL/88ousvaqqSgQEBIjhw4db2pKTkwUA0bFjR1FZWWlpr62tFZ6eniIqKkp2jueff15c/XYtN2bMGOHl5SXOnTsnaz9y5IhQqVTivffes7S99957AoAYPny4MBgMsv6rVq0SAET//v2FTqeztG/cuFEAELa2tuLIkSOWdp1OJ3x9fWXzrK+vFz4+PiI6Otrq/ObPJjk52dI2fPhwAUC88847VtdlMplEXV2dVftXX30lAIgffvjB6j2ilgBwVDSS71g+QUREdJvWrFmDbt26ISIiAmVlZZaXXq/HQw89hH379qG+vl52zJQpU2QruQ4ODoiKikJmZuZNx6uqqsKmTZswZswYaLVa2ZjBwcHo2rUrtm/fbnXcjBkzYGvb+C+Jp02bJluBjY6OBgBERkbKVrk1Gg0GDRokm+eOHTtQUlKCKVOmoLKyUjafxx57DAAanc9bb71l1SZJEuzt7QEADQ0NlvPFxsYCAA4fPnzTz4foVrB8goiI6DalpaWhvr7+hlullZWVISAgwPL3kJAQqz4eHh7NqpvNyMiAyWTCypUrsXLlykb7NHb+sLCwJs95fX83NzcAQOfOna36urm5yeaZlpYGAHjhhReaPH9JSYns715eXnB1dW20748//oiPPvoIKSkpMBgMsvcuXbrU5BhEt4OhmIiI6DYJIdC7d298/PHHTfa5PjCrVKrbGg8AnnvuOTz//PON9jGvtl7LwcGhyXM2NZ/mzNM8n6VLl6Jfv36N9vHz82vWXNavX49JkyZh0KBB+PTTTxEQEACtVouGhgY88sgjMJlMN50P0a1gKCYiIrpNoaGhKC0tRWxsLGxs7nxlYteuXSFJEvR6PUaNGnXHx7uZ0NBQAICjo+NtzycxMRFarRbJycmy4Jyenn5b5yW6GdYUExER3ab4+HhcuHChyZXi60sHbpeHhwcee+wxrF+/3rJt2rWEECgtLW3VMW9k9OjR8Pb2xqJFi1BRUWH1fn19fbP3IVapVJAkSbYiLITAhx9+2GrzJWoMV4qJiIhu0+uvv44dO3Zg1qxZ2LVrF2JjY+Hi4oKCggLs3LnTsvLZmj7//HMMGzYMMTExiI+PR//+/WEymZCTk4ONGzciPj4e77//fquO2RRHR0esXr0a48aNQ3h4OF544QV07doVlZWVSE9Px/r16/HTTz/J9lhuysSJE7Fu3TrExsYiPj4eBoMBGzZsQF1d3Z2/EFI0hmIiIqLbpFarsXnzZixfvhyJiYl47733AFytox00aFCTdb+3IyAgAMeOHcPixYuxceNGrFmzBlqtFgEBAYiLi8N//Md/tPqYNzJ69GgcOXIEixYtwpo1a1BaWgo3Nzd06dIFb775Jvr06dOs8zz99NOorq7G//7v/+Ktt96Cm5sb4uLisGjRInh4eNzhqyAlk8zF8dR8AwcOFEePHm3raRARERFRC0mSdEwIMfD6dq4UExERUbtkMplw7tw5AEBgYCAkSWrjGdH9jDfaERERUbtTUlKC+fPno3v37ujRowcWLFhwV28eJOVhKCYiIqJ2Z/v27Xj33XdRX1+Puro6zJs3Dzt27GjradF9jKGYiIiI2p3Vq1dbtX333XdtMBNSCoZiIiIiancaezJe375922AmpBQMxURERNTuPPfcc/D09LT83dvbG5MmTWrDGdH9jrtPEBERUbvTt29fHDhwACdPnoQkSejTp4/lcdJEdwJDMREREbVLoaGhDMJ017B8goiIiIgUj6GYiIiIiBSPoZiIiIiIFI+hmIiIiIgUj6GYiIiIiBSPoZiIiIiIFI+hmIiIiIgUj6GYiIiIiBSPoZiIiIiIFI+hmIiIiIgUj6GYiIiIiBSPoZiIiIiIFI+hmIiIiIgUj6GYiIiIiBSPoZiIiIiIFI+hmIiIiIgUj6GYiIiIiBSPoZiIiIiIFI+hmIiIiIgUj6GYiIiIiBSPoZiIiIiIFI+hmIiIiIgUj6GYiIiIiBSPoZiIiIiIFI+hmIiIiIgUj6GYiIiIiBSPoZiIiIiIFE8SQrT1HO45kiSVAshv63kQERERUYsFCSG8rm9kKCYiIiIixWP5BBEREREpHkMxERERESkeQzERERERKR5DMREREREpHkMxERERESkeQzERERERKR5DMREREREpHkMxERERESkeQzERERERKd7/A1ZhyZHMfFL5AAAAAElFTkSuQmCC\n" + }, + "metadata": {}, + "execution_count": 11 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Es interesante ver aquí como las palabras *enfermeros*, *astronautas* y *arquitectos* jalan demasiado el espacio por lo cual sus contextos no son tan similares a las demás, siendo así poco interesantes evaluar con las demás. Para ellas se deberian de buscar otras palabras con las cules comparar y evaluar.\n", + "\n", + "Por otro lado, las palabras *cosmonauta* y *urbanista* son muy interesantes para seguir profundizando sus núcleos de género, a diferencia de *comadrona* que presenta un fuerte núcleo femenino." + ], + "metadata": { + "id": "lPH5q1ZzUh5C" + } + }, + { + "cell_type": "code", + "source": [ + "profesiones += ['cosmonauta', 'urbanista', 'comadrona']\n", + "\n", + "explorador_de_sesgos_2.calculate_bias(profesiones, nucleo_fem, nucleo_masc)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 729 + }, + "id": "7F6U2lvXWLgV", + "outputId": "90d80cbd-d2b1-4871-dbfa-22ddfb679b7f" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAALICAYAAABiqwZ2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde7Rnd13f/9eLDDcTSAyMCJFkEFMxUYjhBIkXLooUW4XWBihFMVKN/H5CGiC2sKAUr4jU6kIKEvxpkIIiUCngKreQIAUCTO6J3JQGRBAChEigckk+vz/OHv0wnWTOJDnzPZM8Hmuddb7f/d2X9/nuyfCczT7ndIwRAABg3a1WPQAAAGwlAhkAACYCGQAAJgIZAAAmAhkAACbbVj3ALcGd73znsWPHjlWPAQBwi3Leeed9ZoyxfV+3E8j7wY4dO7Jz585VjwEAcIvS9qM3ZDu3WAAAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwMTPQQa4mfqLv/nsqkdgg4454k6rHgGYuIIMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAAJObbSC3vVvbVy+Pj2v7z27Evk5r+w033XQAAGxVB0Qgtz1oX7cZY3xijHHS8vS4JDc4kJOclkQgAwDcAmyJQG772rbntb2s7SnLsqvb/mbbi5Kc2Pan236o7XvbvqTtC5b1zmx70rSvq5fPO9pe2vY2SX4pyaPbXtj20W0Pbvv7y74uaPuIZZuD2v7nZbuL2z6p7alJ7pbk7LZnL+s9pu0ly3rP3a9vFgAAm2rbqgdYPH6M8bm2t0/yvravSXJwkveMMZ7a9q5JXpHkvkmuSnJ2kgs2suMxxlfaPivJ2hjjiUnS9teSvG2M8fi2hyV5b9u3Jnlckh1JjhtjfK3t4ctcT0ny4DHGZ9reLclzl1muTPLmtv9ijPHa+bhL6J+SJEceeeSNenMAANh/tsQV5CSnLleKz01y9yRHJ7kmyWuW178nyTljjCvGGF9J8sobebyHJnla2wuTnJPkdkmOTPKQJC8eY3wtScYYn9vDtidMs3wtycuTPGD3lcYYZ4wx1sYYa9u3b7+R4wIAsL+s/Apy2wdlPUxPHGN8qe05WQ/Wvx9jXLOBXXwtS+i3vVWS22zksEn+1Rjjg7vNsg+TAwBwc7QVriAfmuTKJY7vleT+e1jnPUke2PZObW+d5JHTa5dn/XaHJHl4klvvYfsvJLnD9PxNSZ7UpYjbfvey/C1Jfq7ttmX54XvY/r3LLHdevnnwMUnevtEvFgCArW0rBPIbk2xr+/4kv5712yy+zhjjk0meneTdSd6Z5P3Tyy/JerBelOTEJF/cwzHOTnLMrm/SS/LLWQ/pi9tetjxPkt9L8rFl+UVJ/s2y/Iwkb2x79jLL05Z9XpTkvDHG/7ihXzwAAFtLxxirnmGftT050zfdbXVra2tj586dqx4DuIX5i7/57KpHYIOOOeJOqx4BbpbanjfGWNvX7bbCFWQAANgyVv5NejfEGOPMJGeueAwAAG6GXEEGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAIDJtlUPAMDmOOaIO616BIADkivIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAw2bbqAQDYHB+94qpVj3DAOGr7oaseAdhCXEEGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgMkBFchtt7d9T9sL2v7AqucBAODmZ9uqB9hHP5TkkjHGz2x0g7YHjTGuuSkO3rZJOsa49qbYHwAAW8/KryC3/Ym27217YdsXtz2o7dVtf7XtRW3PbXuXtscl+Y0kj1jWvX3bh7Z9d9vz276q7SHLPi9v+9y25yd55PL8Oct2O9se3/ZNbf+q7ROmWX6h7fvaXtz2F5dlO9p+sO0fJrk0yd3bPq/tpW0vafvoFbxtAABskpUGctvvSPLoJN83xjguyTVJHpvk4CTnjjHuk+TPk/zsGOPCJM9K8spl3YOTPDPJQ8YYxyfZmeQp0+4/O8Y4fozxx8vzjy3bvSPJmUlOSnL/JLtC+KFJjk5yvyTHJblv2wcs2x6d5IVjjGOTrC2v3yfJQ5I8r+1db9p3BgCAVVn1LRY/lOS+Sd63fvdCbp/k00m+kuQNyzrnJfnhPWx7/yTHJHnnsu1tkrx7ev2Vu63/uuXzJUkOGWN8IckX2n657WFJHrp8XLCsd0jWw/hjST46xjh3Wf79Sf5ouW3jU23fnuSEaf9JkranJDklSY488si9vhEAAGwNqw7kJnnpGOPpX7ewPX2MMZan12TPczbJW8YYj7mOfX9xt+dfXj5fOz3e9Xzbsr/njDFevNssO/awr70aY5yR5IwkWVtbG3tZHQCALWLV9yCfleSktt+UJG0Pb3vUBrc9N8n3tf22ZduD2/6TGzHLm5I8frqP+Yhdc+3mHUkevdwrvT3JA5K890YcFwCALWSlV5DHGH/R9plJ3tz2Vkm+muTnN7jtFW1PTvJHbW+7LH5mkg/dwFnevNwT/e7llo2rk/xE1q9gz/40yYlJLkoykvz7Mcbf3pBjAgCw9fQf72Rgs6ytrY2dO3euegzgFuajV1y16hEOGEdtP3TVIwCboO15Y4y1fd1u1bdYAADAliKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYLJt1QMAsDmO2n7oqkcAOCC5ggwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAAJNtqx4AgM3x0SuuWvUIB4yjth+66hGALcQVZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCOQNaHta229Y9RwAAGw+gbwxpyURyAAAtwCbGshtH9f24rYXtX1Z2x1t37YsO6vtkct6j2x76bLeny/LTm772rZvaXt52ye2fUrbC9qe2/bwZb3jlucXt/3Ttt+4LD+n7XPbvrfth9r+wLJ8R9t3tD1/+fjeZfmD2r5hmv0FywynJrlbkrPbnr289qK2O9te1vYXN/M9BABg/9q0QG57bJJnJvnBMcZ9kvy7JL+T5KVjjHsneXmS5y+rPyvJP13We/i0m+9M8uNJTkjyq0m+NMb47iTvTvK4ZZ0/TPIfln1ekuQ/TdtvG2PcL+tXgHct/3SSHx5jHJ/k0dMMezTGeH6STyR58BjjwcviZ4wx1pLcO8kD2957D1//KUtE77ziiiuu7xAAAGwhm3kF+QeTvGqM8ZkkGWN8LsmJSV6xvP6yJN+/PH5nkjPb/mySg6Z9nD3G+MIY44okVyV5/bL8kiQ72h6a5LAxxtuX5S9N8oBp+/++fD4vyY7l8a2TvKTtJUleleSYG/C1Part+UkuSHLsnvYxxjhjjLE2xljbvn37DTgEAACrsG3VAyTJGOMJbb8nyT9Pcl7b+y4vfXla7drp+bXZ2Oy71r9mWv/JST6V5D5Z/wfC3y/Lv5av/wfD7fa0w7b3SHJ6khPGGFe2PfO61gUA4MCzmVeQ35bkkW3vlCTLPcPvSvKvl9cfm+Qdy2v3HGO8Z4zxrCRXJLn7Rg4wxrgqyZW77i9O8pNJ3n49myTJoUk+Oca4dll/1xXrjyY5pu1t2x6W5Iembb6Q5A7L4zsm+WKSq9reJcmPbGRWAAAODJt2BXmMcVnbX03y9rbXZP12hCcl+YO2v5D1EP7pZfXntT06SZOcleSiJMdt8FA/leR3lx/D9pFpn9flhUle0/ZxSd6Y9djNGOOv2/5JkkuT/O9l3l3OSPLGtp8YYzy47QVJPpDkr7N+ewgAADcTHWOseoabvbW1tbFz585VjwHcwnz0iqtWPcIB46jth656BGATtD1v+cEK+8TPQQYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAIDJtlUPAMDmOGr7oaseAeCA5AoyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMtq16AAA2x0evuGrVIxwwjtp+6KpHALYQV5ABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYLLlA7ntyW3vtsLjH9b2/13V8QEA2L+2fCAnOTnJHgO57UH74fiHJRHIAAC3ECsL5LavbXte28vantL2oLZntr207SVtn9z2pCRrSV7e9sK2t297edvntj0/ySPbPmZZ/9K2z532f3XbX217Udtz295lWf5jbd/T9oK2b52WP7vt6dP2l7bdkeTXk9xzOf7z2h7S9qy25y/HfcR+fNsAANhk21Z47MePMT7X9vZJ3pfkvCRHjDG+M1m/tWGM8fm2T0xy+hhj57I8ST47xjh+ufXi3CT3TXJlkje3/RdjjNcmOTjJuWOMZ7T9jSQ/m+RXkvyvJPcfY4y2P5Pk3yd56vXM+bQk3znGOG45/rYk/3KM8Xdt75zk3LavG2OMeaO2pyQ5JUmOPPLIG/1mAQCwf6zyFotT216U9cC9e5LbJPnWtr/T9mFJ/u56tn3l8vmEJOeMMa4YY3wtycuTPGB57StJ3rA8Pi/JjuXxtyR5U9tLkvxCkmP3ce4m+bW2Fyd5a5Ijktxl95XGGGeMMdbGGGvbt2/fx0MAALAqKwnktg9K8pAkJ44x7pPkgiS3TXKfJOckeUKS37ueXXxxA4f56nRV95r849Xy30nygjHGdyX5uSS3W5Z/LV//ftwue/bYJNuT3He5qvyp61kXAIADzKquIB+a5Moxxpfa3ivJ/ZPcOcmtxhivSfLMJMcv634hyR2uYz/vTfLAtndevmHvMUnevoFj/83y+Kem5ZfvOmbb45Pc4zqOf2iST48xvtr2wUmO2svxAAA4gKzqHuQ3JnlC2/cn+WDWb7M4Isk5bXdF+9OXz2cm+d22/yfJifNOxhifbPu0JGdn/daHPxtj/I+9HPvZSV7V9sokb8s/hvBrkjyu7WVJ3pPkQ8sxPtv2nW0vTfI/kzw3yeuXWzR2JvnADfj6AQDYorrb95axCdbW1sbOnTtXPQZwC/PRK65a9QgHjKO2H7rqEYBN0Pa8Mcbavm53IPwcZAAA2G8EMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATDYUyG0Pbnur5fE/afvwtrfe3NEAAGD/2+gV5D9Pcru2RyR5c5KfTHLmZg0FAACrstFA7hjjS0l+PMkLxxiPTHLs5o0FAACrseFAbntikscm+bNl2UGbMxIAAKzORgP5tCRPT/KnY4zL2n5rkrM3bywAAFiNbRtZaYzx9iRvn55/JMmpmzUUADfeUdsPXfUIAAek6w3ktq9PMq7r9THGw2/yiQAAYIX2dgX5Py+ffzzJNyf5b8vzxyT51GYNBQAAq3K9gbzcWpG2vznGWJteen3bnZs6GQAArMBGv0nv4OUb85Ikbe+R5ODNGQkAAFZnQ9+kl/WfYnFO248kaZKjkpyyaVMBAMCK7DWQl18xfWiSo5Pca1n8gTHGlzdzMAAAWIW93mIxxrg2yb8fY3x5jHHR8iGOAQC4WdroPchvbXt627u3PXzXx6ZOBgAAK7DRe5AfvXz++WnZSPKte1gXAAAOWBv9TXr32OxBAABgK9hQILe9dZL/J8kDlkXnJHnxGOOrmzQXAACsxEZvsXhRklsneeHy/CeXZT+zGUMBAMCqbDSQTxhj3Gd6/ra2F23GQAAAsEob/SkW17S9564ny2/Vu2ZzRgIAgNW53ivIbU9L8q4kT8v6VeP/vby0I8njN3c0AADY//Z2i8W3JPntJN+R5MNJPpfk7CSvGWN8YpNnA+BG+PTnr171CBv2TYcdsuoRAP7B9QbyGOP0JGl7myRrSb43yYOSPL3t58cYx2z6hAAAsB9t9Jv0bp/kjkkOXT4+keSSzRoKAABWZW/3IJ+R5NgkX0jynqzfj/xfxhhX7ofZAABgv9vbT7E4Msltk/xtkr9J8vEkn9/soQAAYFX2dg/yw9o261eRvzfJU5N8Z9vPJXn3GOM/7YcZAQBgv9nrPchjjJHk0rafT3LV8vGjSe6XRCADAHCzsrd7kE/N+pXj703y1azfg/yuJL8f36QHAMDN0N6uIO9I8qokTx5jfHLzxwEAgNXa2z3IT9lfgwAAwFawt59iAQAAtygCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmB2wgtz2z7Uk30b5+r+0x1/P6yW3vdlMcCwCArW3bqge4IdrepHOPMX5mL6ucnOTSJJ+4KY8LAMDWs+WuILfd0fbS6fnpbZ/d9py2v912Z5J/t7z8kLY7236o7Y9O27+j7fnLx/cuyx+07OPVbT/Q9uVtu7x2Ttu1tgctV6YvbXtJ2ycvV6nXkry87YVtb9/2WW3ft6x3xq79AABw4DvQriDfZoyxlqzfYpFkR5L7JblnkrPbfluSTyf54THG37c9OskfZT1wk+S7kxyb9SvB70zyfUn+17T/45IcMcb4zuUYh40xPt/2iUlOH2PsXJa/YIzxS8vjlyX50SSvnwdte0qSU5LkyCOPvCnfAwAANtGWu4K8F6/c7fmfjDGuHWN8OMlHktwrya2TvKTtJUlelWS+t/i9Y4yPjzGuTXJh1gN79pEk39r2d9o+LMnfXcccD277nuUYP5j16P46Y4wzxhhrY4y17du37+OXCQDAqmzFQP5avn6u202Pv7jbumMPz5+c5FNJ7pP1K8e3mV7/8vT4mux2BX2MceWy3TlJnpDk93Yfru3tkrwwyUljjO9K8pLdZgQA4AC2FQP5U0m+qe2d2t4267cvXJdHtr1V23sm+dYkH0xyaJJPLleJfzLJQRs9cNs7J7nVGOM1SZ6Z5PjlpS8kucPyeFcMf6btIUlukp+kAQDA1rDl7kEeY3y17S8leW+Sv0nygetZ/WPLendM8oTlvuMXJnlN28cleWP+76vO1+eIJH/Qdtc/HJ6+fD4zye+2/T9JTsz6VeNLk/xtkvftw/4BANjiOsbudylwU1tbWxs7d+5c9RjALcynP3/1qkfYsG867JBVjwDcDLU9b9cPeNgXW/EWCwAAWBmBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAACTbaseAIDN8U2HHbLqEQAOSK4gAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDAZNuqB4Ak+cSf/PaqR4Cbnbs96rRVjwBwQHIFGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmt4hAbvugtm9Y9RwAAGx9t4hAvi5tt616BgAAtpb9HshtH9f24rYXtX1Z2x1t37YsO6vtkct6Z7Z9Udtz235kuQr8+23f3/bMaX8varuz7WVtf3Fa/rC2H2h7fpIfn5Y/eznuO5Ps7fjPb/uu5fgnLcsPWdY7v+0lbR+xn946AAD2g/0ayG2PTfLMJD84xrhPkn+X5HeSvHSMce8kL0/y/GmTb0xyYpInJ3ldkt9KcmyS72p73LLOM8YYa0nuneSBbe/d9nZJXpLkx5LcN8k37zbKMUkeMsZ4zF6Of9ck35/kR5P8+rLs75P8yzHG8UkenOQ323YPX+spS7jvvOKKK/bpfQIAYHX29xXkH0zyqjHGZ5JkjPG5rAfwK5bXX5b1IN3l9WOMkeSSJJ8aY1wyxrg2yWVJdizrPGq5SnxB1uP5mCT3SvK/xxgfXrb/b7vN8boxxv9ZHl/f8V87xrh2jPEXSe6yLGuSX2t7cZK3Jjlieu0fjDHOGGOsjTHWtm/fvpH3BgCALWCr34P75eXztdPjXc+3tb1HktOTnDDGuHK59eJ2G9jvF/fx+Ml6GCfJY5NsT3LfMcZX216+wWMCAHAA2N9XkN+W5JFt75QkbQ9P8q4k/3p5/bFJ3rEP+7tj1mP3qrZ3SfIjy/IPJNnR9p7L88dczz729fiHJvn0EscPTnLUPswLAMAWt1+vII8xLmv7q0ne3vaarN8W8aQkf9D2F5JckeSn92F/F7W9IOtB/NdJ3rks//u2pyT5s7Zfynr03uE6drOvx395kte3vSTJzuXYAADcTHT9Fl0209ra2ti5c+eqx9jSPvEnv73qEeBm526POm3VIwCsVNvzlh/msE9u0T8HGQAAdieQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYLJt1QNAktztUaetegQAgCSuIAMAwNcRyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAw2bbqAdg8H3z+f1z1CMAKffupv7zqEQAOSK4gAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMDkgArkttvbvqftBW1/YNXzAABw87Nt1QPsox9KcskY42c2ukHbg8YY19wUB2/bJB1jXHtT7A8AgK1n5VeQ2/5E2/e2vbDti9se1Pbqtr/a9qK257a9S9vjkvxGkkcs696+7UPbvrvt+W1f1faQZZ+Xt31u2/OTPHJ5/pxlu51tj2/7prZ/1fYJ0yy/0PZ9bS9u+4vLsh1tP9j2D5NcmuTubV+07OeyXesBAHDzsNJAbvsdSR6d5PvGGMcluSbJY5McnOTcMcZ9kvx5kp8dY1yY5FlJXrmse3CSZyZ5yBjj+CQ7kzxl2v1nxxjHjzH+eHn+sWW7dyQ5M8lJSe6fZFcIPzTJ0Unul+S4JPdt+4Bl26OTvHCMcewY46NJnjHGWEty7yQPbHvvm/q9AQBgNVZ9i8UPJblvkvet372Q2yf5dJKvJHnDss55SX54D9veP8kxSd65bHubJO+eXn/lbuu/bvl8SZJDxhhfSPKFtl9ue1iShy4fFyzrHZL1MP5Yko+OMc6d9vWotqdk/f276zLHxfPBltdPSZIjjzzyet8EAAC2jlUHcpO8dIzx9K9b2J4+xhjL02uy5zmb5C1jjMdcx76/uNvzLy+fr50e73q+bdnfc8YYL95tlh3zvtreI8npSU4YY1zZ9swkt9v94GOMM5KckSRra2tj99cBANiaVn0P8llJTmr7TUnS9vC2R21w23OTfF/bb1u2PbjtP7kRs7wpyeOn+5iP2DXXbu6Y9WC+qu1dkvzIjTgmAABbzLV1FEEAABM6SURBVEqvII8x/qLtM5O8ue2tknw1yc9vcNsr2p6c5I/a3nZZ/MwkH7qBs7x5uSf63cstG1cn+YmsX8Ge17uo7QVJPpDkr5O884YcDwCAran/eCcDm2VtbW3s3Llzvx/3g8//j/v9mMDW8e2n/vKqRwBYqbbnLT9YYZ+s+hYLAADYUgQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATLategA2z7ef+surHgEA4IDjCjIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEy2rXoA9s37f/Ppqx4BOEB8x1Ofs+oRAA5IriADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwORmG8ht79b21cvj49r+sxuxr9PafsNNNx0AAFvVARHIbQ/a123GGJ8YY5y0PD0uyQ0O5CSnJRHIAAC3AFsikNu+tu15bS9re8qy7Oq2v9n2oiQntv3pth9q+962L2n7gmW9M9ueNO3r6uXzjraXtr1Nkl9K8ui2F7Z9dNuD2/7+sq8L2j5i2eagtv952e7itk9qe2qSuyU5u+3Zy3ovartzmfcX9+ubBQDAptq26gEWjx9jfK7t7ZO8r+1rkhyc5D1jjKe2vWuSVyS5b5Krkpyd5IKN7HiM8ZW2z0qyNsZ4YpK0/bUkbxtjPL7tYUne2/atSR6XZEeS48YYX2t7+DLXU5I8eIzxmWW3z1iWH5TkrLb3HmNcPB93Cf1TkuTII4+8EW8NAAD705a4gpzk1OVK8blJ7p7k6CTXJHnN8vr3JDlnjHHFGOMrSV55I4/30CRPa3thknOS3C7JkUkekuTFY4yvJckY43PXsf2j2p6f9Ug/Nskxu68wxjhjjLE2xljbvn37jRwXAID9ZeVXkNs+KOtheuIY40ttz8l6sP79GOOaDezia1lCv+2tktxmI4dN8q/GGB/cbZaNzHuPJKcnOWGMcWXbM5d5AQC4GdgKV5APTXLlEsf3SnL/PazzniQPbHuntrdO8sjptcuzfutFkjw8ya33sP0Xktxhev6mJE/qUsRtv3tZ/pYkP9d227L88D1sf8ckX0xyVdu7JPmRjX6hAABsfVshkN+YZFvb9yf59azfZvF1xhifTPLsJO9O8s4k759efknW4/miJCdmPV53d3aSY3Z9k16SX856SF/c9rLleZL8XpKPLcsvSvJvluVnJHlj27PHGBdl/daKD2T9vuh33tAvHACAradjjFXPsM/anpzpm+62urW1tbFz586bZF/v/82n3yT7AW7+vuOpz1n1CAAr1fa8Mcbavm63Fa4gAwDAlrHyb9K7IcYYZyY5c8VjAABwM+QKMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATLategD2zXc89TmrHgEA4GbNFWQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmHSMseoZbvbaXpHko6ueY4u7c5LPrHoINsS5OnA4VwcO5+rA4nwdOL59jHGHfd3Ib9LbD8YY21c9w1bXducYY23Vc7B3ztWBw7k6cDhXBxbn68DRducN2c4tFgAAMBHIAAAwEchsFWesegA2zLk6cDhXBw7n6sDifB04btC58k16AAAwcQUZAAAmAhkAACYCmZVoe3jbt7T98PL5G/ewznFt3932srYXt330Kma9pdvIuVrWe2Pbz7d9w/6e8Zau7cPafrDtX7Z92h5ev23bVy6vv6ftjv0/JcmGztUD2p7f9mttT1rFjKzbwLl6Stu/WP736ay2R61iTjZ0rp7Q9pK2F7b9X22P2ds+BTKr8rQkZ40xjk5y1vJ8d19K8rgxxrFJHpbkt9seth9nZN1GzlWSPC/JT+63qUiStD0oyX9N8iNJjknymD385f9vk1w5xvi2JL+V5Ln7d0qSDZ+rjyU5Ockr9u90zDZ4ri5IsjbGuHeSVyf5jf07JcmGz9UrxhjfNcY4Luvn6b/sbb8CmVV5RJKXLo9fmuRf7L7CGONDY4wPL48/keTTSfzSlf1vr+cqScYYZyX5wv4ain9wvyR/Ocb4yBjjK0n+OOvnbDafw1cn+aG23Y8zsm6v52qMcfkY4+Ik165iQP7BRs7V2WOMLy1Pz03yLft5RtZt5Fz93fT04CR7/QkVAplVucsY45PL479NcpfrW7nt/ZLcJslfbfZg/F/26Vyx3x2R5K+n5x9flu1xnTHG15JcleRO+2U6Zhs5V2wN+3qu/m2S/7mpE3FdNnSu2v5827/K+hXkU/e2U79qmk3T9q1JvnkPLz1jfjLGGG2v819zbe+a5GVJfmqM4arKJripzhXALU3bn0iyluSBq56F6zbG+K9J/mvbf5PkmUl+6vrWF8hsmjHGQ67rtbafanvXMcYnlwD+9HWsd8ckf5bkGWOMczdp1Fu8m+JcsTJ/k+Tu0/NvWZbtaZ2Pt92W5NAkn90/4zHZyLlia9jQuWr7kKxfSHjgGOPL+2k2vt6+/nf1x0letLedusWCVXld/vFfbz+V5H/svkLb2yT50yR/OMZ49X6cja+313PFSr0vydFt77H8N/Ovs37OZvM5PCnJ24bfErUKGzlXbA17PVdtvzvJi5M8fIzhwsHqbORcHT09/edJPry3nQpkVuXXk/xw2w8necjyPG3X2v7ess6jkjwgycnLj2a5sO1xqxn3Fm0j5ypt35HkVVn/BrCPt/2nK5n2Fma5p/iJSd6U5P1J/mSMcVnbX2r78GW1/y/Jndr+ZZKn5Lp/EgmbaCPnqu0JbT+e5JFJXtz2stVNfMu1wf+unpfkkCSvWv73yT92VmCD5+qJy4+MvTDrfwde7+0ViV81DQAAX8cVZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGRYobYnt33B8vjZbU9f0RxrbZ+/yce4zq+v7bs24Xh/1Pbitk++qfe9gWM/vK0fpbbJ2u5oe+mNXWezjr2/jrf8OKvr/GU/B6L5690ffz/B7vwmPSBjjJ1Jdm50/bbblp89eVMd/3tvqn0lSdtvTnLCGOPbbsr9btQY43XxCyBI0vagMcY1m3mMMcazNnP/q7avfz/BTcEVZLiB2t6q7Y9tcN3tbV/T9n3Lx/ftZf2fXda7aNnuG/ay/sltX9v2LW0vb/vEtk9pe0Hbc9sevqx3Ttu15fGd216+PH5Q2zcsjw9u+/tt37ts/4jpGK9r+7YkZ+1lnoe1PX+Zf173mGWGj7Q9dVr/6unxf2h7ybLtrl9Ksk/vR5I3Jzli+eH9P9D2nm3f2Pa8tu9oe69lv2e2fdHyHn1keR9+v+372545zfTQtu9evqZXtT1kWX55219cll8y7Xf+fwbObPv8tu9ajnHSsvyQtmdN2z5iL1/TLVbbg9o+b/kzcHHbn9vHXRzU9iVd/0UBb257+2W/xy3n/uK2f9r2G5fl57T9rbY7lz8LJ7T9720/3PZXpv1ua/vyZZ1X7/pzufy5eG7b85M88rr+/FzP13uXZZ6Llo9d/4C8rq/jzOnP1QnLn7WLlv+G79D2dm3/YPlzdkHbB+/l+DvafmDZ74eWr/Ehbd+5vAf3W9a73/J1XbAc89uX5ccux75weW+PXpY/bnl+UduX7T778vzqPcwz//307OW/0T39PfKUtpcuH6dd39c4bXP3tsdvZF1uYcYYPnz42MePrP/j8qVJnrvB9V+R5PuXx0cmef/y+OQkL1gePzvJ6cvjO03b/kqSJ+1l/ycn+cskd0iyPclVSZ6wvPZbSU5bHp+TZG15fOckly+PH5TkDcvjX0vyE8vjw5J8KMnByzE+nuTwvcyyPclfJ7nH8vzw6et7V5LbLsf+bJJbL69dvXz+kWWdb9ht2319P3YkuXR6flaSo5fH35P1X7WcJGcm+eP8/+2dfeyWVRnHP18kxEh+JJZjmq9FrtBw2sJ8S8fsDxtJLlsxk2prWZlrbfVHL2uxYhm1llutxQic1ahJNJeLWBYaSytE+PkjmQ7IXihtJSotyvj2x7nunuPD8y6FwPXZnj3nPr9znfu6z9t93de5fs8NAt4MPAmcE/27CZgbut4NTAuZjwGfivSuRhfg/cDyDv26kvKGwUnAq4BHIn8yML3qi0eIlzfl54D+fC/wiUgfS/EmntHezz3GwjPA3Dj+bjW+twKXRfozwJerefL5SN8E/BGYFef+PTAz6jVwUZRbQWv+7gI+WvVtx/HTQ+fVtObsMcBYn+tYSXmF+BRgB2X3BGB6jLOPACsi72zgUWDqAG1Wz4UV1TxZW9cf6fnA7ZG+BVgU6SnAccCrKWvJiZF/Qq17de6nKx0ejPQbaK1Pn6bDOgKcD4xT1qoXARPAeQOMrbNC7oJDPc7z8/z6ZIhFkozG+4DrgG2Srmr728O2F7blzad4T5vj6X28SHPCUzWDstivG0Cnn9p+CnhK0h7gjsgfB84dQL7hSmCBWvHCUylGPcB623/tIz8PuNv2ToC28j+0vQ/YJ+kx4CSKwdEwH/im7b+3yY7SHkDx1AKvp7wOtsk+tipyh21LGgf+bHs85CYoN+lTKIbtxpCfAvyikl8T35uAt3RRY63t/ZTxclKjGvA5SZcC+4GTKe3xp0Gv7SjiSuDcytM4BryCYnANwk7bD0R6E3C6pDFghu0Nkb+K8iDT0ITIjAMTtncDSNoBvAx4Avid7Y1R7jbgQ8CyOF4d3/PoPX46cQXwTgCX8Iw94d0+4Dra5F4J7Lb9q5B9MnS+mGK0YvshSb8FZlMeELqxs20u/KSaJ815x4BV4SE2xVAlru/jkk4B1th+WNIVwPds/yX06LeO9KLTOnIx8H3be0PnNcAlwOZGKHToFMs8E7gTeOlz0Ck5wkgDOUlG41bgWooxt2qA8pOAebb/UWdWBls7K4GrbW+RtJjiQenHviq9vzreT2uuP0MrtGpql3oEXGN7e5uurwP2DqDHoDr+m8HXoJUM3x4Nk4AnbM/to1PdZs3x5NBzve2395HvdT11vU2nL6J428+3/S+VcJdufXK0I4qn/lkPRpJOH1C+fdwdN4RMt3EBxSisqY+buSJ6j59hGOU6Dsa5uq0nSygP5gujL34GYPvbku4DrgLuVO+QmP+uSZImUR4ghtFt4HXE9l3AnDpP0gyKcfzFQepIjh4yBjlJRsD205TF/yUDivwYuLE5kNTNWGs4Htgt6QUUQ6qRWyhp6ZDq1uyibEVC2ZLtxDrgRoX1Lum8bpVJeqhD9r3ApZLOiDInDKHfeuBdVSxnIztye4QXbaekt4aMJL1mCJ3uBS6S9PKQnyZp9hDy3RgDHgvj+HLgtINQ55HKOuCG6H8kzZY0rS4g6WQ9O969J7b3AH+TdElkXQds6CHSiVMlXRjpdwA/71Cm6/iRtFRS+24TlJCgG6LMMeHtHoTtwCxJrw3Z4yVNBu4h5k2c+1Rg+7Bt1oEx4A+RXtxkSjoT2GH7K8APKDtYd1HisWdGmWZu76K1Ji2g5YUelnuAqyW9MMbGwsjrx2nAzbZvH/G8yRFKGshJMiK299pe1r8kULZeL4h/UNlGCdHoxSeB+4CNQG2EnkWJkx2VZRRDYzMlfq+m8X4todyktsbW6pJOFUk6kZY3tFWJ/TglZnSNpC20tpr7YvtHlK3tX0t6AGjCPJ5reywC3hP6TFDiKAfV6XHKzf87krZSto/PHlS+B9+ijIlxynZ6p4eNpLAc2Abcr/LTX1/nQK/hLIo3chiuB74Q/TqXEoc8DNuBD0j6DfBi4GvtBfqMn3PoHFJzE3B5jI1NlBCNvtj+J/A24JYY6+spuxJfBSZFfauBxRGiMEqb1dwMLI31pO6Pa4EHYw7PAW61PQF8FtgQun0pyn4DuCzyLmTEXSrb91N2mn5JWSuW297cU6jIbbG9dpRzJkc2stt3iJIkeb4i6Tbgw3HTPZj1XgMssH39EDJvAs4ML9Eh4X/VHsnhh6QPAo+6/MTeYYGkdbbfeAjPf9i1WZL8v0gDOUmOciQtoHiC3m37oL+wI0mSJEkON9JATpIkSZIkSZKKjEFOkiRJkiRJkoo0kJMkSZIkSZKkIg3kJEmSJEmSJKlIAzlJkiRJkiRJKtJATpIkSZIkSZKK/wAa7qVvoOraNQAAAABJRU5ErkJggg==\n" + }, + "metadata": {}, + "execution_count": 12 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Efectivamente, *comadrona* es poco interesante, mientras que llama la atención como *urbanista* y *cosmonauta* se encuentran mas cercanos al núcleo masculino cuando las palabras en sí no diferencian el género, encontrandose sesgadas.\n", + "\n", + "De esta forma, podemos ir profundizando y nutriendo las listas de palabras con las cuales examinar presencia de sesgos producto de un acercamiento no debido a un núcleo de significado u otro.\n", + "\n", + "Sigamos con el ejemplo de procedencia y madurez economica. Vemos primero como los gentilicios se distribuyen en el espacio para darnos una idea de significancia y no perdernos con la presencia de otras palabras vecinas." + ], + "metadata": { + "id": "kO5Mxu0LXIcV" + } + }, + { + "cell_type": "code", + "source": [ + "explorador_de_palabras.plot_projections_2d(procedencia, figsize=(10, 10))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 729 + }, + "id": "7IbyfLZ-yGbU", + "outputId": "a41532f3-475c-4099-d79a-0d39752aa660" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsQAAALICAYAAAB4l+b4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdebxVZaH/8e9mPIAoiigqySDCNQFRUZwhnHL45VCaSil2S3MI7eIcheWIlZU5a4kZetWKHK4DehUzKw0VZ80UNIdKcEDAAWT9/kDO9XBQmewQz/v9ep0XZz977bWevbVXHxfPXqtWVVUAAKBUzZp6AgAA0JQEMQAARRPEAAAUTRADAFA0QQwAQNFaNPUEPkmrr7561a1bt6aeBgAAy4H7779/alVVnRYcX6GDuFu3bpk4cWJTTwMAgOVArVZ7bmHjlkwAAFA0QQwAQNEEMQAARVuh1xAvzOzZs/PCCy/k7bffbuqprPDq6urSpUuXtGzZsqmnAgDwoYoL4hdeeCHt27dPt27dUqvVmno6K6yqqjJt2rS88MIL6d69e1NPBwDgQxW3ZOLtt99Ox44dxfAnrFarpWPHjs7EAwDLveKCOIkY/hfxOQMA/w6KDGIAAJhPEAMAUDRB/AkYM2ZMjjzyyA99ftiwYfnVr37VaHzixIkZPnz4Jzk1AAAWUNxVJj4J7733Xpo3b77U+xkwYEAGDBiwDGYEAMCiKv4M8fe///2cc845SZJvfvObGTJkSJLkjjvuyNChQ3PVVVelb9++6dOnT44//vj616200koZMWJENtpoo/zxj3/MZZddll69emXzzTfPPffc87HHvf322zNgwID06tUrN954Y5JkwoQJ2X333ZMk9913X7bccstsvPHG2WqrrfLUU08lSR577LFsvvnm6d+/f/r165enn356ofufOXNmdtttt2y00Ubp06dPrr766iRJt27dctxxx6Vv377ZfPPN89e//jVJcsMNN2TgwIHZeOONs8MOO+Qf//hHkmTGjBk5+OCD07dv3/Tr1y+//vWvkyTjx4/PlltumU022ST77LNPZsyYsXgfPADwiRs8eHC6devWYGzYsGG++L6A4oN42223zd13351k3pKFGTNmZPbs2bn77rvTq1evHH/88bnjjjsyadKk/PnPf85vf/vbJPOCc+DAgXnooYey3nrrZdSoUbnnnnvy+9//Po8//vjHHnfKlCm577778j//8z/5+te/3ujyZP/xH/+Ru+++Ow8++GC+973v5aSTTkqSXHjhhTnqqKMyadKkTJw4MV26dFno/m+55Zasvfbaeeihh/Loo4/ms5/9bP1zq6yySh555JEceeSROfroo5Mk22yzTf70pz/lwQcfzH777ZezzjorSXLKKafUb//www9nyJAhmTp1ak499dTcfvvteeCBBzJgwICcffbZi/nJA0C5JkyYkJNPPjmvv/56U0+FCOJsuummuf/++zN9+vS0bt06W265ZSZOnJi77747HTp0yODBg9OpU6e0aNEiQ4cOze9+97skSfPmzfP5z38+SXLvvffWb9eqVat88Ytf/Njj7rvvvmnWrFnWX3/99OjRI08++WSD5994443ss88+6dOnT775zW/mscceS5JsueWWOf300zN69Og899xzadOmzUL337dv39x22205/vjjc/fdd2eVVVapf27//fev//OPf/xjknk3LNl5553Tt2/ffP/7368/3u23354jjjii/rWrrrpq/vSnP+Xxxx/P1ltvnf79++fyyy/Pc889t0ifNwAwL4i/+93vNkkQX3LJJXnrrbf+5cddnhUfxC1btkz37t0zZsyYbLXVVtl2221z55135q9//Wujv2L4oLq6uqVaN7zgX1Us+Pjb3/52PvOZz+TRRx/NDTfcUH8G+YADDsj111+fNm3aZNddd80dd9yx0P336tUrDzzwQPr27ZuRI0fme9/73kKPNf/3b3zjGznyyCPzyCOP5KKLLvrIG2pUVZUdd9wxkyZNyqRJk/L444/nZz/72eJ9AADAIps9e/Yyu9lVy5YtU1dXt0z2taIoPoiTecsmfvCDH2S77bbLtttumwsvvDAbb7xxNt9889x1112ZOnVq3nvvvVx11VUZNGhQo9cPHDgwd911V6ZNm5bZs2fn2muv/dhjXnvttZk7d26eeeaZPPvss+ndu3eD5994442ss846SeZdtWK+Z599Nj169Mjw4cOzxx575OGHH17o/l966aW0bds2X/rSl3LsscfmgQceqH9u/nriq6++OltuuWWj411++eX12+64444577zz6h+/9tpr2WKLLXLPPffUrz+eOXNm/vKXv3zsewaA5cmbb76ZkSNHZuDAgVl99dXTunXr9OzZMyeccEJmzZpVv92YMWNSq9UyYcKERvtY2BrdP/zhD9lll13SuXPn1NXVZZ111smuu+6aP/3pT0nmreH97ne/myTp3r17arVaarVaTj755CTJySefnFqtlsceeyz/9V//lS5duqSurq7+9VdffXU+97nPZd11103r1q2z+uqrZ8899/zQJljQwtYQP/nkkzn88MOz4YYbpn379mnbtm023XTTXHrppY1eP39+Tz31VE466aR06dIlrVu3zkYbbZSbbrqp0fZz5szJ6NGj8+lPfzp1dXXp2LFj9tprrzzyyCOLNN9/BVeZyLwgPu2007LlllumXbt2qaury7bbbpu11lorZ555Zj7zmc+kqqrstttu2WOPPRq9fq211srJJ5+cLbfcMh06dEj//v0/9pjrrrtuNt9880yfPj0XXnhho/9SO+6443LQQQfl1FNPzW677VY/fs011+SKK65Iy5Yt07lz5/q1xQt65JFHcuyxx6ZZs2Zp2bJlLrjggvrnXnvttfTr1y+tW7fOVVddlWTev9z77LNPVl111QwZMiSTJ09OkowcOTJHHHFE+vTpk+bNm2fUqFHZe++9M2bMmOy///555513kiSnnnpqevXq9bHvGwCWFy+++GIuvfTSfP7zn88BBxyQFi1a5K677spZZ52VBx98MLfeeuti7/Opp57KjjvumM6dO+eoo47KmmuumX/84x/5/e9/n4ceeihbbLFFDj300EyfPj3jxo3Lj370o6y++upJkn79+jXY19ChQ9OmTZuMGDEitVota621VpLk3HPPTceOHXPIIYekc+fOeeaZZ3LxxRdn6623zgMPPJD1119/sec9YcKE/O53v8vuu++e7t27Z+bMmbn22mvzta99La+88kpOPPHERq856KCD0rJlyxxzzDF599138+Mf/zh77rln/vKXvzT4j4ShQ4fmmmuuyY477pjDDjssf//733Peeedlyy23zN13352NN954see7zFVVtcL+bLrpptWCHn/88UZjJenatWv1yiuv/MuOV/rnDcDy65133qnefffdRuMjR46sklT33ntvVVVVddlll1VJqjvvvLPRtoMGDaq6du1a//gnP/lJg9d+mFGjRlVJqsmTJ3/oc4MGDapmz57d6PkZM2Y0Gnv88cerVq1aVYcddthHzq+qquqggw6q5iXgR+/zvffeqwYNGlStvPLKDT6n+fPbbbfdqrlz59aP33fffVWS6oQTTqgfGz9+fJWk2nfffRtsO2nSpKp58+bVNtts0+i4n6QkE6uFNKMlEwBAkVq1apWWLVsmmffX+q+99lqmTp2aHXbYIcm8L80vrvlfYr/uuuuWes3v0UcfnRYtGv9lfrt27ZLMO6k5ffr0TJ06NZ06dUrv3r2XaM4f3GeSvP3225k2bVpeffXV7LTTTpk+fXqjL/8nyVFHHdVg6cVmm22WlVZaqcElYceNG5ck+da3vtVg24022ij/7//9v/z+97/PK6+8skRzXpYE8SfotNNOS//+/Rv8nHbaacv0GNOmTWt0jP79+2fatGkL3X7KlCn1fzUDAKU7//zz65cRrrbaaunUqVMGDx6cZN4Sw8W13377ZYcddsjpp5+e1VZbLUOGDKm/MtTi+rCliA8++GB23333tG/fPqussko6deqUTp065ZFHHlmiOSfz7jtwzDHHZN11102bNm2y+uqrp1OnTvnWt76VZOGfRY8ePRqNdezYsUGDTJ48Oc2aNcsGG2zQaNsNN9ywfpumZg3xJ+hb3/pW/b9In5SOHTtm0qRJn+gxAGBFdPbZZ2fEiBHZaaedMnz48Ky99tpp1apVXnzxxQwbNixz585N0vhKUB80Z86cBo9bt26d2267Lffdd19uvfXW/O53v8t3vvOdnHzyybnyyiuz1157LfL82rZt22js+eefz3bbbZeVV1453/72t9O7d++0a9cutVotRx999BLfKOuAAw7IjTfemEMOOSTbbbddOnbsmObNm+emm27Kj370o/rP4oM+7Gpb81Ym/HsRxABAka644op069YtN998c5o1+7+/NL/lllsabLfaaqslSV599dVG+5g8eXL9sosP2nzzzbP55psnSf72t79l4403zsiRI+uDeEnvFDdu3LjMmDEj119/fT7zmc80eG7atGlp3br1Yu/z9ddfz4033pgvf/nLufDCCxs8d/vtty/RPOfr0aNH5s6dmyeeeKLRlwbn38ise/fuS3WMZcGSCQCgSM2bN0+tVmtwRnPOnDk588wzG2w3f+nCgnF41VVX5aWXXmowNnXq1EbH6dKlSzp16tQgqFdaaaUkC4/sj5tz0vgs7CWXXJK///3vi7Wvj9vnyy+/vNDLri2OPffcM0lyxhlnNNj/o48+muuvvz7bbLNNOnXqtFTHWBacIQYAivSFL3whJ554YnbZZZfsvffemT59eq688spGZ3x79+6dHXbYIRdddFGqqkr//v0zadKkjBs3Lj179szs2bPrtz311FMzfvz4+suXVVWVG264IU8++WSOO+64+u222GKLJMnxxx+foUOHpq6uLn369EmfPn0+cs677LJL2rZtmy9/+cs58sgjs+qqq+aee+7JTTfdlPXWW6/REo5F0b59++y000755S9/mTZt2mSzzTbLc889l4suuijdu3f/0O8lLYodd9wx++67b/77v/87r732Wnbffff6y67V1dXlnHPOWeJ9L0vOEK+gbrnllvTu3Ts9e/Zs9F+6AEBy7LHH5vTTT8+zzz6bo446Kuedd1522mmn/OIXv2i07RVXXJG99947Y8eOzYgRIzJlypTceeed9Te1mm/PPfdM3759c8011+S//uu/MnLkyLz66qu55JJLGvz/8dZbb53Ro0fnmWeeyde+9rXsv//++dWvfvWxc15vvfVy8803p3v37jn99NNzwgkn5NVXX81dd92VLl26LPFn8ctf/jJf+cpXcsMNN+TII4/Mb3/725x22mk54ogjlnif840dOzZnnnlmnnvuuYwYMSLnn39+Bg0alD/+8Y/LxzWIk9T+HRc+L6oBAwZUEydObDD2xBNPLPSbjiuS9957L7169cptt92WLl26ZLPNNstVV12VT3/60//yuZTweQMA/x5qtdr9VVUNWHDcGeLlwNixY9OtW7c0a9Ys3bp1y9ixY5dqf/fdd1969uyZHj16pFWrVtlvv/1y3XXXLaPZAgCsWARxExs7dmwOOeSQPPfcc6mqKs8991wOOeSQpYriF198MZ/61KfqH3fp0iUvvvjispguAMASu/fee3PIIYdkl112yW9+85u8/vrrTT2lJIK4yX3rW9/KrFmzGozNmjXrE79+MQDAv9KDDz6YwYMH55JLLsktt9ySz3/+87n++uubelpJBHGTe/755xdrfFGss846+dvf/lb/+IUXXmi06B8A4F/pD3/4Q6PbWZ9yyilLdRWLZUUQN7F11113scYXxWabbZann346kydPzrvvvpv//u//zuc+97kl3h8AwNL64M1PPji2sPF/taafQeFOO+20RrdmbNu2bU477bQl3meLFi1y7rnnZuedd84GG2yQfffdt/5+4QAATWGrrbZq1Dzf+c53suqqqzbRjP6PG3M0saFDhyaZt5b4+eefz7rrrpvTTjutfnxJ7brrrtl1112XxRQBAJbaRhttlAkTJuTKK6/MCy+8kAMPPDCDBg1q6mklEcTLhaFDhy51AAMALO8222yzbLbZZk09jUYsmQAAoGhFBvGKfHe+5YnPGQD4d1BcENfV1WXatGli7RNWVVWmTZuWurq6pp4KAMBHKm4NcZcuXfLCCy/klVdeaeqprPDq6urSpUuXpp4GAMBHKi6IW7Zsme7duzf1NAAAWE4Ut2QCAAA+SBADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQwAQNEEMQAARRPEAAAUTRADAFA0QQyLqVarZdiwYU09DQBgGRHEAAAUrUVTTwD+3bz11ltp3rx5U08DAFhGnCGGRfDWW29lzpw5SZK6urq0bNmyiWcEACwrgpgm8eabb2bkyJEZOHBgVl999bRu3To9e/bMCSeckFmzZtVvN2HChNRqtYwZMybnn39+evfunbq6uvTt2zc33nhjkuSRRx7JZz/72ay88srp2LFjhg8fntmzZzc65tNPP50vf/nLWWuttdKqVat069Ytxx57bGbOnNlgu2HDhqVWq+WVV17JV77ylay55ppp165dXnjhhSQfvob4zjvvzG677ZaOHTumrq4uPXr0yH/+539m6tSp9ducf/752WmnnbLOOuukVatWWWuttfKlL30pU6ZMabS/+cf54x//mEGDBqVdu3bp2LFjvvrVr2bGjBmNtn/44Yez11571R//05/+dM4666y89957i/TPBABKZckETeLFF1/MpZdems9//vM54IAD0qJFi9x1110566yz8uCDD+bWW29tsP15552X1157LV/96ldTV1eXc845J3vttVeuvfbafO1rX8v++++fPffcM+PHj89Pf/rTrLHGGhk5cmT96++///4MGTIkHTp0yKGHHpp11lknDz30UM4555zcc889ueuuuxqd9d1xxx3TuXPnfPvb387MmTOz0korfej7ueiii3LYYYdlnXXWyWGHHZauXbvm+eefzw033JAXXnghq6++epLkBz/4QbbYYosMHz48q622Wh599NFceumlueOOO/LII4+kY8eODfY7adKk7L777jn44INzwAEHZMKECfnZz36WZs2a5eKLL67fbuLEiRk0aFBatmyZI444Ip07d84NN9yQ448/Pg899FDGjh27xP+sAGCFV1XVCvuz6aabViyf3nnnnerdd99tND5y5MgqSXXvvfdWVVVVd955Z5WkWnvttavXX3+9fruHHnqoSlLVarXq17/+dYN9bLLJJlXnzp0bjPXr16/q3bt3NX369Abjv/nNb6ok1WWXXVY/dtBBB1VJqqFDhy507kmqgw46qP7x3/72t6pVq1bVBhtsUL322muNtn/vvffqf58xY0aj52+//fYqSTV69OhGx6nVatWf/vSnBuO77rpr1aJFi+rNN9+sH9tqq62q5s2bVw899FD92Ny5c6t99tmnSlLdfvvtC30vAFCSJBOrhTSjJRM0iVatWtWfkZ0zZ05ee+21TJ06NTvssEOS5N57722w/bBhw7LKKqvUP+7Xr19WXnnlrL322tl7770bbLvNNtvk73//e/2ygkceeSQPP/xwDjjggLzzzjuZOnVq/c8222yTdu3aZfz48Y3meMwxxyzSe7n22mvz7rvvZtSoUenQoUOj55s1+7//mbVr1y5JMnfu3LzxxhuZOnVqNtpoo6yyyiqN3nOSbLnllhk4cGCDsSFDhmTOnDn1yyz++c9/5g9/+EM+97nPpV+/fvXb1Wq1fOtb30qSjBs3bpHeCwCUSBDTZM4///z069cvrVu3zmqrrZZOnTpl8ODBSZLXXnutwbY9evRo9PpVV1013bt3X+h4kkybNi1J8sQTTyRJRo0alU6dOjX4WWONNTJz5sz84x//aLSfXr16LdL7ePrpp5MkG2+88cdue8cdd2Tw4MFp165dOnToUD+PN954o9F7Thb+vucvq5j//iZPnpwk2XDDDRttu8EGG6RZs2Z59tlnF+m9AECJrCGmSZx99tkZMWJEdtpppwwfPjxrr712WrVqlRdffDHDhg3L3LlzG2z/YZc5+6jLn837m5H/+3PEiBH57Gc/u9Bt50f0B7Vt23aR3sui+vOf/5yddtopPXv2zJlnnpnu3bunTZs2qdVq2W+//Rq952TR3h8AsHQEMU3iiiuuSLdu3XLzzTc3WFJwyy23LPNjrb/++knmxeX8JRnL0vwzyZMmTfrIs8pXXnll3nvvvdx8880NzmzPnDlzoWeHF9X8fT322GONnnvyySczd+7chZ5ppmlcfPHFefPNN3P00Ue7njXAcsKSCZpE8+bNU6vVGpzlnDNnTs4888xlfqyNN944ffr0yYUXXrjQpQNz5szJq6++usT7/8IXvpBWrVrlu9/9bqZPn97o+fnvcX78LHhm9/TTT1/o2eFFtcYaa2SrrbbKDTfckEcffbTBcc8444wkyV577bXE+/93NGXKlNRqtZx88slNPZUGzj333Bx99NEZMGCAGAZYjjhDTJP4whe+kBNPPDG77LJL9t5770yfPj1XXnnlJ3LDi1qtliuuuCJDhgxJv3798pWvfCUbbrhhZs2alb/+9a/5zW9+kzPOOGOh1xZeFF26dMmPf/zjHHHEEenbt28OPPDAdO3aNS+++GKuu+66/PznP0///v2z11575Uc/+lF23XXXHHLIIWnVqlVuu+22PPzww/WXZVtSP/nJTzJo0KBsu+229Zddu/HGG3PrrbfmgAMOyPbbb79U+2fp3X777TnhhBPy29/+NoMGDWrq6QDwAYKYJnHsscemqqr87Gc/y1FHHZXOnTvni1/8Yg4++OB8+tOfXubH69+/fx588MGcccYZuf7663PhhRemffv26datW4YNG7bUwXjYYYdlvfXWy/e///2cc845eeedd7L22mtn++23z6c+9akkydZbb51f//rXOeWUU/Ltb387bdq0yQ477JC77ror22233VIdf8CAAfnDH/6QUaNG5fzzz8/MmTPTo0ePjB49OiNGjFiqfbNsPP7447n++uszZMiQpp4KAAuorchfzBkwYEA1ceLEpp4G8C82ZcqUdO/ePaNGjVrulk0A0HRqtdr9VVUNWHDcGmJYQf3tb3/L5MmTF3ob639Xi3rL749y9dVXZ5tttkn79u3Ttm3bDBw4ML/61a8abTf/1tl33HFHttxyy7Rt2zZdunTJ6NGjk8y7NOB//ud/Zo011kjbtm2z++6756WXXmqwj5deeikjRoxI//79s+qqq9bfUnv06NGNbqk9ZsyY1Gq13HHHHfnBD36Q9dZbL61bt06vXr1y+eWXL+EnBsCiEMSwgpk+fXouuuii9OvXL717984xxxyT559/vqmntUzMv+X3gAED8u1vfztnn312Ntlkk5x11lmL9MXBkSNHZr/99kv79u1zyimn5Mwzz0zbtm2zzz775Lzzzmu0/YMPPph99tkngwcPzg9/+MOsv/76OeGEE/KTn/wk22+/fV577bWcfPLJ+frXv55bbrklBx54YIPXP/zww/n1r3+dIUOG5NRTT82ZZ56ZddZZJyeccEIOP/zwhc7xpJNOyhVXXJFDDz00Z511Vpo1a5Zhw4blnnvuWbIPDYCPt7Db160oP27dTIluvfXWKkmDn9NPP72pp7VMLOotvydPnlwlqUaNGlW/zf33318lqU488cRGr99jjz2q9u3bN7i1dxZy6+x33nmn6ty5c1Wr1apvfOMbDfbxzW9+s0pSPfnkk/VjM2fObHDr7vkOOOCAqlmzZtVLL71UP3bZZZdVSar+/ftX77zzTv34Cy+8ULVq1arab7/9PuqjAWARxK2boQx33XVXo7Gf//znS3VpueXF4t7y+4PGjh2bWq2Wgw46qMHtu6dOnZrPfe5zefPNN/PHP/6xwWsWvHV2q1atsvnmm6eqqgwfPpYPML0AACAASURBVLzBtttuu22S/7tzYTLv5i4fvM72u+++m7fffjt77bVX5s6dm4V9x+Hwww9Pq1at6h+vs8466dWrV4P9ArBsucoErGAWdjvrDTbYIO3atWuC2Sx7559/fi688MI89thjja7f/FE3OHniiSdSVVX+4z/+40O3WfAW3h92y/Ck8ee84C3Dk2Tu3Lk555xz8otf/CKPPfZY3n333Y+d74fdrvu555770HkDsHQEMaxgBg8enN69e+epp55KMu8s5UknnZTWrVs38cyW3uLe8vuDqqpKrVbLzTff/KE3xdhwww0bPP6om2d82HPVB67cc9xxx+WHP/xhDjrooJx00klZc80107Jly9x333056qijFut23R/cLwDLliCGFUzPnj1z6623ZtKkSXnrrbfSp0+f9OnTp6mntUwszS2/119//dxyyy1Zd911s8EGG3yS06x32WWX5TOf+UzGjBnTYPyBBx74lxwfgEVjDTGsgLp27Zo99tgj++233woTw8nS3fL7y1/+cpJ5V3FY8JJnSePlEstCrVZrdNm7N998M2efffYyPxYAS84ZYuDfxtLc8nuzzTbLySefnJNPPjn9+/fPPvvsk7XXXjsvv/xy7r///tx0002N1vgurb333juXXHJJvvjFL2b77bfPP/7xj/z85z/PGmuskWeeeWaZHguAJSeIgX8bS3vL71GjRmXAgAE555xz8uMf/zgzZ87MGmuskT59+uScc85Z5vP90Y9+lJVWWim/+tWvct1116Vr16454ogjsskmmyz17cIBWHbcuhkAgCK4dTMAACyEJRMAy6Hp06fn4YcfzksvvZRu3bqlb9++adOmTVNPC2CF5AwxwHJmxowZOeOMM7Ltttvmi1/8YgYOHJixY8d+5HWWAVhyghhgOfP44483upTc8OHDXZkC4BMiiAGWMx+8/fN8b7311kfemhqAJSeIAZYzPXr0SNu2bRuMde/ePV27dm2iGQGs2AQxwHKmV69euf7669OtW7ckSf/+/XPNNddkzTXXbNqJAaygXGUCYDlTq9Wy/fbb509/+lNeffXVrLnmmllttdWaeloAKyxBDLCcWnPNNZ0VBvgXsGQCAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWKAJdStW7cMHjy4qaeRJBk8eHC6devW1NMA+LckiAEAKFqLpp4AwL+rp556KrVaramnkSQZP358qqpq6mkA/FsSxABLqHXr1k16/Pfeey/vvPNO2rZtm1atWjXpXAD+nVkyAfABY8aMSa1Wyx133JEf/OAHWW+99dK6dev06tUrl19+eYNtP2wN8QUXXJDevXundevWWX/99XPuuefW73fChAkNtn3jjTdy/PHHp2fPnmndunU6deqU/fffP88+++xC53X77bfnlFNOyXrrrZe6urpcc801SRa+hvi+++7LsGHD0qtXr7Rt2zbt27fP1ltvnXHjxjWa87Bhw1Kr1fLGG2/ksMMOyxprrJG6urpsvfXWuffeexttP3PmzJx44on1n0/nzp1z4IEH5rnnnluETxlg+eIMMcBCnHTSSXnrrbdy6KGHpnXr1rngggsybNiw9OzZM1tvvfWHvm706NE54YQTsskmm+SMM87IrFmz8v3vfz+dOnVqtO0bb7yRrbbaKs8//3y+8pWvZMMNN8zLL7+c888/PwMHDszEiRPTtWvXBq855phjMnv27Hzta1/LyiuvnN69e3/oXMaNG5cnn3wy++67b7p27Zpp06bl8ssvz957752xY8fmgAMOaPSanXfeOZ06dcp3vvOdTJs2LWeffXZ22223TJ48Oe3bt0+SzJ49OzvvvHPuueeefOELX8iIESPy9NNP54ILLsj48eMzceLEdOnSZVE/aoCmV1XVCvuz6aabVgCL47LLLquSVP3796/eeeed+vEXXnihatWqVbXffvvVj3Xt2rUaNGhQ/eNp06ZVdXV1Vd++fau33nqrfvzll1+uVl555SpJdeedd9aPDx8+vKqrq6smTZrUYA5Tpkyp2rdvXx100EGN5tWrV69q5syZjeY9aNCgqmvXrg3GZsyY0Wi7mTNnVr169ao22GCDBuMHHXRQlaQ67LDDGoxfc801VZLqwgsvrB+7+OKLqyTVscce22DbG2+8sUpSfelLX2p0XIDlQZKJ1UKa0ZIJgIU4/PDDG6zLXWedddKrV688/fTTH/qa2267LW+//XYOO+yw1NXV1Y937tw5Q4cObbBtVVUZO3Zstttuu6yzzjqZOnVq/U+7du2yxRZbZPz48Y2Ocdhhh6Vt27aL9B7atWtX//usWbMybdq0zJo1K0OGDMkTTzyR6dOnN3rNN7/5zQaPhwwZkiQN3ve4cePSrFmznHjiiQ223W233dK/f/9cd911mTt37iLNEWB5YMkEwEL06NGj0VjHjh0/co3s5MmTk2ShyxgWHHvllVcybdq0jB8/fqHLKZKkWbPG5yx69er1kfP+oH/+858ZOXJkrrvuuvzzn/9s9Pzrr7+elVdeucHYgu+7Y8eOSZJp06bVj02ePDlrr712Vl111Ub73HDDDTNp0qRMnTo1a6yxxiLPFaApCWKAhWjevPlCx6tldGmz+fvZYYcdcvzxxy/y6xb17HBVVdlpp53yxBNP5KijjsqAAQOyyiqrpHnz5rnsssty5ZVXLvQs7if9vgGWR4IYYBmZf5WHp556qn6pwXxPPfVUg8edOnVKhw4dMn369Oywww7LfC4PP/xwHnrooXznO9/Jd7/73QbPXXrppUu17x49euSWW27J66+/ng4dOjR47vHHH8/KK6+c1VdffamOAfCvZA0xwDKy44471l+R4u23364f//vf/56xY8c22LZZs2YZOnRo7rvvvvzqV79a6P4WtsxhUc0/07vgmd1HH310oZddWxx77rln5s6dmzPPPLPB+M0335wHH3wwn/vc5xa63ANgeeUMMcAy0rFjx4waNSonnXRStt5663zpS1/KrFmzcvHFF6dXr16ZOHFigzvbnXbaabnnnnuy7777Zt99980WW2yRVq1a5bnnnstNN92UTTfdNGPGjFmiuWywwQbZcMMNc9ZZZ2XWrFnp3bt3/vKXv+Siiy5K3759c//99y/x+xw2bFguv/zyjB49OlOmTMl2222Xv/71rzn//POz5ppr5vTTT1/ifQM0BUEMsAydeOKJWXnllfOTn/wkJ5xwQtZdd90ce+yxqaoqEydOTJs2beq3XWWVVXLPPffkhz/8Ya655ppcd911adGiRbp06ZJtttkmX/3qV5d4Hs2bN8///M//5Jhjjsnll1+emTNnpk+fPrn88svz0EMPLVUQt2zZMrfeemtOPfXUXH311fnNb36TDh06ZJ999smpp56aT33qU0u8b4CmUFuRvygxYMCAauLEiU09DYB84xvfyLnnnpuXX345nTt3burpABSpVqvdX1XVgAXHLfICWIY+uHZ4vpdffjm/+MUv0qdPHzEMsByyZAJgGZowYUKOPfbY7L333unSpUumTJmSSy65JDNmzGj0JbQVwbvvvpunnnoqU6dOTdeuXRd6/WaA5Z0gBliGevbsmfXWWy+XXHJJpk2blrq6ugwYMCAnnnjiJ3J5taY0a9asXHLJJRkxYkTee++9dOjQIb/97W8zaNCgpp4awGKxhhiAJXLfffdl4MCBDcbWXXfd3HvvvZaGAMsla4gBWKb+9re/NRp7/vnn88orrzTBbACWnCAGYImsu+66jca6deuWNdZYowlmA7DkBDEAS6RPnz756U9/mhYt5n0dZbXVVsvll1+eNddcs4lnBrB4fKkOgCXSpk2bHHrooRk8eHCmTZuWrl27plu3bk09LYDFJogBWGItW7ZMnz59mnoaAEvFkgkAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKNoiBXGtVhtWq9WqWq02eFkevFarTajValMWGBtTq9WqpdjnlFqtNmFp5wYAQBmcIQYAoGjLYxB/LUmbpXh97yQ7LaO5AACwgmvR1BNYUFVVs5PMXorXv7MMpwMAwApucc8Qt6jVaifXarXnarXaO7Va7eFarbbfghvVarU9a7XaPbVabWatVpvx/u97LMoBFlxDXKvVRr+/frnfQrZdpVarvVWr1X77gbFGa4jHjx+fL37xi+nRo0fatGmTDh06ZKeddspdd93V6PiDBw9Ot27d8tJLL2X//ffPqquumrZt22bnnXfOX/7yl0bbT506NUcccUQ+9alPpVWrVvnUpz6VI444ItOmTVuUtwsAQBNb3CAenWS/JOcn+U6SVkmuqtVqw+ZvUKvVDk8yLslqSb6X5JT3f/9trVY7ZAnmePn7fx64kOf2TVL3gW0WasyYMXn11Vdz4IEH5qc//Wm++c1v5oknnsj222+fu+++u9H2M2fOzHbbbZfmzZvn9NNPz5FHHpkJEyZkjz32yHvvvVe/3RtvvJGtttoqF1xwQXbeeef8+Mc/zmc/+9lccMEF2WabbfLmm28uwdsFAOBfqqqqj/1JMixJleS5JKt8YHyV98dezbx1v6smmZHkr0lW/sB2Kyd5JsmbSTp8YHxCkikLHGvMvGk1GPtzkpeSNF9g/O4kU5O0+sDYlCQTqqrKpptuWlVVVc2YMaNa0N///veqY8eO1S677NJgfNCgQVWSavTo0Q3GzzrrrCpJdcstt9SPnXTSSVWS6rzzzmuw7bnnnlslqUaOHNnouAAANI0kE6uFtO7iniG+oKqqNz4Q028kufD9EB6cZMck7ZKcU1XV9A9sNz3JOUlWSrLDYh4zmXcGeK33958kqdVq3ZNsneSqqqre/agXt2vXrv73GTNmZNq0aWnevHkGDhyYe++9t9H2zZo1y/DhwxuMDRkyJEny9NNP14+NGzcunTp1yiGHNDzxfeihh6ZTp04ZN27cor4/AACayOIG8RMLGXv8/T97JOn+/u+PLWS7xz6w3eK6Ksm7abhs4sAktSS/+LgXP/PMM9lvv/2y6qqrpn379ll99dXTqVOn3HTTTXnttdcabb/22munrq6uwVjHjh2TpMHa4MmTJ6d3795p0aLhdxNbtGiRXr165dlnn13U9wcAQBNZ7q4ysTBVVU2r1Wo3JdmzVqu1r6rqzSRfTvJEVVV//qjXzpgxI9ttt11mzpyZo48+On379k379u3TrFmznHHGGbnjjjsavaZ58+YfNZelfDcAACxPFjeIN0hy3QJjn37/z2czb0lEkmyY5H8/YrslcXmSPZPsU6vVnkqyXpITPu5F//u//5uXXnopP//5z3PwwQc3eG7kyJFLOJV5evTokaeeeipz5sxpcJZ4zpw5+ctf/pIePZbkZDgAAP9Ki7tk4rBarbbK/Afv//71JK8nuSvJbUlmJvlGrVZr/4Ht2if5RuZ94e62JZzr/2TeF+gOfP9nbpJfftyL5p/tXfDM7vjx4xe6fnhx7LnnnnnllVdy6aWXNhi/5JJL8sorr2SvvfZaqv0DAPDJW9wzxFOT3Fur1S57//HBSdZN8tWqqmYlmVWr1Y5Lct772415f7thSXomOfSDX8pbHFVVza7ValclOTLJpklur6rqxY973TbbbJPOnTtnxIgRmTJlSrp06ZJJkybliiuuSN++ffPII48syXSSJMcdd1yuvfbaHHHEEXnggQey8cYb58EHH8zPfvaz9O7dO8cdd9wS7xsAgH+NxT1DfHySq5MckXnXGJ6dZGhVVT+bv0FVVecn2TvzzhqPev/n9SR7VVV18VLO9/LM+yLdSlmEL9MlSYcOHXLrrbdm4MCB+elPf5oRI0bk8ccfz0033ZRNNtlkqSazyiqr5J577smhhx6am266KcOHD89NN92Ur3/96/n973+f9u3bf/xOAABoUrUV+UtiAwYMqCZOnNjU0wAAYDlQq9Xur6pqwILji3uGmI9QVVXmzJnT1NMAAGAxCOJl5N57783BBx+cIUOGZOzYsQ2uVwwAwPLr3+I6xMu7hx56KJ/5zGfy1ltvJUnuvvvunHfeeTn88MObeGYAAHwcZ4iXgYkTJ9bH8HynnXZa/vGPfzTRjAAAWFSCeBlY2J3tWrZs+ZF3vAMAYPkgiJeBzTbbLB06dGgw9r3vfS+rr756E80IAIBFZQ3xMrDhhhvmzjvvzLhx4zJ58uTsu+++2W677Zp6WgAALAJBvIz0798//fv3b+ppAACwmCyZAACgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWIAAIomiAEAKJogBgCgaIIYAICiCWL4/+3df2jV1R/H8ddnm9dteplzbW7L9BqWuNVV10TJrLbU1VJ0WQRCNZc/8o9+OWa6RlpURhMTscvInyCUBSq2nBVIKQgajpn98kd6940Gytclabsyve18/5Ddut5ZXjf3+eJ5PuD+8Xnf8zmf971s8OLc87kXAABYjUAMAAAAqxGIAQAAYDUCMQAAAKxGIAYAAIDVCMQAAACwGoEYAAAAViMQAwAAwGoEYgAAAFiNQAwAAACrEYgBAABgNQIxAAAArEYgBgAAgNUIxAAAALAagRgAAABWIxADAADAagRiAAAAWI1ADAAAAKsRiAEAAGA1AjEAAACsRiAGAACA1QjEAAAAsBqBGAAAAFYjEAMAAMBqBGIAAABYjUAMAAAAqxGIAQAAYDUCMQAAAKxGIAYAAIDVCMQAAACwGoEYAAAAViMQA1fR3Nwsx3G0bNkyt1sBAAA3EIEYVmtubtayZct06NAht1sBAAAuSXK7AcBNzc3Nev311+Xz+TR69Oio54YOHaoLFy4oKYl/EwAAbmasEKNXGWP0xx9/uN3GNXEcR8nJyQRiAABucgRixO38+fOqqanRuHHjdMstt6hv374aPny4Fi9erFAoFBn39ddfy3Ecbdq0Se+//77y8vKUnJysFStWSJJCoZAWLlyonJwcpaSkaPz48dq9e7fKy8vlOE7MdY8fP66nnnpKOTk58ng88vl8qqqqUltbW9S4zvN///13LViwQFlZWUpOTtaECRN04MCByLhNmzapqKhIkjR79mw5jiPHcfTggw9K6noP8d9rn332mcaOHavk5GTl5OSoqqpK4XA4pu+9e/dq8uTJSktLU0pKigoKCrR+/frrfv8BAEDPYukLcWtpadG6des0c+ZMzZo1S0lJSdqzZ4/effddNTU16Ysvvogav2rVKrW2tmru3LnKzs7WbbfdJkl64okn1NDQoBkzZmjSpEkKBoMqKyvTsGHDYq7Z2Nio4uJiDRgwQPPnz9ett96qb7/9VqtXr9a+ffu0Z88e9enTJ+qckpISZWZm6rXXXlNra6tWrlypRx99VMFgUF6vV/fff7+qq6v19ttva968eZo4caIkadCgQf/6HjQ0NCgQCOi5555TRUWFduzYoRUrVig9PV3V1dWRcfX19SorK1N2drYqKyvl9Xq1ZcsWzZkzRydPntRbb70V9/sPAAB6mDHmpn3cc889Bj2vvb3dXLx4MaZeU1NjJJkDBw4YY4z56quvjCSTnp5uTp8+HTV2586dRpKZM2dOl/XLf5p/8fv9ZsSIEebcuXNR9W3bthlJZuPGjZHaM888YySZBQsWRI395JNPjCRTV1cXqXX2+PfzOwWDQSPJLF26NKaWmppqgsFgpN7R0WHy8/NNdnZ2pBYOh82QIUNMWlqaaWlpidTb29vNvffeaxISEsyxY8dirgsAAG4MSQdNF5mRLROIm8fjiazGhsNhnT17VmfOnNGkSZMkKWpbgiQ9/fTTysrKiqrV19dLkhYuXBhVLy0t1ciRI6Nq3333nQ4fPqxZs2apvb1dZ86ciTzuu+8+9evXT19++WVMny+//HLUcXFxsaTLWy+6a8aMGfL5fJFjx3FUVFSkU6dORfZINzY26pdfflFFRYVyc3MjYz0ejxYtWqSOjg7t2LGj270AAIDuIRDjugQCAfn9fvXt21cDBw5UZmZmZO/t2bNno8beeeedMecHg0ElJCRo+PDhMc+NGDEi6vinn36SJC1dulSZmZlRj6ysLLW1ten06dMx89x+++1RxxkZGZKk1tbWa3+hV3Hl3F3NHwwGJUn5+fkxYztrJ0+e7HYvAACge9hDjLitXLlSlZWVmjJlil544QXl5ubK4/GopaVF5eXl6ujoiBqfmpp61bm6unnuSpc/4ZAqKyv18MMPdzkmPT09ppaYmPiP83XH1ebuqfkBAEDvIRAjbps3b5bP59OuXbuUkPDXhwyff/75Nc/h8/nU0dGh48ePx2yROHr0aNTxHXfcIelyCO3cltFTriWQX6/OVeQffvgh5rkff/wxagwAAHAPWyYQt8TERDmOE7USGg6H9c4771zzHNOmTZMkvffee1H1hoaGyBaJTmPGjNFdd92lurq6LrcYhMNh/fbbb/G8hIj+/ftL0nWf/08KCgo0ZMgQbdy4UadOnYrUL126pNraWjmOo+nTp/f4dQEAQHxYIUbcHn/8cS1ZskSPPPKIHnvsMZ07d04ffvhhzNee/ZPS0lKVlJRo7dq1kRvygsGgPvjgA/n9fh0+fDgy1nEcbd68WcXFxfL7/aqoqFB+fr5CoZB+/vlnbdu2TcuXL1d5eXncryUvL09er1eBQECpqakaMGCAsrKyIjfgdUdiYqLWrFmjsrIyjR07VvPmzZPX69XHH3+s/fv3q7q6OrL6DQAA3EMgRtyqqqpkjNH69ev14osvKjs7W08++aRmz56tvLy8a5rDcRxt3bpVr776qj766CPt2rVLfr9f27dvVyAQiPkmiNGjR6upqUnLly/Xp59+qrq6Onm9Xvl8PpWXl+uhhx66rteSkpKiLVu2qKamRi+9lHkXSAAAAqlJREFU9JLa29v1wAMP9Eggli6vhO/evVtvvvmmamtrdfHiRY0cOVLr1q3Ts88+2yPXAAAA3ePczDcAFRYWmoMHD7rdBuJ0991369KlSzpy5IjbrQAAgJuI4ziNxpjCK+vsIYZrLly4EFPbuXOnvv/+e02ePNmFjm68UCikEydOdPk1cQAAwB1smYBr3njjDTU1NamoqEhpaWk6dOiQNmzYoIyMDL3yyitut9fjjhw5okWLFqm+vl6DBw9WXV2dSkpKlJTEvyEAAG5ihRiumThxokKhkGpra/X8889r+/btmjlzpvbv36/Bgwe73V6PamtrU2VlZeQX+n799VdNnz496uZBAADgDpam4JrS0lKVlpa63UavaGlpUUNDQ1Ttzz//1LFjx1RQUOBSVwAAQGKFGOgV/fv316BBg2LqAwcOdKEbAADwdwRioBfk5uYqEAhE/TLetGnTNGrUKBe7AgAAElsmgF4zdepUffPNNzp69KgyMjI0ZsyYLleNAQBA7yIQA73E4/GosLBQhYUxX38IAABcxJYJAAAAWI1ADAAAAKsRiAEAAGA1AjEAAACsRiAGAACA1QjEAAAAsBqBGAAAAFYjEAMAAMBqBGIAAABYjUAMAAAAqxGIAQAAYDUCMQAAAKxGIAYAAIDVCMQAAACwGoEYAAAAViMQAwAAwGoEYgAAAFiNQAwAAACrEYgBAABgNQIxAAAArEYgBgAAgNUIxAAAALAagRgAAABWIxADAADAagRiAAAAWI1ADAAAAKsRiAEAAGA1xxjjdg83jOM4/5X0H7f7AAAAwP+FocaYzCuLN3UgBgAAAP4NWyYAAABgNQIxAAAArEYgBgAAgNUIxAAAALAagRgAAABWIxADAADAagRiAAAAWI1ADAAAAKsRiAEAAGC1/wH4vwsny6ac6wAAAABJRU5ErkJggg==\n" + }, + "metadata": {}, + "execution_count": 13 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Observamos como los gentilicios *americano* y *alemán* se encuentran cercanos entre sí, junto a *nigeriano* mientras que *argentino*, *boliviano* y *australiano* se encuentran más alejados. Veamos ahora vecinos para hallar nuevas palabras, comenzamos con dos vecinos para darnos una \n", + "\n", + "> **Notar:** Podemos aumentar el numero de vecinos a obtener hasta el número establecido como parametro en `max_neighbors` en la instanciación de la clase `Embedding`." + ], + "metadata": { + "id": "KtcgU22n56nk" + } + }, + { + "cell_type": "code", + "source": [ + "explorador_de_palabras.plot_projections_2d(procedencia, n_neighbors=2, figsize=(10, 10))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 729 + }, + "id": "lug2vZVf7WDY", + "outputId": "a705d1e0-38f7-4027-9007-0bf22c3076f8" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsUAAALICAYAAACXVY3GAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXxU1f3/8dedJJOV7IGEJCQhG1HCZlglgoC40i9arVZbQbtaLNqvP5cqFlrFahe11Fq1WPFrXVprW8FdZBFBdsJOyL6RQBKykHUyyf39ETPNMAHCZoB5Px8PHjD3nnvuuWO/fN+cnPs5hmmaiIiIiIi4M0tfD0BEREREpK8pFIuIiIiI21MoFhERERG3p1AsIiIiIm5PoVhERERE3J5nXw/gXBAeHm7Gx8f39TBERERE5CzasmVLlWmaET2dUygG4uPj2bx5c18PQ0RERETOIsMwio51TssnRERERMTtKRSLiIiIiNtTKBYRERERt6c1xcfQ1tZGaWkpLS0tfT2UC56Pjw8xMTF4eXn19VBERETETSkUH0NpaSn9+vUjPj4ewzD6ejgXLNM0qa6uprS0lISEhL4ejoiIiLgpLZ84hpaWFsLCwhSIzzLDMAgLC9OMvIiIiPQpheLjUCD+euh7FhERkb6mUCwiIiIibk+hWERERETcnkJxH1qyZAl33333Mc/Pnj2bf/7zny7HN2/ezNy5c8/m0ERERETciqpPfI3a29vx8PA47X4yMjLIyMg4AyMSEREREdBMca/99re/ZdGiRQD87Gc/Y8qUKQCsWLGC2267jTfffJP09HSGDh3Kgw8+6LguICCA++67j+HDh/Pll1/yyiuvkJKSwpgxY1i7du0J77t8+XIyMjJISUnhvffeA2DVqlVcd911AGzcuJHx48czcuRIJkyYQHZ2NgC7d+9mzJgxjBgxgmHDhpGTk9Nj/42NjVx77bUMHz6coUOH8ve//x2A+Ph4HnjgAdLT0xkzZgy5ubkALFu2jLFjxzJy5EimTZvGwYMHAWhoaOCOO+4gPT2dYcOG8c477wDwySefMH78eEaNGsVNN91EQ0PDyX3xIiIi0qN169axfPlyp2NZWVksW7asj0Z0flMo7qXMzEzWrFkDdC5faGhooK2tjTVr1pCSksKDDz7IihUryMrKYtOmTfznP/8BOkPn2LFj2b59O4mJicyfP5+1a9fyxRdfsGfPnhPet7CwkI0bN/L+++/z4x//2KV02ZAhQ1izZg3btm3jV7/6FQ8//DAAL7zwAvfccw9ZWVls3ryZmJiYHvv/6KOPGDhwINu3b2fXrl1cddVVjnNBQUHs3LmTu+++m3vvvReAiRMnsn79erZt28Ytt9zCb37zGwAee+wxR/sdO3YwZcoUqqqqePzxx1m+fDlbt24lIyODp59++iS/eRERkfNLdXU12dnZtLW19fVQ5CRo+UQvXXLJJWzZsoX6+nq8vb0ZNWoUmzdvZs2aNcyYMYPJkycTEREBwG233cbnn3/OzJkz8fDw4Jvf/CYAGzZscGp38803s3///uPe91vf+hYWi4Xk5GQGDx7Mvn37nM7X1dUxa9YscnJyMAzD8X+A48ePZ+HChZSWlnLDDTeQnJzcY//p6encd999PPjgg1x33XVkZmY6zn372992/P6zn/0M6NzU5Oabb6a8vBybzebYcGP58uW89dZbjmtDQkJ477332LNnD5deeikANpuN8ePH9+LbFhEROX9VVVWxf/9+YmNjv/bdWocNG8awYcO+1nteKDRT3EteXl4kJCSwZMkSJkyYQGZmJitXriQ3N5f4+PhjXufj43Na64iPruF79OdHH32Uyy+/nF27drFs2TLHTPKtt97K0qVL8fX15ZprrmHFihU99p+SksLWrVtJT09n3rx5/OpXv+rxXl1//ulPf8rdd9/Nzp07efHFF4+76YZpmlxxxRVkZWWRlZXFnj17ePnll0/uCxAREbnAdXR00NHRcUb6slgsWCyKd6dCM8UnITMzk9/97nf89a9/JT09nf/93//lkksuYcyYMcydO5eqqipCQkJ48803+elPf+py/dixY7nnnnuorq4mMDCQt99+m+HDhx/3nm+//TazZs2ioKCA/Px8UlNTWb9+veN8XV0d0dHRQGc1iy75+fkMHjyYuXPnUlxc7FjScLQDBw4QGhrKd77zHYKDg1m8eLHj3N///nceeugh/v73vztmeLvf79VXX3W0veKKK/jTn/7Es88+C0BNTQ3jxo1jzpw55ObmkpSURGNjI2VlZaSkpJzoqxYRETktdrud3NxcKisraWpqwm634+vrS1RUFCkpKY4Jq5KSErKyspgwYQJhYWFOfaxbt46mpiamTZvmOHb48GFycnKoq6ujra0Nq9VKYGAgKSkphISEkJWVRUlJCQCfffaZ47qUlBRSU1PJzs5m//79TJ48meLiYg4cOEBrayvjx48nLCyMAwcOUFpaSn19Pa2trXh6ehIaGkpqaiqBgYEnfO6u+8+YMcNxrKGhgYKCAqqrq2lubsY0TQICAoiPj2fQoEFO13eN7/LLL6e0tJSSkhJsNhsBAQGkpaXRv39/p/aFhYVUVFRw5MgRbDYbXl5ehIeHM2TIEPz8/Hr5X+vcoFB8EjIzM1m4cCHjx4/H398fHx8fMjMziYqK4sknn+Tyyy/HNE2uvfZa/ud//sfl+qioKBYsWMD48eMJDg5mxIgRJ7znoEGDGDNmDPX19bzwwgv4+Pg4nX/ggQeYNWsWjz/+ONdee63j+D/+8Q9ee+01vLy8iIyMdKw1PtrOnTu5//77sVgseHl58ec//9lxrqamhmHDhuHt7c2bb74JwIIFC7jpppsICQlhypQpFBQUADBv3jzmzJnD0KFD8fDwYP78+dxwww0sWbKEb3/727S2tgLw+OOPKxSLiMhZ19LSQnFxMVFRUURHR2OxWKiuriY3N5e6ujrGjRt30n02NDSwfv16vL29SUhIwNvbm9bWVg4fPkx9fT0hISHExcXR1tZGRUUFF198MVarFcAl0G7duhUPDw8SExMB8Pb2BqCgoACr1UpcXBze3t40NjZSVFTE2rVrueyyy/D39z/pcVdXV1NdXc2AAQPw8/PDbrdTXl7O9u3baW1t7XGJZVZWFoZhkJiYSEdHBwUFBWzatInLL7/cKezm5eUREhJCQkICVquV+vp6iouLqa6uZtKkSY7nPx8Ypmn29Rj6XEZGhrl582anY3v37iUtLa2PRtT34uPj2bx5M+Hh4V/L/dz9+xYRkTOraznC0UsJ9u3bR05ODpmZmQQHB5/UTHFBQQG7du1yXHssXbOtU6dOdZkt7ToXFhbG+PHjXZZF9lS+taGhgdWrVzNo0CDS09OPOT7oeaa4pz5N0+TLL7+krq6OK6+80vE9dY1vwIABjBkzxtG+traWNWvWkJSU5PT/r3vqu6qqii+//JK0tDSSkpKO+T31BcMwtpim2WNdWy06ERERkQtO97W1pmnS1taGzWZzvOxeU1Nz0n16enb+gL2iouK01wAPHjzYJRADTgHTbrdjs9mwWq0EBASc0piP7rOjowObzUZbWxsRERHY7fYey6V2vUjfJTg4GE9PTxobG3vsu/t3HBgYiJeXF7W1tac03r6i5RPngIULF/L22287Hbvpppt45JFHztg9qqurmTp1qsvxzz77zOVfxtC5RkhEROR8VlhYSFFREUeOHOHon4yfSrm06OhoysrKyMnJIT8/n5CQECIiIoiOjsbX1/ek+jrWMoi6ujqys7Opqqqivb3d6dyprtG12+3s37+fAwcO0Nzc7HK+p++ip3t5eXlhs9mcjnVV2qipqXH5h8L5VpJOofgc8Mgjj5zRANyTsLAwsrKyzuo9REREzhX5+fns3r2biIgIEhIS8PHxwTAMWlpayMrKcgnJPTm6jcViYdy4cdTW1nLo0CEOHz5MdnY22dnZXHLJJURGRvZ6fD1VpmpubmbdunV4enqSkpJCQECAo93u3bux2+297r+7rVu3cvDgQeLi4ggLC3Os8z106BD5+fk9XtPTLPbRamtrWb9+Pf7+/qSlpeHn5+cY79atW3v1HZ9LFIpFRETkglNSUoKfnx9jx451CniHDh1yatcVEI+eAQVoamrqMRwGBwc71hQ3Nzfz+eefs2/fPkco7k2g7El5eTl2u53Ro0e7vNNjs9lOqdRaW1sbBw8eJCYmxqV+cVVV1SmNs0tZWRmmaTJ27FinmeX29vbzbpYYtKZYRERELkA9BVPTNMnNzXU61rWM4eiAWFZW5lKLv6fg7Ovri9VqdTrXNVt6ssHwWGG6uLjYUcXpZB2rz67qHKfjWH3n5OScd7PEoJliERERuQANHDiQvXv3smHDBqKiomhra6OsrMxltjUgIICIiAiKioowTZOgoCDq6uqoqKjA39/faZ1sTk4Ohw4dcpQ2Azh48CANDQ1OVRZCQkKAzspKXeXgAgMD6dev33HH3L9/fzw8PNi2bRvx8fFYrVYOHz7MwYMHXcbSW56enkRERFBaWoqHhwfBwcE0NTVRVFSEn59fj0G/tyIjI8nPz2fDhg3ExcVhGAZVVVXU19efV6XYumim2M199NFHpKamkpSUxJNPPtnXwxERETkjEhMTGTJkCE1NTezatYvCwkIiIiIYOXKkS9uRI0cSGRlJWVkZu3fvprm5mQkTJrjsDRAZGUlgYCAHDhxg9+7d7Nu3D5vNxvDhw53KlIWGhpKWlkZjYyPbt29n69atHDhw4IRj9vf3dyxFyM3NZe/evdhsNi699FKXsZyMUaNGMWjQIA4ePMjOnTupqKggLS3tuDvy9kZoaCgZGRl4eHiwb98+9u/fj8ViYcKECae1m29fUZ1i3LdOcXt7OykpKXz66afExMQwevRo3nzzTS666KKvfSzu8H2LiIhI31Kd4gvE66+/Tnx8PBaLhfj4eF5//fXT6m/jxo0kJSUxePBgrFYrt9xyC+++++4ZGq2IiIjI+UNris8Tr7/+Oj/84Q9pamoCoKioiB/+8IcA3HbbbafUZ1lZGbGxsY7PMTExbNiw4fQHKyIiIm6lvb2dvLw8iouLMQyDuLg4Bg8efEoVM/rK+TNSN/fII484AnGXpqams17fWERERORE8vLyyM7Oprm5maamJvbu3UtBQUFfD+ukKBSfJ45VNuV0yqlER0dTUlLi+FxaWkp0dPQp9yciIiLuqac8crol375uCsXniUGDBp3U8d4YPXo0OTk5FBQUYLPZeOutt/jGN75xyv2JiIiIe+qpZvGpbmLSVxSKzxMLFy502Yfcz8+PhQsXnnKfnp6ePPfcc1x55ZWkpaXxrW99i4svvvh0hyoiIiJupqdJuu7vLZ0P9KLdeaLrZbpHHnmE4uJiBg0axMKFC0/5Jbsu11xzDddcc82ZGKKIiIi4qcTERAzDoKSkBMMwiI2NJSEhoa+HdVIUis8jt91222mHYBEREZEzzWKxkJSU5LSz3/lGyydERERExO0pFB+Hdvv7euh7FhERkb6mUHwMPj4+VFdXK7CdZaZpUl1dfVp7uouIiIicLq0pPoaYmBhKS0uprKzs66Fc8Hx8fIiJienrYYiIiIgbUyg+Bi8vr/PurUkREREROTVaPiEiIiIibk+hWERERETcnkKxiIiIiLg9hWIRERERcXsKxSIiIiLi9hSKRURERMTtKRSLiIiIiNtTKBYRERERt6dQLCIiIiJuT6FYRERERNyeQrGIiIiIuD2FYhERERFxewrFIiIiIuL2FIpFRERExO0pFIuIiIiI21MoFhERERG3p1AsIiIiImdMU1MT2dnZHD58uK+HclIUikVERETOYdXV1SxbtoySkpJzfhx2u52NGzdSW1tLcHDw1zi606dQLCIiIiKnzTRNtm7dire3N6NHj8ZiOb9ipmdfD0BEREREzn+NjY2EhIQwePDg8y4Qg0KxiIiIiJwBAQEBJCcn9/UwTplCsYiIiFwwSkpKyMrKYvz48dTV1VFYWEhLSwu+vr4kJycTGxvr1L6yspK8vDxqa2tpb28nICCA+Ph44uLiXPquqKggLy+Puro6AIKCgrj//vs5cOAAhYWFAGRnZ/OTn/yEFStWsHTpUpc+pk6dip+fHwBtbW3k5uZSXl5Oc3Mznp6eREREMGTIEEebYzFNk9zcXA4dOkRjYyNtbW14e3vTv39/hgwZgtVqdbRtamris88+IyUlheDgYPbv3099fT1eXl7ExMSQlpaGYRguz5qdnU1DQwNWq5XY2FjCwsJ6HEtHRwd5eXmUlZXR2NiIh4cHoaGhpKamEhQU5DTmgoICSkpKaGpqAsDb25uwsDDS09P7fHZZoVhEREQuOG+++SZbtmxh7ty5BAcHU1RURFZWFv7+/oSGhgJQVFTEjh07CAkJITk5GQ8PDyorK9mxYweNjY1cdNFFjv4KCwvZuXMnAQEBpKSkAJ0BvL6+Hrvd7mgXFRXl6H/kyJFAZ2jcvXs3pmni6dkZvdra2li7di3Nzc3ExsbSr18/WltbKSwsZM2aNVx22WX4+voe8/lM0yQvL4+oqCgiIyPx9PSktraWkpISDh8+zGWXXeYSMg8dOkRhYSHx8fHExsY6Qr6Xl5fTDG9FRQWbNm3Cz8+PlJQUDMOgpKSEQ4cOuYyjo6OD9evXU1NTQ0xMDPHx8djtdoqKili7di0TJkxwvHCXk5NDdnY2AwYMIC4uDsMwaGpqoqKigo6ODoViERERkTNty5YtvPrqqyxYsID4+HgGDhzIZ599RmFhIaGhobS0tLBr1y6io6MZNWqU47r4+Hh27dpFfn4+8fHx+Pn50dbWxp49e/D39yczM9MRbOPj4/Hw8KCtrY22tja8vLwIDAzkjTfe4LXXXsPHx8cxFrvdzujRox0zuNnZ2TQ2NpKZmUlgYKDj/rGxsaxatYrs7GxGjBhxzOezWCxcccUVeHh4OI7FxcUREhLC9u3bqaioYODAgU7XHDlyhMmTJztmoePj41m1ahUFBQWOUGyaJrt27cJqtZKZmekYb1xcHKtXr3YZR2FhIdXV1YwbN46IiAin73HVqlXs2bOHCRMmAJ1hOyAggDFjxjj1kZaWdszn/Dqdf6ugRURERE4gJCTE6bOPjw/+/v40NDQAUF5eTkdHB4MGDcJms9HY2Eh9fT02m40BAwZgmiaVlZVA5xKL9vZ2EhISHIEYwNPTEx8fH0zTpKqqynHcy8vLEYj37dvHgQMHSEtLIzIy0tGmrKyMsLAwfHx8sNlsjl8eHh6EhIQ47n08XYHYNE3a2tqw2WyEh4cDUFNT49I+MjLSZVlGeHg4ra2tjtnuuro6x+x19yUYXl5ePS4pKS0tJSAggKCgIKfn6OjoICIigsOHD9Pe3u74vlpaWs7Z+sWaKRYREZGz4siRIzz11FN8+umn5OXlceTIEWJjY7nxxhv5xS9+4QhoS5Ys4Y477mDlypVMnjzZqY/JkydTWFjoWLMLsG7dOh577DG2bdtGbW0tYWFhDB8+nF/84hdER0fz7LPPsmLFCgASEhIc1915553ceuutLFiwgF/+8pc899xzLF68mC+++IKamhoef/xx0tPTWbNmDatWrXIsRfDz8yM1NZWnnnrKqT/4bzBtbGx0HJs9ezavvvoqxcXF5OTkMGjQIOx2Oz/5yU9YvXo1RUVFtLW1ERMTwzXXXMP06dOd+nzjjTd466232LdvH6+++iqvvPIKVVVVJCUl8fvf/55rrrkGgAMHDpCXl0dNTQ3vvPMOK1asoKKiAh8fHzIyMli0aBHp6emOfntap+zl5QV0Lufw9PR0PEdAQIBL2379+rkca2hooL29nY8//tjlXBebzYavry9paWls2rSJtWvX4uPjQ1hYGAMGDCAqKqrPl06AQrGIiIicJWVlZSxevJhvfvOb3HrrrXh6erJ69Wp+85vfsG3btuMGqWPJzs7miiuuIDIyknvuuYcBAwZw8OBBvvjiC7Zv3050dDRXXXUVPj4+fPDBBzzzzDOO2dOOjg5M03T09bvf/Y6QkBDuvfdeDMPg8ssvJykpiYULFxIWFsZVV13FoEGD2Lx5M6+//jrXXnst27Zt63WFhR07dhAeHk56ejovvfQSn3/+Oddddx0xMTFs27aNDRs28NxzzxEYGMi9997ruO7zzz8HYNasWXh5eXH33XeTk5PDhx9+yMyZM9m/fz/e3t5s2bKF4OBgXnrpJd5//30mTZrEXXfdRVZWFh9++CHjx49nzZo1pKamAri8TNdd9+/lZJimSWBgoNP666N5e3sDnbP3U6ZMobKykqqqKqqrqykrKyMgIICJEyc6AnpfUSgWERGRs2Lw4MGUlJQ4hZ05c+bw6KOP8vjjj7Nx40aX9aUn8vHHH9PU1MSbb77Z47UlJSUMGTKEyspKPvjgA2bOnEl8fDzQOcPcVfUAwN/fn/fee89l7e1nn32Gv7+/4/M111zDsGHDuPfee3nmmWd4/vnnHee6lgZ0b9/W1gZ0zsxmZGRgsVj47ne/y49//GOgM0h+/PHHzJo1i/nz5/Pcc8+xYMECx/fU1Vd4eDjLli3j8OHDrFu3jhtvvJEZM2bw4osvcsMNN2CxWGhsbOT999/nW9/6Fm+99RaNjY2sXLmSb37zm9x2223MnTv3pP7x0XXvrmUm3R05csTlWEBAAK2trYSHhx83dHfx9PQkKiqKqKgo4L8vMBYXF5OYmNjrcZ4NfT9XLSIiIhckq9XqCHp2u52amhqqqqqYNm0aABs2bDjpPrtKfL377ru0tLSc1vhmzpxJXl6eI9h28ff3p62tjfb2durr6zEMg5CQEGJiYli/fr2jnd1up6WlBcMwHLPRNpvNsb54zJgxLkEXoLW1FX9/f0pLSxk3bhz19fXs27fPZXz33HOPU9AcPnw4AQEB5OTkYBgGhmHwn//8B4BHHnkEwzDYv38/AKmpqcyYMYMvvviiV+uTuwQFBeHj40NJSQk2m83pWYuKilzax8TE0NraSn5+fo/9tba2Ov7cvb/u9zvWua+bZopFRETkrHn++ed54YUX2L17Nx0dHU7nenoZ7ERuueUW/va3v/HEE0/wzDPPMG7cOK688kpuueWWHl8EO57LL7+curo6Vq5cSUxMDH5+frS2trJp0yaeffZZdu/e7TSzDJ0vq+Xm5gKds9Lt7e14eXk5wu/OnTsdL63V1NQ4nrGxsZGnn36aDz74gNLSUpex7N69m379+tHc3OxYPz148GCXdmFhYVRXVxMVFUV5eTnbtm3DMAy8vb1Zt26dU8C/+OKL+c9//tNjmD0WwzAYOnQomzdvZs2aNQwaNAiLxUJxcTFWq5Xm5man9gkJCVRWVrJnzx6qqqoIDw/H09OT5uZmqqqqsFgsjuoTK1euJCQkhJCQELy9vWltbaWoqAiLxUJ0dHSvx3i2KBSLiIjIWfH0009z3333MX36dObOncvAgQOxWq2UlZUxe/ZsR0g+3o/du9cAhs71qZ9++ikbN27k448/5vPPP+cXv/gFCxYs4I033iAjI6PX40tMTCQwMJC8vDyKioqw2+3U1tbygx/8gH79+jFv3jzS0tLw9/fHMAzmzJlDXV2dYzY2MDCQwMBAp6UG3WdGt23b5vjzY489xqZNm7jzzjuZOnWqYyOMt956iyVLllBQUOCYpe2qXNG93Fp3pmkSHR1Ne3u7Yy1wXl4e0dHRXHTRRXz00Ue9/g56EhUVRUZGBvv372f//v1Om3d0nymHztJwY8eOpbCwkNLSUrKzs4HOah/BwcFOm6UkJiZy8OBB8vPzsdvtWK1WR43o7mXp+opCsYiIiJwVr732GvHx8Xz44YdO1QWODm1dm130VKqroKCgxxewxowZ41hTXFJSwsiRI5k3bx67d+8mNjaWrVu3ulzTNWP5xRdfON276/4Af/jDH2hubub999/n8ssvd7q+vr4eHx8fR/UHwKlsWdc9uoLgjBkzAKitrWXz5s3cfvvtvPzyy07tV65cCcD48eMdlTeOrgccFhbm6Ku7QYMGMXr0aDZt2kRMTAzDhg1zuu+vfvUroLMOcPcawt2lpqY6XsTrrvu63+56GodhGCQkJLhU5jhaUlISSUlJx23Tl7SmWERERM4KDw8PDMNwqmxgt9t58sknndp17RC3fPlyp+NvvvkmBw4ccDrWvR5wl5iYGEdN3C5dJcVOtiZu99q/3f3lL3+hoqLipPo6UZ/l5eUsXrz4lPrsMnPmTAB+/etfO/W/a9culi5dysSJE48ZiMWZZopFRETkrLjxxhv5+c9/ztVXX80NN9xAfX09b7zxhsvMb2pqKtOmTePFF1/ENE1GjBhBVlYW//73v0lKSnJUcwB4/PHH+eSTT7juuutISEjANE2WLVvGvn37eOCBBxztxo0bB8CDDz7Ibbfdho+PD0OHDmXo0KHHHfPVV1+Nn58f3/3ud7n77rsJCQlh7dq1fPDBByQmJros5+iNfv36MX36dP72t7/h6+vL6NGjKSoq4sUXXyQhIYHq6uqT7rPLFVdc4ag8UVNTw3XXXUdFRQV/+tOf8PHxYdGiRafc99lSWlpKWVkZ0DkjHRsb26vKFWebQrGIiIicFffffz+mafLyyy9zzz33EBkZyc0338wdd9zhUtf2tdde46c//Smvv/46r732GpmZmaxcuZK77rrLaeOOmTNnUl5ezj/+8Q8OHjyIr68vycnJ/OUvf+F73/ueo92ll17KU089xQsvvMAPfvAD7HY78+fPP2EoTkxM5MMPP+Thhx/miSeewMPDg0svvZTVq1dz9913O43lZPztb3/joYceYtmyZbz66qskJyezcOFCvLy8uOOOO06pzy6vv/46o0aNYsmSJdx33334+/szadIkHnvsMafNO84FxcXFbN++3fH50KFDjt0C+5pxqsWaLyQZGRnm5s2b+3oYIiIiIhe0zz//nLq6OqdjAQEBLuu3zxbDMLaYptnj25haUywiIiJyAbHZbOdE3d+e9LT85FSWpJwNCsUiIiIiF4DW1lY++eQTZsyYwfTp03n33Xd73JmuLx29eyBwTtQoBq0pFhEREbkgfPnll1x55ZWOz6tXr2bp0qU9llHrK5kxy0AAACAASURBVElJSdjtdkpLSzFNk5iYGJKTk/t6WIBCsYiIiMgF4e9//7vLsUWLFnH11Vfj6XluRD5PT0+GDh3qqI3cUw3qvnJufEMiIiIiclr8/f1djgUEBJwT5c6Odi6F4S5aUywiIiJyAbjpppucdtizWCzcc889x9wuWpxpplhERETkAjBmzBg+//xzli5dSmtrKzNnzmTs2LF9PazzhkKxiIiIyAXAMAzGjh2rIHyKtHxCRERERNyeQrGIiIiIuD2FYhERERFxewrFIiIiIuL2FIpFRERExO0pFIuIiIiI21MoFhERERG3p1AsIiIiIm5PoVhERERE3J5CsYiIiIi4PYViEREREXF7CsUiIiIi4vYUikVERETE7SkUi4iIiIjbUygWEREREbenUCwiIiIibk+hWERERETcnkKxiIiIiLg9hWIRERERcXsKxSIiIiLi9hSKRURERMTtKRSf55YvX866dev6ehgArFu3juXLl/f1MEREREROmkKxiIiIiLg9z74egJyeKVOm9PUQHMaNG9fXQxARERE5JQrF5zmLpW8n+03TpKOjAw8Pjz4fi4iIiMipUig+B5WUlJCVlcX48eOpq6ujsLCQlpYWfH19SU5OJjY21tF2+fLl+Pn5MWHCBKc+CgsLyc/Pp7m5GV9fXxISEvD09CQrK4sJEyYQFhbmaNvW1kZubi7l5eU0Nzfj6elJREQEQ4YMwc/Pz2Vc48aNo6amhpKSEpqbmxk+fDixsbGsW7eOpqYmpk2b5rimtraWwsJCDh8+TEtLC4ZhEBgYSGJiIpGRkU5jzsrKoqSkhKuuuoq9e/dSXl6O3W4nODiYiy66iJCQEKf27e3t7N+/nwMHDtDS0oKXl5dj3L6+vo52pmlSUFBASUkJTU1NAHh7exMWFkZ6errCvIiIiCgUn8v27dtHe3s7cXFxWCwWioqKyMrKwt/fn9DQ0GNel5uby969ewkKCiItLY329nby8vKwWq0ubdva2li7di3Nzc3ExsbSr18/WltbKSwsZM2aNVx22WVOARNgz549mKZJXFwcnp6eBAQEHHMs5eXlNDQ0MHDgQPz8/LDZbJSUlLBp0yZGjRpFdHS0yzUbNmzAarWSkpJCW1sbeXl5bNy4kalTp+Lp2fk/2Y6ODtavX8/hw4eJiooiMTGRxsZGCgsLqays5LLLLsPHxweAnJwcsrOzGTBgAHFxcRiGQVNTExUVFXR0dCgUi4iIiELxuay9vZ3MzExHaBs4cCCfffYZhYWFxwzFbW1tZGdnExgYyMSJEx3XDho0iBUrVri0z87OprGxkczMTAIDAx3HY2NjWbVqFdnZ2YwYMcJlXJMmTcLDw+OEz5CSkuLSLiEhgdWrV7N///4eQ3FQUBDp6emOzwEBAWzZsoWysjLi4uIAKC0t5fDhwyQmJnLRRRc52oaHh7Nx40b27t3LyJEjAaioqCAgIIAxY8Y43SctLe2E4xcRERH3oCmyc1hCQoLTLKaPjw/+/v40NDQc85rKyko6Ojocs8tdvL29iYmJcWlfVlZGWFgYPj4+2Gw2xy8PDw9CQkKorKx0uSY+Pr5XgRhwatfe3o7NZqO9vZ3w8HAaGhqw2+0u1wwePNjpc3h4OACNjY2OY+Xl5RiGQXJyslPbAQMGEBgYSEVFBaZpAuDp6UlLSwuHDx/u1ZhFRETE/Wim+BzWfT1vF6vVSnNz8zGv6Voz29OSBn9/f6fPra2t2Gw2Kisr+fjjj3vszzAMl2PHWy5xtNbWVvbt28fBgwdpbW11Od/W1uZYEtHl6OfuWvZhs9kcx5qamvD29sbLy8ulz379+lFfX4/NZsPb25u0tDQ2bdrE2rVr8fHxISwsjAEDBhAVFaWlEyIiIgIoFJ/TegqkgGMG9EyJiIggMTGx1+17O0sMsH79ehoaGkhISCA4ONgRYktKSigrK+vxWY713KcqJCSEKVOmUFlZSVVVFdXV1ZSVlREQEMDEiRN7DNYiIiLiXhSKLzBdL8U1NDQ4lh106b78ADpnYL28vGhrayMiIuKMj6W+vp76+npSUlJITU11OldcXHxaffv5+VFZWUlbW5tLqG1oaMDT09PpxUJPT0+ioqKIiooCOqtz7Ny5k+Li4pP6B4GIiIhcmPSz4wtMRESEo1JFR0eH43hrayulpaVObQ3DIDo6mtraWsrLy3vsr6clD711rBnfI0eOUFFRccr9AkRFRWGaJrm5uU7HDx06RF1dHZGRkY77d1920SUoKOiY50RERMT9aKb4AtNVymzfvn188cUXxMTE0N7eTlFREQEBAdTW1jq1HzJkCIcPH2bz5s0MHDiQkJAQLBYLzc3NHDx4kODgYJfqE70VEBBAv379yM3Npb29nYCAABoaGigqKqJfv37U1dWd8nPGxMRQUlJCbm4uTU1NhIWFOUqyeXt7M2TIEEfblStXEhISQkhICN7e3rS2tlJUVITFYumx+oWIiIi4H4XiC1BycjJeXl7k5+ezd+9efH19HUsEamtrndYEe3l5MXHiRPLy8jhw4AAVFRVYLBZ8fHwIDQ1l0KBBpzwOwzAYO3Ysu3fvpqSkhPb2dvr168fIkSOpq6s7rVBssVgYN26cY/OOiooKPD09GThwoMvmHYmJiRw8eJD8/HzsdjtWq5WQkBCSk5OdytCJiIiI+zLO9Etb56OMjAxz8+bNfT2Ms27Xrl0UFBQwffp0vL29+3o4IiIiIl8rwzC2mKaZ0dM5rSm+AHVfS9ylpaWFkpIS+vXrp0AsIiIichQtn7gAVVVVsWfPHqKiovD19aWpqYmioiLa29vdehe3+vp6ysvLMU2TyMhIgoOD+3pIIiIico5QKL4A+fv74+/vT3FxMTabDYvFQnBwMElJSWel9Nr5oLKykk2bNtHe3g5AXl4el1xyCZGRkX08MhERETkXKBRfgPz9/Rk9enRfD+OcUlBQ4AjE0LnEJCcnR6FYREREAK0pFjdx5MgRl2ONjY1nfHdAEREROT8pFItb6GnZSERExBnfUlpERETOTwrF4haSkpIICQlxfA4KCiIlJaUPRyQiIiLnEq0pFrfg5+fHpZdeSk1NDaZpOnbuExEREQGFYnEjhmEQGhra18MQERGRc5CmykRERETE7SkUi4iIiIjbUygWEREREbenUCwiIiIibk+hWERERETcnkKxiIiIiLg9hWIRERERcXsKxSIiIiLi9hSKRURERMTtKRSLiIiIiNtTKBYRERERt6dQLCIiIiJuT6FYRERERNyeQrGIiIiIuD2FYhERERFxewrFIiIiIuL2FIpFRERExO0pFIuIiIiI21MoFhERERG3p1AsIiIiIm5PoVhERERE3J5CsYiIiIi4PYViEREREXF7CsUiIiIi4vYUikVERETE7SkUi4iIiIjbUygWEREREbenUCwiIiIibk+hWERERETcnkKxiIiIiLg9hWIRERERcXsKxSIiIiLi9hSKRURERMTtKRSLiIiIiNtTKBYRERERt6dQLCIiIiJuT6FYRERERNyeQrGIiIiIuD2FYhERERFxewrFIiIiIuL2FIpFRERExO0pFIuIiIiI21MoFhERERG3p1AsIiIiIm5PoVhERERE3J5CsYiIiIi4PYViEREREXF7CsUiIiIi4vYUikVERETE7SkUi4iIiIjbUygWEREREbenUCwiIiIibk+hWERERETcnkKxiIiIiLg9hWIRERERcXsKxSIiIiLi9hSKRURERMTtKRSLiIiIiNtTKBYRERERt6dQLCIiIiJuT6FYRERERNyeQrGIiIiIuD2FYhERERFxewrFIiIiIuL2FIpFRERExO0pFIuIiIiI21MoFhERERG3p1AsIiIiIm5PoVhERERE3J5CsYiIiIi4PYViEREREXF7CsUiIiIi4vYUikVERETE7SkUi4iIiIjbUygWEREREbenUCwiIiIibk+hWERERETcnkKxiIiIiLg9hWIRERERcXsKxSIiIiLi9hSKRURERMTtKRSLiIiIiNtTKBYRERERt6dQLCIiIiJuT6FYRERERNyeQrGIiIiIuD2FYhERERFxewrFIiIiIuL2FIpFRERExO0pFIuIiIiI21MoFhERERG3p1AsIiIiIm5PoVhERERE3J5CsYiIiIi4PYViEREREXF7CsUiIiIi4vYUikVERETE7SkUi4iIiIjbUygWETmHGIbB7Nmz+3oYIiJuR6FYRERERNyeZ18PQERE/qu5uRkPD4++HoaIiNvRTLGISB9rbm7GbrcD4OPjg5eXVx+PSETE/SgUi8gF58iRI8ybN4+xY8cSHh6Ot7c3SUlJPPTQQzQ1NTnarVq1CsMwWLJkCc8//zypqan4+PiQnp7Oe++9B8DOnTu56qqrCAwMJCwsjLlz59LW1uZyz5ycHL773e8SFRWF1WolPj6e+++/n8bGRqd2s2fPxjAMKisrufPOOxkwYAD+/v6UlpYCx15TvHLlSq699lrCwsLw8fFh8ODBfO9736OqqsrR5vnnn2f69OlER0djtVqJioriO9/5DoWFhS79dd3nyy+/ZNKkSfj7+xMWFsb3v/99GhoaXNrv2LGD66+/3nH/iy66iN/85je0t7f36r+JiMi5TssnROSCU1ZWxuLFi/nmN7/JrbfeiqenJ6tXr+Y3v/kN27Zt4+OPP3Zq/6c//Ymamhq+//3v4+Pjw6JFi7j++ut5++23+cEPfsC3v/1tZs6cySeffMIf//hH+vfvz7x58xzXb9myhSlTphAcHMyPfvQjoqOj2b59O4sWLWLt2rWsXr3aZfb3iiuuIDIykkcffZTGxkYCAgKO+Twvvvgid911F9HR0dx1113ExcVRXFzMsmXLKC0tJTw8HIDf/e53jBs3jrlz5xIaGsquXbtYvHgxK1asYOfOnYSFhTn1m5WVxXXXXccdd9zBrbfeyqpVq3j55ZexWCy89NJLjnabN29m0qRJeHl5MWfOHCIjI1m2bBkPPvgg27dv5/XXXz/l/1YiIucM0zTd/tcll1xiisiFo7W11bTZbC7H582bZwLmhg0bTNM0zZUrV5qAOXDgQLO2ttbRbvv27SZgGoZhvvPOO059jBo1yoyMjHQ6NmzYMDM1NdWsr693Ov6vf/3LBMxXXnnFcWzWrFkmYN522209jh0wZ82a5fhcUlJiWq1WMy0tzaypqXFp397e7vhzQ0ODy/nly5ebgPnUU0+53McwDHP9+vVOx6+55hrT09PTPHLkiOPYhAkTTA8PD3P79u2OYx0dHeZNN91kAuby5ct7fBYRkXMNsNk8Rh7s1fIJwzBiDcOYYRhG2Ilb955hGBMMw5h21LERhmHMOI0+pxmGMeH0Ryci5yur1eqYmbXb7dTU1FBVVcW0aZ1/3WzYsMGp/ezZswkKCnJ8HjZsGIGBgQwcOJAbbrjBqe3EiROpqKhwLDHYuXMnO3bs4NZbb6W1tZWqqirHr4kTJ+Lv788nn3ziMsb/9//+X6+e5e2338ZmszF//nyCg4Ndzlss//1r3N/fH4COjg7q6uqoqqpi+PDhBAUFuTwzwPjx4xk7dqzTsSlTpmC32x1LLg4dOsS6dev4xje+wbBhwxztDMPgkUceAeDf//53r55FRORcpjXFInJBev755xk2bBje3t6EhoYSERHB5MmTAaipqXFqO3jwYJfrQ0JCSEhI6PE4QHV1NQB79+4FYP78+URERDj96t+/P42NjRw8eNCln5SUlF49R05ODgAjR448YdsVK1YwefJk/P39CQ4Odoyjrq7O5Zmh5+fuWmLR9XwFBQUAXHzxxS5t09LSsFgs5Ofn9+pZRETOZefimuIdX/06VSvO1EBE5Pz09NNPc9999zF9+nTmzp3LwIEDsVqtlJWVMXv2bDo6OpzaH6sE2vFKo3X+FO6/v993331cddVVPbbtCtLd+fn59epZemvTpk1Mnz6dpKQknnzySRISEvD19cUwDG655RaXZ4bePZ87eOmllzhy5Aj33nuvyuGJuLFzLhSbpun6N/fXeL2InP9ee+014uPj+fDDD52WF3z00Udn/F7JyclAZ8DsWp5xJnXNKGdlZR13dvmNN96gvb2dDz/80GmGu7GxscdZ4t7q6mv37t0u5/bt20dHR0ePM85HKywsJCEhgfnz57NgwYJTHs+Z9txzz/HAAw/w4YcfKhCLuLmTDcUWwzBSgVjAG2gAck3TLOveyDCMSCAR6FqkVwfkmaZZcaIbGIYxAog1TXPZV5/TgCRgtWma9Ue19QKmA4dM09z01bFpQJNpmuu6tYsABgHBgA/QDtQCOaZpVnfvc926dTQ1NTFx4kT27NnDoUOH6OjoIDQ0lPT0dMeavS42m43s7GwqKiqw2WxYrVYiIyNJTU3FarU62nV0dJCTk0NZWRktLS1YLBZ8fHzo378/F1100Ym+FhE5CR4eHhiG4TTbabfbefLJJ8/4vUaOHMnQoUN54YUX+NGPfuQSEO12O/X19YSGhp5S/zfeeCMPPvggv/zlLx2l4bozTRPDMByB7ugZ3ieeeKLHWeLe6t+/PxMmTGDZsmXs2rWLoUOHOu7z61//GoDrr7/+lPvvS8uXL+ehhx7iP//5D5MmTerr4YhIHzvZUJwGeACFX32OBUYZhmExTbMEwDCMeCCdzsC8v1u70YZh7DBNs+gk71lKZyiOAfYcdS6KznXRJSfoIxbw+qqvZjqDcRww3jCMdZdccolT4/b2dtatW0dwcDBDhgyhqamJgoICNm7cyOTJkzEMA4C2tja++OILGhsbGTRoEEFBQdTV1VFYWEhVVRWZmZl4enZ+xTt37qS4uJiYmBhCQ0MxTZPGxkanGqMicmbceOON/PznP+fqq6/mhhtuoL6+njfeeOOsbIphGAavvfYaU6ZMYdiwYdx5551cfPHFNDU1kZuby7/+9S9+/etf91h7uDdiYmJ49tlnmTNnDunp6dx+++3ExcVRVlbGu+++y1//+ldGjBjB9ddfzzPPPMM111zDD3/4Q6xWK59++ik7duxwlGw7VX/4wx+YNGkSmZmZjpJs7733Hh9//DG33norU6dOPa3++8qePXtYunQpU6ZM6euhiMg54GRDsZXOGds2AMMwioBJwMWGYRygM6BeBDQCa0zTtH/VrvCrdhcZhnGg6/reME3ziGEYtUC0YRh7TedpkFjABhw6QTfbTdN0qjD/1dgnA8lHN7bZbCQmJpKUlOQ45u3tzZ49e6iqqiIiIgKAvLw8GhsbSU9PJz4+3tE2KCiInTt3kpuby5AhQwAoLy+nf//+vXpZRkROz/33349pmrz88svcc889REZGcvPNN3PHHXeclZ/MjBgxgm3btvHrX/+apUuX8sILL9CvXz/i4+OZPXv2aYfGu+66i8TERH7729+yaNEiWltbGThwIFOnTiU2NhaASy+9lHfeeYfHHnuMRx99FF9fX6ZNm8bq1au57LLLTuv+GRkZrFu3jvnz5/P888/T2NjI4MGDeeqpp7jvvvtOq+++NHfu3L4egoicS45Vq637LzrD5wwgqYdzyV+d6w8M/OrPCT20G/zVuahuxyYA045qNwKYcdSxhK57dDvm99WxoUe1nQZMOM6zeNIZ7q3AWOCq7nWK165day5btsyp9qdpmmZtba25dOlSMz8/33FsxYoV5kcffWR2dHQ4te3o6DA/+ugjc+XKlY5jy5cvNz/99FOXOqYiIuez+vp685FHHjHHjBljhoWFmVar1UxMTDQffPBBs7Gx0dGuoKDABMz58+e79PHWW2+Zl156qRkQEGD6+vqaY8aMMd9++22XdnxVw/mzzz4zx40bZ/r6+prR0dHmk08+aZqmaR4+fNi88847zYiICNPX19e89tprzbKyMqc+ysrKzP/93/81hw8fbgYHB5ve3t5mWlqa+eSTT5p2u92p7SuvvGIC5meffWb+9re/NQcPHmxarVYzOTnZXLJkyRn49kTk68Zx6hSf7Eyx696fcOSr3/3478zzkeO08+/h3ImU0TkDHcN/Z4Vjvvq99EQXG4bhDwwBIuhcRnFc3t7eTi/nAI4fu3bf3rWpqYng4GDHcopu9yMgIIC6ujrHsYsvvpht27axatUq/Pz8CA8PZ8CAAQwYMMDlehGR88XJ7h54tHnz5rFw4UKuuuoqHnvsMSwWC//+97+56aabeO6555gzZ45T+23btrFs2TJ++MMfcvvtt/OPf/yDhx56CB8fH1599VXi4+NZsGABubm5LFq0iNtvv53ly5c7rt+xYwfvvPMON9xwA4mJibS1tfH+++/z0EMPkZ+fz4svvugyxocffpjm5mZ+9KMf4e3tzZ///Gdmz55NUlISl1566Zn5IkWkz51z1Sd6YpqmzTCMQ0CkYRieZueyjBigwTTN2uNdaxiGJ50z0h5AAVAP2L86nQS4LLY7Xkg1T7FMUWRkJNOmTePgwYNUV1dTVVVFcXExoaGhjB8/3iWEi4icqwoKCsjOzsbf35+kpCRKSkqc1mvPmTOHRx99lMcff5yNGzcyZsyYHvvZunUrCxcu5Oc//zlPPPGE4/jcuXOZOXMmP//5z7n99tvp16+f49zOnTv58ssvHZuOfO973yMuLo6f/exn3H333SxatMjpHs888wzZ2dmkpqYCcNlll5Gfn+/0d+69997LbbfdxuLFi1mwYAFRUVFOfbS2trJp0ybHy9M33ngjgwcP5rnnnlMoFrmAnGwSC+jhWNffVk1f/ep+rKdrG0/ynl1K6Ay2Aw3DCKVzxvlEL9hBZ+j1AXabppltmma5aZqVpmlWftXfKfP396ehocElKJumSUNDg0sdUi8vL2JiYhg+fDhTp04lKSmJw4cPU1FxwqIcIiLnhC1btjBmzBiuvvpqLrvsMn784x9z6FDnD/B6s3tgd6+//jqGYTBr1iynnQCrqqr4xje+wZEjR/jyyy+drjl6Fz6r1cqYMWMwTdNljXBmZibw3w1QoLM+dPdAbLPZaGlp4frrr6ejo4PNmze7jPMnP/mJUzWh6OhoUlJSnPoVkfPfyc4UxxuGUWT+90U7LzqrOLQB1XSG7HYgwTCMEvO/L9p50rku2A6carmFQ3S+VBdD5zIOk14snfiqHYDT9O9XZdpcK+qfhMjISHJyciguLiYuLs5xvKioCJvN5jhmmiZ2u93lzfeu0krdl2SIiJyrmpub+eUvf+lUNWfp0qX079+fDRs2sHv3bpfyb8erkbx3715M03S8kNyTo3cDPNbug4DLDoRH7z4IneUxFy1axP/93/+xe/dubDbbCcd7rJ3/iopOtpiSiJzLTjYU24CJhmF0zdDGAr78t7pDu2EYe+gsyZZ5VDt/YId5EpUnujNNs8MwjDI6w3UQUGWaZksvLj0MtNJZ+cIXaAEC6QzX9V/9+ZQkJiZy4MABdu7cSW1traMkW0lJCQEBAY7qFXa7nU8++YTIyEiCgoKwWq00NTVRVFSEl5cXAwYMONUhiIh8bWpra3uc+V28eHGvdw/szvyqxvLxNs44envp422wcaxz3X+a98ADD/D73/+eWbNm8fDDDzNgwAC8vLzYuHEj99xzz0nt/Heqy+lE5Nx0sqF4LxAKxNO5eUcjsNXstnmHaZqFhmG00Llet2v7pXpgk9mLzTtOoITOUOxJ75ZOYJpmm2EY6+l8US+BzhnjOmADnRt6nHIo9vLyYuLEiY7NO0pKSvD29iYuLo7U1FRHjWIPDw8GDx5MVVUVlZWVtLe34+3tzYABA0hOTsbHx+dUhyAi8rUJDw/nG9/4BosXL3Y6PmDAgFPaPTA5OZmPPvqIQYMGkZaWdsbH25NXXnmFyy+/nCVLljgd37p169dyfxE5d/UqFJudG3N0hdBKIPsE7SuAEwZgs9uuc92OZQFZx2hfByw7QZ/LezhWD6zvoflhICsjI8NxYMKECT326+fnx4wZM1yOW61W0tPTSU9PP+aYLBbL1/YXvojI2eLl5cV9993H3r17Wbt2LV5eXoSHh2O1Wk9p98Dvfve7/PGPf+Thhx/mn//8p8uM7MGDB8/4T9IMw3BZsnbkyBGefvrpM3ofETn/nBfVJy4kpmnS0tKC1Wo97o8BRUTORUOGDOG9994jPz8fX19f/vWvfzFv3rxT2j1w9OjRLFiwgAULFjBixAhuuukmBg4cSHl5OVu2bOGDDz5wWfN7um644Qb+8pe/cPPNNzN16lQOHjzIX//6V/r3709eXt4ZvZeInF8Uir9GlZWV7N27lyNHjuDr60tKSgoxMTEnvlBE5BwSHBzMqFGjAHjooYewWCynvHvg/PnzycjIYNGiRTz77LM0NjbSv39/hg4d6lJe7Ux45plnCAgI4J///CfvvvsucXFxzJkzh1GjRp2321WLyJlh6EUByMjIMHsqw3Mmtba2smrVKqdZD4vFwsSJEwkKCjqr9xYRERERMAxji2maGT2d044RX5Pq6mqXHwN2dHQ4lTYSERERkb6h5RNfk65KFEfTumIRkXNfe3s7W7duZcuWLfj5+TF27FjHLnkicmFQKP6ahIeHExIS4lQY3s/Pj8jIyD4clYiI9MYXX3zBtGnTsNvtQGcZupUrV6qykMgFRKH4a2KxWMjIyKCwsJDa2loCAgKIj49XjWIRkXNcc3Mzjz32mCMQQ2e5OIVikQuLQvHXyMfH57jbmYqI/H/27j2ozetOH/gjCV3QDXGRQYCQAION8S0OKQ7GsZs4TXcz3abd3tJ2muy1TdNN2+klTbfNtt1uu+m2e5mkTdt0J5dOOt10p2km3Wzi2rUTxxDHOMEXwIBAEuIiEAKEkBC6vb8//NO7CAkbsB0u7/OZ8Uw4OjrveWVP++jwfc+htWdubg4eT+Z5UQuPoCai9Y0P2hEREV2GyWTC5z73uYz2d7/73aswGyK6XrhSTEREdAUf/vCHMTc3hx/+8IcwmUz4/ve/j8bGxtWeFhFdQ9ynGO/MpNtIvgAAIABJREFUPsVERLT+jY6OQqlUoqCgYLWnQkQrcLl9irlSTEREtETFxcWrPQUiuk5YU0xEREREksdQTERERESSx1BMRERERJLHUExEREREksdQTERERESSx1BMRERERJLHUExEREREksdQTERERESSx1BMRERERJLHUExEREREksdQTERERESSx1BMRERERJLHUExEREREksdQTERERESSx1BMRERERJLHUExEREREksdQTERERESSx1BMRERERJLHUExEtIgjR46gpaVltacBAGhpacGRI0dWexpERBsWQzHRGuHxePDiiy/C7/df03Gzhan29na8+OKLKx5zLYVFIiKiayFntSdARLRW3Xrrras9BdHevXtXewpERBsaQzGRBO3cuRM7d+5c8fvXUli8nuTy1f1lmiAISCaTUCgUqz4XIqKNjqGYSIKuNmCt54Dm8XjQ3t6Om2++GYFAAC6XC5FIBLm5uaipqYHVahX7HjlyBFqtFk1NTWljuFwu9Pf3Y3Z2Frm5uaisrEROTg7a29vR1NSEwsJCsW8sFoPD4cDIyAhmZ2eRk5MDs9mMrVu3QqvVZsxr7969mJychMfjwezsLHbt2gWr1YqWlhaEw2EcOnRIfM/U1BRcLhcmJiYQiUQgk8lgNBpRXV2NkpKStDm3t7fD4/Hgve99L7q6ujAyMoJ4PA6TyYRt27YhPz9f7CsIAhwOB8bGxhAKhRCLxaBWq7Fp0yZs3boVKpXqmv19EBGtFQzFRGtMMplEd3c3PB4P5ubmoNfrsXnzZpSVlaX183q96OvrQyAQAADk5eVlDUPZpALS+973PgBAV1cXHA4HDhw4AKPRmNY3Fovh8OHD2LRpE2666SYA2cOiz+fDwMAApqamEIlEoFAoYDKZUFNTkxYSAYgBr7m5GZ2dnRgbG0MymURBQQF27NgBnU4n9o3H43A4HPD5fAiHw4jH48jNzYXFYkFtbS0UCsUyPt3/c/HiRSQSCdhsNsjlcrjdbrS3t0On06GgoGDR9zkcDnR1dSEvLw91dXVIJBLo6+vLGhRjsRhOnjyJ2dlZWK1WGAwGzM3NweVy4cSJE7jllluQm5ub9p7Ozk4IggCbzYacnBzo9fpF5zIyMoKZmRmUlpZCq9UiGo3C4/Hg9OnT2LNnT8a/GQA4deoUVCoVamtrEYvF0NfXhzfffBO33XYbcnIu/V+CIAjo6+uDxWJBSUkJcnJyMDU1BY/Hg4mJCdxyyy3r+osREVE2DMVEa0xXVxcSiQTsdjuASyuIb731FpLJpLiK6XK5cP78eej1etTW1or9Tp8+jZ07d8Jmsy3rmuXl5XA4HBgcHMS2bdvSXhsZGUm79mI8Hg9isRjKy8uRm5uLSCQCt9uN1tZWNDU1ZQTNRCKBlpYWmEwmbN26FeFwGE6nE2+++SYOHjwImUwGAIhEIhgYGIDFYkFZWRnkcjn8fj8cDgcCgcCKa20TiQT2798vhrvS0lIcPXoULpdr0VAci8XQ3d0No9GI5uZm8b0VFRX44x//mNG/u7sboVAI+/fvT/uyYbVacfz4cXR3d2P37t0Z8zpw4MCSwn62LwWVlZV49dVX0dPTkzUU5+XlYceOHeLPer0eZ86cwdDQkPjvRi6X4/bbb08b22azIT8/H2fPnoXX60VpaekV50dEtJ4wFBOtMdFoFAcOHIBSqQRwKYy8+uqr6OjoQGlpKZLJJDo7O6HT6bB//35xdc9ut+PVV19FZ2cnSktLxfcvhcFggMlkwtDQEOrq6sRAClwKuyqVCps2bbrsGLt27coIaDabDcePH0dvby8aGxsz7rO6uhqbN28W29RqNTo7OzE+Pg6z2QwA0Gq1OHToUNrKpN1uh06nQ29vL6ampmAymZZ8rymVlZVpY2o0Guh0OszMzCz6Hp/Ph2QyKa4uz593eXk5XC5XWv+hoSEUFhZCo9EgGo2K7QqFAvn5+fD5fBnXsNvtS179nt8vkUggkUgAAIqKiuB2uxGPx8V/HylVVVVpPxcVFQEAQqFQ1rEFQUA8HocgCGLfyclJhmIi2nAYionWGLvdnhZolUolbDYbLl68CL/fj3g8jkQiIdaxpuTk5KCyshIdHR0YHx+HxWJZ1nXLy8tx4cIF+Hw+MQCHw2FMTExkBMhs5ge0eDyOZDIJmUwGk8mEycnJjP4ymWzRgDYzMyOG4vnXnR/QzGYzent7MTk5uaJQPL+eN0WlUmF2dnbR94TDYQDIWtIwv+QDAObm5hCNRuHz+fDKK69kHW/+l4+Uy5VLLDQ3N4eLFy9idHQUc3NzGa/HYrGMULzwvlNlH/NDOwAMDw+jr68P09PTSCaTGeMSEW00DMVEa0y2UGQwGABArKmd35at38JVv6UoKytDZ2cnBgcHxVA8ODgI4FJgvpJQKISLFy/C5/MtKTSp1eqMoJ36MrDw/S6XC263G8FgEIIgpL220oCWLZACyBj/apnNZlRXVy+5/3JqpN944w3MzMygsrISJpNJ/Pw8Hg+Ghoay3sti9z3fyMgIzpw5A5PJhPr6euTm5op/V2+88caS50dEtJ4wFBMRAIglEl6vV/y1++DgIPR6/RVXYuPxOFpaWsQVbKPRKK5QOhwOjI+PZ7zncuFsfpjr7+9HR0cHzGYzKisrodFoIJPJEIlE0N7efs1D7OWkHoqbmZkRV7VTFn4RUalUUCqViMVi4qr3tTQ9PY3p6WnU1tZiy5Ytaa8NDAxc1diDg4OQy+VoampKC+mXKy0hIlrv+Pgw0RqTLXgEg0EAl371nfr1d6ot23sX/ip/qaxWKxKJBIaHhzExMYFQKHTFB+wAYHx8HJFIBPX19diyZQssFgvMZjPMZrNY57pSHo8HWq0WjY2NqKiowKZNm2A2m6FWq69q3JUwm83iThXzSwrm5ubEVfUUmUyGsrIyTE1NYWRkJOt42UoelmqxLxXBYBBer3fF46bGlslkGV84enp6rmpcIqK1jCvFRGuMy+WCzWZLKyVwu91QKpUoLCwUD3NwOp2wWq3iimw8HofT6UROTk7GKuZSbdq0CSqVSlwhlslkSyqdSAW0hSHK5/NlrSdejmzhL7WP7jsttZXZxYsX8frrr6O8vByJRAJutxt6vR5TU1Np/bdu3YqJiQm0tbWhtLQU+fn5kMvlmJ2dxejoKEwmU8buE0ul1+thMBjgcDiQSCSg1+sxMzMDt9sNg8EgbtW3EhaLBSMjI2htbUV5eTkEQYDX673qLzhERGsZQzHRGqNSqfD666+LK7TzD3FQKBRQKBTYtm0bzp8/jxMnTqT1C4VC2Llz57J2nphPLpejrKwMTqcTgUAARUVF0Gg0V3xfQUGBuHPE7OwsNBoNpqenMTg4CKPRiOnp6RXNB7i0VVpXVxdOnToFi8WCWCyGoaGhVdsnt6amBkqlEv39/ejq6kJubq5YMzw1NZVWbqBUKtHc3Iy+vj4MDw/D6/VCLpdDo9GgoKAAFRUVK56HTCZDY2MjOjo64PF4kEgkYDAYcMMNNyAQCFxVKC4rKxP3X+7s7IRSqURxcTG2bduGl19+ecXjEhGtZQzFRGtMXV0dJiYm4HK5MDc3B51Ol3EQg91uh0ajgcPhEH+lbTQacdNNNy3p8I7LsVqtcDqdiMfjSyqdAC6Fv71796KzsxNOpxOCICAvLw+NjY0YGBi4qlBcXV0NQRDg8Xhw4cIFqNVqlJaWoqKiAseOHVv2eFarddH7Wnhy3fzT4+az2+3iPtIpFy5cAICMwzgUCgVqa2vF/aRXMq9sc0tdq6GhIaO9pKQko8549+7di65Kpw5xma+ioiJraM/Wl4hoI5C9kw+prFUNDQ1CW1vbak+DiNaBZDKZsUodiURw7Ngx5Obm4uDBg6szsessEokAwJJ+c0BEtFbJZLIzgiBkriaAK8VERMsyPj6Ozs5OWCwW5ObmIhwOw+12I5FIoK6ubrWnd83FYjF0dnZiaGgIwKVylm3btmU91pqIaD1jKCaidWN6ehpDQ0OIxWIoKiqCxWJZ0r6715JOp4NOp8PAwACi0SjkcjlMJhM2b958XbZeW229vb1pW7x5PB4olUrU19ev4qyIiK49hmIiWhcCgQBaW1vFwzrcbnfWPXqvN51Oh5tuuukdveZqGh4eztrGUExEGw33KSaidcHj8WScXud0Oq9qr1+6smxlEiydIKKNiKGYiNaF1INe88XjcUSj0VWYjXQs3GUDACorK9/5iRARXWcsnyCidaGoqCjjZLi8vDzo9fpVmpE0VFRUICcnRyyjsFgsadsD0rV35MgRaLXarNvwEdH1w1BMROuC1WrF9PQ0PB4PkskkjEYjduzY8Y4/aCdFpaWlKC0tXe1prCt+vx/j4+Ooqqpa8WE6RPTOYigmonVBoVBg586dqK6uRiwWg9FoXLVT7YiuZHx8HD09PbBarcsOxbfeeut1mhURXQ5DMRGtKzqdbrWnQHTNJZNJAJeOWueXPaLVwVBMREQbUjweh8PhgM/nQzgcRjweR25uLiwWC2pra6FQKABc2tmkvb0dTU1NKCwsTBujpaUF4XA47cjviYkJ9Pb2IhAIIBaLQaVSwWg0ora2Fvn5+Whvb4fH4wEAHD16VHxfagvB7u5u9PT04ODBgxgYGMDw8DDm5uZw8803o7CwMGtNsc/nw8DAAKamphCJRKBQKGAymVBTU5MxZwAIhULo7e2Fz+dDNBqFSqWCyWRCbW0t8vLyxH5erxd9fX0IBAIALtXpV1dXX/Vx8UTrEUMxERFtSJFIBAMDA+LDgXK5HH6/Hw6HA4FAAHv37l32mDMzM3jjjTegVqtRWVkJtVqNubk5TExMYHp6Gvn5+bDZbIjFYvB6vaivrxe3sDMajWljvfXWW1AoFKiurgYAqNXqRa+b2pKwvLwcubm5iEQicLvdaG1tRVNTEwoKCsS+U1NTaG1thSAIqKiogMFgQDQahd/vx8TEhBiKXS4Xzp8/D71ej9raWvE6p0+fxs6dO2Gz2Zb9+RCtZwzFRES0IWm1Whw6dCitHMFut0On06G3txdTU1MwmUzLGtPn8yGRSODGG29c9L35+fkwGo3wer0oKSmBVqvN2k+pVOLmm29e0sOiu3btEle2U2w2G44fP47e3l40NjaK7e3t7Ugmk9i/f39aEK+pqYEgCAD+7/hunU6H/fv3IyfnUhyw2+149dVX0dnZidLSUj4kSJLCwiUiItqQ5tfnCoKAWCyGaDQqHsc9OTm57DFT4dHr9Yp1wCtVVVW15N1T5gfi1P7cMpkMJpMp7T4CgQCCwSCsVmvGyjQA8XqpcF9ZWSneE3Dp/iorKxGPxzE+Pr7SWyNal7hSTEREG5bL5YLb7UYwGBRXSVMWnpC4FGVlZRgaGkJvby/6+/uRn58Ps9mMsrIy5ObmLmus5Tw0GgqFcPHiRfh8vsvOOxQKAUBa3XA24XAYAGAwGDJeS7WlxiKSCoZiIiLakPr7+9HR0QGz2YzKykpoNBrIZDJEIhG0t7dnhORsFvaRy+XYu3cvpqamMDY2homJCXR3d6O7uxs33njjsh5QW1gOsZh4PI6WlhZxZddoNIqruw6Hgyu6RNcIQzEREW1IHo8HWq0WjY2NaWUKY2Njaf1SD8JlOzI8HA5nLXEwmUxiTfHs7Cxee+01XLx4UQzF1/JQmfHxcUQiEezevRtWqzXtte7u7rSfUyc8Tk9PX3bMVJ1zMBhEUVFR2mszMzMAuP0hSQ9riomIaEPKFkwFQYDD4UhrS4W/hSuuQ0NDiEQiaW3ZgnNubi5UKlXaa6lV4JWUaCyUuo+Fq9Y+ny+jLtpoNMJgMGBgYADBYHDRMc1mMxQKBZxOJ+LxuNgej8fhdDqRk5OTEZaJNjquFBMR0YZUWlqKrq4unDp1ChaLBbFYDENDQxmHY+j1epjNZrjdbgiCgLy8PAQCAXi9Xuh0urQH6np7ezE2Nobi4mJxtXV0dBQzMzPYvHmz2C8/Px8A0NXVJW4Hlwqsy1VQUAC1Wo3Ozk7Mzs5Co9Fgenoag4ODMBqNGavCu3fvRmtrK06cOCFuyRaLxeD3+7Fp0yZUVlZCqVRi27ZtOH/+PE6cOCGuQHs8HoRCIezcuZM7T5DkMBQTEdGGVF1dDUEQ4PF4cOHCBajVapSWlqKiogLHjh1L63vDDTfg/PnzGBoawuDgIAoLC9HU1IRz586JD6UBQElJCSKRiHjghkKhgE6nw65du1BRUSH2KygoQF1dHdxuN86ePQtBEMTDO5ZLqVRi79696OzshNPpFIN7Y2MjBgYGMkKxyWTC/v370dPTg+HhYfGAEZPJlLafsd1uh0ajgcPhQE9PD4BLK8033XQTD+8gSZIt5UGDja6hoUFoa2tb7WkQERER0XUkk8nOCILQkO011hQTERERkeSxfIKIiEjiUkdiT09PQ6/Xw2azLXvfZaL1jqGYiIhIwhKJBNra2tJ2shgdHUVTUxMftiNJYfkEERGRhI2Pj2ds7TY9PY3R0dFVmhHR6mAoJiIikrBsey9frp1oo2IoJiIikrDCwkLx2OgUuVzOwztIchiKiYiIJEyr1WL37t3Q6XSQyWTIzc3Fzp07YTQaV3tqRO8oPmhHREQkcRaLBZs2bUI4HEZubm7GyjGRFPBfPREREUGhUKzoGGqijYLlE0REREQkeQzFRERERCR5DMVEREREJHkMxUREREQkeQzFRERERCR5DMVEREREJHkMxUQkefF4fLWnQEREq4z7FBPRmhQOh9HZ2QmfzwcAKCoqQn19PVpaWqDVatHU1JTW3+fzoa+vD1NTU0gkEtDr9bDb7bDZbGn9jhw5Aq1Wi/r6enR1dWFychIqlQq33XYbWlpaEA6H0dTUhI6ODvj9fgBASUkJtm/fDoVCAYfDgYGBAUQiERgMBmzfvh0FBQXi+IIgwOFwYGxsDKFQCLFYDGq1Gps2bcLWrVuhUqnS7vHo0aOora2FyWRCT08PpqenoVQqUV5ejrq6OshksrT5+/1+9Pb2YnJyEslkEgaDAXa7HRUVFdf08ycikhqGYiJac6LRKE6ePIloNAqbzQa9Xo+JiQm0tLQgkUhk9He73Th37hzy8/NRU1MDhUIBn8+Hc+fOIRQKYdu2bWn9Z2dn0draCovFAovFkjZmIpFAa2srCgsLUVdXh6mpKQwMDCCRSEClUmFychKVlZVIJpPo6+vDm2++iUOHDokngAmCgL6+PlgsFpSUlCAnJwdTU1PweDyYmJjALbfcArk8/Zd0Y2NjcLlcsNvtsFqt8Hq96Ovrg1KpRE1NjdhvdHQUp0+fhlqtRnV1NXJycjA0NISzZ88iHA5j69at1/KvgYhIUhiKiWjNcTgciEQi2LNnD8rKygAAdrsdnZ2d6OvrS+sbiURw4cIFlJWVYc+ePWK73W7HhQsX0N/fD7vdDq1WK74WDoexa9eurKur0WgUmzdvRnV1NQDAZrMhGo1ieHgYeXl5aG5uFkOtXq/H6dOnMTQ0JK5Iy+Vy3H777VAoFOKYNpsN+fn5OHv2LLxeL0pLS9OuGQwGcfDgQXGOdrsdx48fh9PpFEOxIAg4f/48cnJysH//fmg0GrFva2srHA4HrFYrdDrdCj5xIiJiTTERrTmjo6PQaDQZ4TEVVOcbGRlBMplERUUFotFo2p/i4mIIgiCWYKQolUpYrdas15bJZKisrExrKywsBHApgM5f5U21h0KhtP6pQCwIAmKxGKLRKIqKigAAk5OTGdcsKSlJC+3ApXKRubk5sd45EAhgdnYWVqtVDMTApRBeXV0NQRDg9Xqz3hMREV0ZV4qJaM0Jh8MwmUwZ9bRqtRpKpTKtbWZmBgDQ2tq66Hhzc3NpP+t0uoyx519jYXlD6poLg2uqPRqNprUPDw+jr68P09PTSCaTaa/FYrGMay4cd/7YsVgMOTk5CIfDAACDwZDRN9WW6kNERMvHUExE65ogCACAG264AWq1OmufhSUF80sbFlosLF/ptZSRkRGcOXMGJpMJ9fX1yM3NFUP2G2+8sexxU/dHRETXF0MxEa05Wq0W4XAYgiCkBca5ubmMlVa9Xg8AUKlUMJvN7+g8sxkcHIRcLkdTU1Na+E6taK9UajU5GAxmvJZqy7biTERES8OaYiJac4qLixGJRDA8PJzWvvAhOwAoLS2FXC5Hd3d31p0pYrFYRgnD9SSTySCTyTJWeHt6eq5q3Ly8POTm5sLj8aSVg6R2wQAu1SYTEdHKcKWYiNaczZs3Y2hoCO3t7ZicnBS3ZJuYmEjb5xcANBoNdu7cibNnz+LYsWMoLy+HVqvF3NwcgsEgvF5v2s4O15vFYsHIyAhaW1tRXl4uPgCXLbAvh0wmw44dO3D69Gm89tprsNlsyMnJwfDwMCYnJ1FTU8OdJ4iIrgJDMRGtOSqVCvv27UNHRwc8Hg+AS7sxNDU14cSJExk1wamtyPr6+uB2uxGPx6FSqaDT6bBly5a03Rqut7KyMiQSCfT19aGzsxNKpRLFxcXYtm0bXn755asau7i4GDfffDN6e3vR19eHZDIJvV6/6PZyRES0dDI+xAE0NDQIbW1tqz0NIrqCaDSKV155BTabDTt37lzt6RAR0Tojk8nOCILQkO011hQT0ZqUrdzA4XAAwJp4oI6urRdffBHt7e2rPQ0ikjCWTxDRmnTq1ClotVrk5eVBEASMj49jdHQUBQUFG+qBMr/fj/HxcVRVVWXswXw5brcbg4ODSCaTKCsryzhYhIiIloehmIjWpOLiYgwODoon1mk0GlRXV6O2tnZJ+wWvF+Pj4+jp6YHVal1yKHa73Th37pz489TUFOLxOGpra6/XNK+7O++8c7WnQEQSx1BMRGtSdXV11mOdN4p4PI6cnJX9T3Dq4cP5BgYGUFNTs66+MCQSCcjlcshkMq5yE9GqYygmIvr/PB4P2tvbcfPNNyMQCMDlciESiSA3Nxc1NTWwWq1p/QcGBuByuRAMBiGXy5Gfn4/a2loUFBSk9XvxxRdhtVpRXl6O7u5uBAIBmEwmaLVaMeAePXpU7F9bW4stW7YAuLTPssPhwMjICGZnZ5GTkwOPxwOTyZR2gl80GkVXVxf8fj/C4TDi8Thyc3NhsVhQW1ubtmOH3+9HS0sLdu/ejUQigf7+fszOzkKn06Gurg7FxcWYnp5GZ2cnJicnIZPJUF5ejm3btmWE11AohJ6eHvh8PsRiMajVapSWlmLLli1p12xvb4fH48Edd9yBzs5OjI2NYW5uDrfddhu0Wq34Ge3evTtt/PHxcfT19WFychKJRAIajQZFRUWoq6sTt+dzuVzwer0IBoOIRqNQKpUoKirC1q1bM7biS13HZrOhq6sLU1NTkMvlsFgsqK+vz/iiMj09je7ubvj9fiQSCWi1WlitVlRXV6+rLyBEdGUMxUREC1y8eBGJRAI2mw1yuRxutxvt7e3Q6XRi4O3q6oLD4YDJZEJdXR3i8TjcbjdaWlrwrne9C5s2bUobc2pqCiMjI6ioqBDDtcFgQCwWg9frRX19vRjyjEYjgEuB+OTJk5idnYXVaoXBYMDc3BxGRkbQ0dGB+vp6MRibzWYMDg7CYrGgrKwMcrkcfr8fDocDgUAAe/fuzbhPl8uFWCyGiooKyOVyOJ1OnD59Gg0NDTh79izKyspgsVgwNjYGp9MJtVqNmpoa8f2BQAAtLS1QKpWw2WzIzc1FIBCA0+nExMQEmpqaMkJ0a2urOE4ikbjsanmqTESj0cBut4snHY6OjiISiYifV19fH/Lz81FZWQmVSoXp6WkMDAzA7/fjwIEDGXtbBwIBnDp1ChUVFSgrK4Pf78fAwAAAYNeuXWl/Zy0tLZDL5bDb7VCr1RgdHUVXVxemp6exZ8+eRedOROsPQzER0QKJRAL79+8XA11paSmOHj0Kl8uFgoICzMzMwOFwoKCgADfffLPYr6KiAsePH8e5c+dw2223pa0kBoNB7N27N2PnDKPRCK/Xi5KSkoxVze7uboRCIezfv18MysClvZB/9atfwefzoaqqCuXl5di8eTOUSmVaCLXb7dDpdOjt7cXU1BRMJlPa+JFIBAcPHhRrmYuKivDqq6+KwdhisQAAbDYbXnvtNTidzrRQ3N7eDo1Gg/3796eFW7PZjNOnT2NoaChjdd1gMCwpTEYiEVy4cAF6vR7Nzc1p9dZbt25NOzHw4MGDGXtXl5SUoLW1FQMDA9i8eXPaa9PT02hubkZ+fr54f7FYDB6PJ221uKOjA8lkEs3NzeLnX1lZiTNnzmBoaAgVFRUoKiq64r0Q0frAIi4iogUqKyvTwqVGo4FOp8PMzAwAwOv1ArhU97ywn9VqxezsLAKBQNqYRqNx2VvJDQ0NobCwEBqNBtFoVPyjVCqxY8cOVFVV4fbbbxdXjFNzEQQBsVgM0WhUvObk5GTG+Asf7jMajcjJyYFGoxEDcUpBQQHm5uYQj8cBXAqW09PTKCsrQzKZTJtfQUEBFAoFfD5fxjUXBtTFDA8PI5lMYsuWLVkfQJz/hSMViOfft9FohFKpxNTUVMZ7CwoKxECcUlRUBEEQMDs7CwCYm5vDxMQEiouL076QABC/GIyMjCzpXohofeBKMRHRAtmOhFapVGJgCofDAC6tei6UaguHw2krs3q9fllzmJubQzQahc/nwyuvvJK1z8IH1FwuF9xuN4LBIBYezBSLxTLen+0+lUolcnNzs7anxsnJyRG/IHR3d6O7u3vRe1hoqUdRh0IhAEBeXt4V+6Z28JicnEQymUx7ban3nSqxiEajAC7/d6zX6yGTycQ+RLQxMBQTES2w2ANUV3MC6MJf7y+V2Wxe0i4c/f396OjogNlsRmVlJTQaDWQyGSKRCNrb27POfbH7vNwDZAvHqa6uXnQFfGEtL7Dyz2ExU1NTeOONN8SHBLVarXiNt956a1n3TUTSxlBMRLRMqdXOYDCYsfIZDAYBZF+NzGaxgKZSqaBUKhEUKDu2AAAgAElEQVSLxZZUduHxeKDVatHY2Jg25tjY2JLmsVyp+5bJZNflhMHU+IFA4LKry0NDQxAEAY2NjWmfeSKRyLpKvFSpsVJ/n/PNzMxAEIQl/x0T0frAmmIiomUqLi4GcGnXg/m/ro9EIvB4PMjNzV3Sr/2B/1s5XRjgZDIZysrKxF0rsplfnpAtXAuCIB6Nfa3l5eXBYDDA5XJlLSNI1feuVGlpKeRyOXp6esQ65mwW+1LR29t7VSv7arUaBQUFGB0dzQjGqc90Yd01Ea1vXCkmIlomvV6PzZs3w+FwoKWlBaWlpeKWbPF4HHv27Fnyr+hTD3x1dXWJW6kZjUYYDAZs3boVExMTaGtrQ2lpKfLz8yGXyzE7O4vR0VGYTCZxX9/S0lJ0dXXh1KlTsFgsiMViGBoauq6HYuzZswctLS04fvw4KioqYDAYkEgkEAqFMDIygrq6uozdJ5ZKo9Ggvr4e58+fx/Hjx1FeXg6tVotIJAKv14vdu3fDaDSipKQE/f39OHXqFGw2G2QyGcbHxzE9PZ21fGM56uvr0dLSgpMnT6Ztyebz+VBWVsadJ4g2GIZiIqIVqKurg06ng9PpRFdXl3h4x4033phxeMflFBQUoK6uDm63G2fPnoUgCOLhHUqlEs3Nzejr68Pw8DC8Xi/kcjk0Gg0KCgpQUVEhjlNdXQ1BEODxeHDhwgXxEI2KigocO3bsenwEMBqNOHDgAHp7e+H1euF2u6FQKMQDLq42NKa2lOvr64PT6RSP+y4qKoJGowFw6fNraGhAT08PLl68CIVCgaKiIjQ1NeHkyZNXdX2TyYTm5mZ0d3fD5XKJh3fU1dVt6NMWiaRKdjW/XtooGhoahLa2ttWeBhERERFdRzKZ7IwgCA3ZXmNNMRER0RLMzMyIW8UR0cbD8gkiIqLLmJ2dxfnz5zE2NgaZTIaSkhJs375dPGKbiDYGrhQTEdGqsdvtOHjw4GpPA8Cl46LtdntGe29vL0ZHRyEIApLJJIaHh6/brh5EtHoYiomIiBYhCELWLfFSR30T0cbB8gkiIlo13d3da+aEucOHD2fsbSyTyaDRaMTjn1NSu18Q0cbBlWIiIlo1arX6qvcTvhqJREI8fESlUmWtE66qqkoL7jKZDJWVle/YHInoncFQTERE19RTTz0FmUyGP/7xj/jhD3+I6upqqNVq1NbW4umnn07ru1hN8eOPP44tW7ZArVajpqYGjz32mDju8ePH0/oGAgE8+OCD2Lx5M9RqNcxmM+6++2709/dnndeRI0fwj//4j6iuroZGo8Fzzz0HIHtN8ZtvvolvfvOb+PznP4+PfOQj+NjHPobvfOc7OHXqVMac7733XshkMgQCAdx3333YtGkTNBoN9u3bl7V/KBTCQw89JH4+JSUl+NSnPgW3272ET5mIrjWWTxAR0XXx9a9/HbOzs/j0pz8NtVqNxx9/HPfeey82b96Mffv2Lfq+Rx55BF/72tewZ88efP/730c4HMa//Mu/wGw2Z/QNBAJoamrCwMAA/vIv/xL19fUYGRnBT37yEzQ2NqKtrQ02my3tPV/+8pcRi8XwN3/zNzAajdiyZcuic3n++edx8eJF3H333bDZbPD7/Xj66afxwQ9+EM8++yw+/vGPZ7znjjvugNlsxsMPPwy/349//dd/xZ133gmn0wmDwQDg0rHed9xxB06ePIkPfehD+NKXvoTe3l48/vjjOHz4MNra2lBeXr7Uj5qIrgVBECT/58YbbxSIiOjaePLJJwUAwu7du4W5uTmxfXBwUFCpVMLHPvYxsc1mswkHDhwQf/b7/YJGoxF27NghzM7Oiu0jIyOC0WgUAAjHjh0T2x944AFBo9EI7e3taXNwuVyCwWAQ7rnnnox51dbWCqFQKGPeBw4cEGw2W1rbzMxMRr9QKCTU1tYKdXV1ae333HOPAEC477770tqfe+45AYDw05/+VGz7+c9/LgAQvvKVr6T1/f3vfy8AED75yU9mXJeIrh6ANmGRPMjyCSIiui4++9nPptULl5WVoba2Fr29vYu+5w9/+AMikQjuu+++tIfZSkpK8IlPfCKtryAIePbZZ3HLLbegrKwM4+Pj4h+dToe9e/fi8OHDGde47777oNVql3QPOp1O/O9wOAy/349wOIxbb70VXV1dmJ6eznjPF7/4xbSfb731VgBIu+/nn38ecrkcDz30UFrfO++8E7t378YLL7yAZDK5pDkS0bXB8gkiIrouqqqqMtoKCwsvWzPrdDoBIGtJw8I2n88Hv9+Pw4cPZy2tAAC5PHPtp7a29rLznm9sbAzf+MY38MILL2BsbCzj9ampKRiNxrS2hfddWFgIAPD7/WKb0+lEaWkp8vPzM8asr69He3s7xsfHsWnTpiXPlYiuDkMxERFdFwqFImu7sGDbs5VKjXPo0CE8+OCDS37fUleJBUHAe97zHnR1deHzn/88GhoakJeXB4VCgSeffBK/+tWvsq7mXu/7JqLrg6GYiIjWjNTuD93d3WLZQUp3d3faz2azGSaTCdPT0zh06NA1n8u5c+dw9uxZPPzww/j2t7+d9tovfvGLqxq7qqoKL7/8MqampmAymdJe6+zshNFoRFFR0VVdg4iWhzXFRES0Ztx+++3iThWRSERs93q9ePbZZ9P6yuVyfOITn8Cbb76J//7v/846XraSh6VKrfguXOG9cOECnn/++RWPCwB33XUXkskk/vmf/zmt/X//93/x9ttv48/+7M+yln4Q0fXDlWIiIlozCgsL8Q//8A/4+te/jn379uGTn/wkwuEwfv7zn6O2thZtbW1pB2n80z/9E06ePImPfOQj+MhHPoK9e/dCpVLB7XbjpZdewo033oinnnpqRXOpq6tDfX09fvCDHyAcDmPLli3o6enBz372M+zYsQNnzpxZ8X3ee++9ePrpp/HII4/A5XLhlltugcPhwE9+8hMUFxfje9/73orHJqKVYSgmIqI15aGHHoLRaMR//Md/4Gtf+xoqKirwla98BYIgoK2tDbm5uWLfvLw8nDx5Ej/60Y/w3HPP4YUXXkBOTg7Ky8vR3NyMv/7rv17xPBQKBf7nf/4HX/7yl/H0008jFAph+/btePrpp3H27NmrCsVKpRKvvPIKvvvd7+K//uu/8Nvf/hYmkwkf/vCH8d3vfhdWq3XFYxPRyshY+A80NDQIbW1tqz0NIiK6jL/7u7/DY489hpGREZSUlKz2dIhoHZLJZGcEQWjI9hoLloiIaE2ZX0ucMjIygmeeeQbbt29nICai64LlE0REtKYcP34cX/nKV/DBD34Q5eXlcLlceOKJJzAzM5PxYNpG4XK50N3dDa1Wi23btol7GxPRO4ehmIiI1pTNmzejuroaTzzxBPx+PzQaDRoaGvDQQw9dl63XVtvbb7+N9773veJOGe973/vw+OOPo6ysbJVnRiQtrCkGa4qJiGh1RCIRfPzjH8/Y4u03v/kNPvShD63SrIg2LtYUExERrUGBQABvvPFGRvvCg0qI6PpjKCYiIlolhYWFeP/735/RfsMNN6zCbIikjaGYiIholeTk5OALX/gC9u3bJ/7893//92hsbFzlmRFJDx+0IyIiWkVbtmzB73//e/T390Oj0aCmpgZKpXK1p0UkOQzFREREq8xkMmHPnj2rPQ0iSWP5BBERERFJHkMxEREREUkeQzERERERSR5DMRERERFJHkMxEREREUkeQzERERERSR5DMRERERFJHkMxEREREUkeQzERERERSR5DMRERERFJHkMxEREREUkeQzERERERSR5DMRERERFJHkMxEREREUkeQzERERERSR5DMRERERFJHkMxEREREUkeQzERERERSR5DMRERERFJHkMxEREREUkeQzERERERSR5DMRERERFJHkMxEREREUkeQzERERERSR5DMRERERFJHkMxEREREUkeQzERERERSR5DMRERERFJHkMxEREREUkeQzERERERSR5DMRERERFJHkMxEREREUkeQzERERERSR5DMRERERFJHkMxEREREUkeQzERERERSR5DMRERERFJHkMxEREREUlezmpPgIiIiK6daDSKjo4OjI+PIxKJoLCwEE1NTas9rTWhu7sbPT09uO2226DVald7OrTGMBQTERFtIB0dHRgeHkZNTQ20Wi3UavVqT4loXWAoJiIi2kDGx8dhNptRW1u72lNZc2pra1FTUwO5nNWjlIn/KoiIiDaQSCQClUq1pL7xePw6z2ZtSN2nTCZjIKZFcaWYiIhojYvH43A4HPD5fAiHw4jH48jNzYXFYkFtbS0UCoVYLwsAHo8HHo8HALB7925YrVa8+OKLsFqtKC8vR3d3NwKBAEwmk1hv7PV60dfXh0AgAADIy8tDdXU1SkpK0ubi8/kwMDCAqakpRCIRKBQKmEwm1NTUoLCwMK1vS0sLwuEwmpqa0NHRAb/fDwAoKSnB9u3boVAo4HA4MDAwgEgkAoPBgO3bt6OgoCDjM3C5XBgYGMDMzAwAwGQyoba2FkVFRWKfcDiMo0ePora2FgaDAQ6HA8FgEGVlZdi9e/eiNcWpz3dkZAThcBgKhQIGgwF2ux1lZWUAgJmZGTidTvj9fszOzkIQBOj1etjtdlRUVKTNNXWdd7/73RgcHITH40E0GoVer0ddXR02bdqU1l8QBPT19cHj8YjXLywsxJYtW2A0GpfyT4SuAYZiIiKiNS4SiWBgYAAWiwVlZWWQy+Xw+/1wOBwIBALYu3cvLBYLdDod3n77bRQUFMBmswFAWsCcmprCyMgIKioqYLVaxXaXy4Xz589Dr9eLZRcejwenT5/Gzp07xbFS7bFYDOXl5cjNzUUkEoHb7UZrayuampoyAm0ikUBraysKCwtRV1eHqakpDAwMIJFIQKVSYXJyEpWVlUgmk+jr68Obb76JQ4cOISfn/yLKW2+9heHhYVgsFlitViSTSQwNDeGNN95AQ0NDRnD3er1wOp2w2+2w2+1pYy0Ui8Vw8uRJBINBWCwW2O12CIKAQCCA0dFRMRT7/X74/X4UFxdDq9UiHo9jZGQEZ8+exdzcHGpqajLGbm9vh0wmQ3V1NZLJJJxOJ06fPo13v/vdaaE8dX9msxl2ux1zc3NwuVx4/fXXsW/fPuTl5S3+j4OuGYZiIiKiNU6r1eLQoUNpv/q32+3Q6XTo7e3F1NQUTCYTjEYj3n77beh0OpSXl2eMEwwGsXfvXpjNZrEtFouhs7MTOp0O+/fvFwOk3W7Hq6++is7OTpSWlkKpVAIAdu3aBYVCkTauzWbD8ePH0dvbi8bGxrTXotEoNm/ejOrqarFvNBrF8PAw8vLy0NzcLN6XXq/H6dOnMTQ0JAZxr9eLoaGhjHBeVVWFEydOoKOjIyMUB4NBHDx4EHq9/oqf7cWLFxEMBjPGBy6t4KaUl5dnvF5VVYXW1lY4HA5UV1dnlGaoVCq8613vEn8uKirCiRMn4Ha7UVdXB+DSyvvw8DBKS0tx4403in1LS0vx2muv4cKFC9i3b98V74OuHgtriIiI1ji5XC4GLkEQEIvFEI1GxXA7OTm5pHGMRmNaIAYuhbJEIoHKysq0FdWcnBxUVlYiHo9jfHxcbJ8fiOPxOKLRKGQyGUwmU9Z5yGQyVFZWprWlyizsdntakEy1h0IhsW1wcBA5OTkoKSlBNBoV/8RiMZSUlCAcDqf1B4Di4uIlBWJBEDA0NAS9Xp8ReFNzz3bfyWRSnIPZbEY8HhfLOuZbeN8mkwk5OTlp8/V6vQCQsdJsNBpRXFyMiYkJRKPRK94LXT2uFBMREa0DLpcLbrcbwWAwbQUTuLTauxTZgmI4HAYAGAyGjNdSbfNDXCgUwsWLF+Hz+ZZ0XbVanbGCmlp1XrhXcKp9fggMBoOIx+M4fPjwoteYm5uDTqcTf57/35eTCrYLa3yzicfj6OnpwfDwMGZnZzNez/ZZZNsLWalUpt1fOByGTCbL+ndjMBjg9XoRDoeX/PAkrRxDMRER0RrX39+Pjo4OmM1mVFZWQqPRQCaTIRKJoL29PSMkL2Zh2cNyxeNxtLS0iCvLRqNRXF12OBxpK8op81dbl/PafCqVCnv27Fn09YWB/mrvM5u33noLo6OjsNlsKCwsFEPq2NgY+vv7s75nqfdHawNDMRER0Rrn8Xig1WrR2NiYFrTGxsaueuzUamYwGEzbyQGAWBKQWnlNnZKX2tFivu7u7queSzY6nQ6hUAj5+fmXfWBuJVQqFZRKJaanpy/bLxaLYXR0FOXl5di5c2faa9m+CCyHVquFIAiYmZnJ2GkiGAyKfej6Y00xERHRGpdtxVEQBDgcjqse22w2Q6FQwOl0pu1bHI/H4XQ6kZOTI4bl1DwWrkz7fL4l1zUvl9VqhSAIuHjxYtbX5+bmVjy2TCZDWVkZgsEgBgYGLtsvm9SuIFcj9ZDgwr/LYDCI0dFRFBQUsHTiHcKVYiIiojWutLQUXV1dOHXqFCwWC2KxGIaGhq7JQRRKpRLbtm3D+fPnceLECXEF2OPxIBQKYefOnWKtb0FBAdRqNTo7OzE7OwuNRoPp6WkMDg7CaDReccV1JVLbsDmdTgQCAWzatAlqtRqzs7OYnJxEKBTCbbfdtuLxt27divHxcZw9exY+n0/cUi4QCEAQBNxwww3IycmB2WzG4OCguC9zOByG2+2GVqu9qgfhzGYzSktLMTQ0hGg0iuLiYnFLNrlcju3bt694bFoehmIiIqI1rrq6GoIgwOPx4MKFC1Cr1SgtLUVFRQWOHTt21ePb7XZoNBo4HA7xABCj0YibbropbbszpVKJvXv3orOzE06nE4IgIC8vD42NjRgYGLguoRi4dABJUVER3G43HA4Hkskk1Go18vLyxK3NVkqpVKK5uRm9vb3wer3wer3i4R3zd4/Ys2cPurq6MDo6Co/HA51Oh7q6OshkMrS3t1/VHPbs2YO8vDx4PB50dnby8I5VIltqcf5G1tDQILS1ta32NIiIiIjoOpLJZGcEQWjI9hpriomIiIhI8lg+QURERLRGpI7ilsvlKCkp4RHP7yCGYiIiIqI1wOv14syZM0gmkwCAvr4+NDQ0LOlwEbp6LJ8gIiIiWgNSDxGmJBKJRQ8GoWuPoZiIiIhoDUgdlnKlNro+GIqJiIiI1oBsZRIsnXjnMBQTERERrQG1tbVpD9bl5+dj8+bNqzgjaeGDdkRERERrgF6vR3NzMyYnJyGTyZCfn7/oEdN07TEUExEREa0RcrkchYWFqz0NSWL5BBERERFJHkMxEREREUkeQzERERERSR5DMdE68dRTT0Emk+H48ePXdNyDBw/Cbrentd17771X9XCH3W7HwYMHr25iRERE7yCGYiIiIiKSPIZiIsrwxBNPYHZ2dsXv7+7uxuHDh6/hjIiIiK4vbslGRBmUSiWUSuWK369Wq6/hbIiIiK4/rhQTrTPxeBzf+ta3YLPZoFarsXPnTvz617/O6Pe73/0O+/btg06ng16vx759+/DCCy8s6RoLa4offPBByGQynDt3LqNvIBBAbm4u7rrrLrEtW03x4cOH8dGPfhRVVVXIzc2FyWTCe97zHrz66qsZY6bqnIeHh3H33XcjPz8fWq0Wd9xxB3p6ejL6j4+P4/7774fVaoVKpYLVasX9998Pv9+/pPslIiJiKCZaZx588EH8+te/xmc/+1l85zvfQTQaxd13342nnnpK7POTn/wEH/jABzAxMYGHH34Y3/zmNzExMYG77roLP//5z5d9zXvuuQcA8Mwzz2S89txzzyESiYh9FvPUU09hYmICn/rUp/Doo4/ii1/8Irq6unDbbbfhxIkTGf1DoRBuueUWKBQKfO9738PnPvc5HD9+HO9///uRSCTEfoFAAE1NTXj88cdxxx134N///d/x3ve+F48//jiam5sRDAaXfb9ERCRBgiBI/s+NN94oEK11Tz75pABAqKioEKampsT2qakpoaKiQsjPzxfC4bAwMTEh6HQ6obq6WggEAmK/QCAgVFVVCXq9XpicnBTbDxw4INhstrRr3XPPPcKl/3n4Pw0NDYLFYhHi8Xhae3Nzs1BYWCjMzc2JbTabTThw4EBav5mZmYx78nq9QmFhofAnf/Inae0HDhwQAAiPPPJIWvsPfvADAYDw8ssvi21f//rXBQDCj3/847S+jz32mABA+MY3vpFxXSIikiYAbcIieZArxUTrzH333Ye8vDzx57y8PHzmM5/B5OQkjh8/jj/84Q8IhUJ44IEHYDQaxX5GoxEPPPAAZmZmcOTIkWVf95577sHIyAj+8Ic/iG1OpxMnT57E3XffDZVKddn363Q68b9nZmbg9/uhUCjQ2NiIU6dOZfSXy+V44IEH0tpuvfVWAEBvb6/Y9vzzz8NsNuNv//Zv0/p++tOfhtlsxvPPP7/0myQiIsliKCZaZ+rq6jLatm3bBgDo7++H0+kEANTX12f0S7X19/cv+7qp4Du/hOKZZ56BIAj41Kc+dcX39/X14WMf+xjy8/NhMBhQVFQEs9mMl156CZOTkxn9S0tLodFo0toKCwsBIK1W2Ol0YsuWLcjJSX9uOCcnB7W1tSu6VyIikh7uPkFES1JYWIg//dM/xe9+9zsEg0EYDAb88pe/RF1dHW666abLvndmZga33HILQqEQvvCFL2DHjh0wGAyQy+X4/ve/jz/+8Y8Z71EoFIuOd+k3YERERNcOV4qJ1pmurq6Mts7OTgBAVVUVqqqqAAAdHR2X7bcS99xzD2ZnZ/Gb3/wGJ0+eRF9f3xUfsAOAo0ePYnh4GP/2b/+Gb33rW/jzP/9zvOc978GhQ4cQCoVWNJeUqqoqdHd3Ix6Pp7XH43H09PSs+F6JiEhaGIqJ1pnHH38cgUBA/DkQCOCnP/0pTCYTDhw4gNtvvx06nQ6PPvpo2s4LwWAQjz76KPR6PW6//fYVXfvOO+9EUVERnnnmGTzzzDOQy+X45Cc/ecX3pVZ9F67wHj58OGs98XLcdddd8Pl8+MUvfpHW/sQTT8Dn8+EDH/jAVY1PRETSwPIJonWmqKgIjY2N+Iu/+AsAwJNPPomBgQH84he/gFarhVarxQ9+8APcf//9aGxsxL333gvg0pZoDocDP/vZz9Ie1FsOpVKJu+++G4899hjOnDmDQ4cOoays7Irva25uRklJCb70pS/B5XKhvLwc7e3t+OUvf4kdO3bg/PnzK5oPAHz1q1/Fb37zG9x///146623cMMNN+Dtt9/Gf/7nf2LLli346le/uuKxiYhIOrhSTLTOPPLII/joRz+KH//4x3j44YehVCrx7LPP4q/+6q/EPp/97Gfx29/+FiaTCd/+9rfx7W9/GyaTCc8//3zGLg3Ldc8990AQBMzMzCzpATsAMJlMeOWVV9DY2IhHH30UX/rSl9DZ2YmXXnoJe/bsuar55OXl4eTJk/j0pz+Nl156CQ888ABeeuklfOYzn8Hrr78Og8FwVeMTEZE0yPjACtDQ0CC0tbWt9jSIiIiI6DqSyWRnBEFoyPYaV4qJiIiISPJYU0xEG8bFixdx5swZxONx7N69G7t27VrtKRER0TrBUExEG8K5c+dw6623igd75Obm4tixY2hsbFzlmRER0XrA8gki2hBefPHFtJPuZmdn8eijjyKRSKzirIiIaL1gKCaiDcHlcmW0ORwOhmIiIloShmIi2hCyHdLxmc98BiqVahVmQ0RE6w1DMRFtCM3NzXjyySdRVlaGoqIi/OhHP8Kdd9652tMiIqJ1gvsUg/sUE20kY2NjSCQSsFgsqz0VIiJaYy63TzF3nyCiDWXTpk2rPQUiIlqHWD5BRERERJLHUExEREREksdQTERERESSx1BMRERERJLHUExEREREksdQTERERESSx1BMRERERJLHUExEREREksdQTERERESSx1BMRERERJLHUExEREREksdQTERERESSx1BMRERERJLHUExEREREksdQTERERESSx1BMRERERJLHUExEREREksdQTERERESSx1BMRERERJLHUExEREREksdQTERERESSx1BMRERERJLHUExEREREksdQTERERESSx1BMRERERJLHUExEREREksdQTERERESSx1BMRERERJLHUExEREREksdQTERERESSx1BMRERERJLHUExEREREksdQTERERESSx1BMRERERJLHUExEREREksdQTERERESSx1BMRERERJLHUExEREREksdQTERERESSx1BMRERERJLHUExEREREksdQTERERESSx1BMRERERJLHUExEREREksdQTERERESSx1BMRERERJLHUExEREREksdQTERERESSx1BMRERERJLHUExEREREksdQTERERESSx1BMRERERJLHUExEREREksdQTERERESSx1BMRERERJLHUExEREREksdQTERERESSx1BMRERERJLHUExEREREksdQTERERESSx1BMRERERJLHUExEREREksdQTERE9P/au/fgqM76j+Ofk8tusrmSy5IQsrkBCaTEgNyKUIVCq3Q6Fquj0xmVYq12xvFSBi/ItFWrdaRTL6MMo63tTL1UZ6yDsVSdVtsqSFoYwjXkQrK5NTc2JCRZyO5mz+8Pftl22VBDAizJeb9mMsM+5znP+W7+CJ959nvOArA8QjEAAAAsj1AMAAAAyyMUAwAAwPIIxQAAALA8QjEAAAAsj1AMAAAAyyMUAwAAwPIIxQAAALA8QjEAAAAsj1AMAAAAyyMUAwAAwPIIxQAAALA8QjEAAAAsj1AMAAAAyyMUAwAAwPIIxQAAALA8QjEAAAAsj1AMAAAAyyMUAwAAwPIIxQAAALA8QjEAAAAsj1AMAAAAyyMUAwAAwPIIxQAAALA8QjEAAAAsj1AMAAAAyyMUAwAAwPIIxQAAALA8QjEAAAAsj1AMANdRXV2dqqqq5PV6JzS/qqpKNTU1YWOvvPKKDhw4cD3KAwD8P/uZQZcAABWySURBVEIxAAAALC8u2gUAAN5x1113RbsEALAkQjEA3ERiYvgADwCigVAMAJMUDAbV1NSkjo4ODQ8PyzAMJSUlKT8/X0VFRRFzT58+rba2Nvl8PiUnJ2vhwoVyOp1h86qqqpSfn6/Kysr/ef3+/n41NDSor69PgUBAiYmJys/P17x582QYRmjegQMH5PV6tWbNGp06dUo9PT0KBoPKyMjQ4sWLlZSUFLauz+dTXV2durq65PP5ZLPZlJOTo9LSUtlstin8xgDg5sWWBABMQjAY1MGDB1VbWyu73a7S0lKVlZUpPT1dXV1dEfNramrk8XhUUlKi0tJS+Xw+vfXWWxO+Ae9y3d3d2r9/v4aHh1VcXKxbbrlFGRkZqqur0+HDhyPmj46Ohm7WKysrU2FhoTwej958802Zphma5/f79Z///Edut1tOp1Pl5eVyOp1yu93av3+/AoHApOoFgJsdO8UAMAlNTU3yeDyaP3++ysrKwo69O2SOsdlsWrFiReh1VlaW/v3vf6ulpUULFy68qmsHg0EdPXpU6enpWr16dWhXuKCgQKmpqTp58qQ8Ho8yMzND5/h8PpWUlGjevHmhMbvdrlOnTuns2bPKzs6WJJ05c0bDw8NavHixCgsLQ3PT0tJ0/PhxNTY2RrxfAJgJ2CkGgEno6OhQfHy8FixYEHHs3a0LYy5vp0hPT1dcXJyGh4ev+tq9vb0aGRmRy+WS3++Xz+cL/Yy1Y/T29kbUVFxcHDaWlZUlSRoaGgqNdXZ2ymazqaCgIGxuQUGBbDbbuLvgADATsFMMAJMwPDys1NTUCd8Y53A4Isbi4+Pl8/mu+tqDg4OSFPE843cbGRkJe2232yNqjY+Pl3SpZWKM1+tVenp6RLA3DEPJyckaGBi46noBYDogFAPADTDe7vFULVq0SKmpqeMeS0hImPD1x2v3AACrIRQDwCQkJSVpaGhIwWDwhj9GbexpEbGxsaFe4Gu59tDQkEzTDAvSpmlqaGho3B1vAJgJ6CkGgEmYO3eu/H6/6uvrb/i1nU6n7Ha7Ghsbw1ofxoyOjk76KRE5OTny+XxqbW0NG29paZHP51NOTs6k1gWAmx07xQAwCUVFRerq6lJDQ4P6+/vldDoVExOjwcFBDQ0N6dZbb71u146NjdWSJUv05ptv6p///KdcLpeSkpLk9/s1NDSkzs5OLV++POzpExNVUlKit99+W8ePH1d/f7/S0tI0MDCgtrY2JScnhz29AgBmEkIxAExCTEyMbr31Vp05c0YdHR2qra1VbGxs6Ms7rrfs7GzddtttamhoUHt7u3w+n+Lj4+VwOFRcXHzFXuP/JT4+XmvWrAl9eUdbW5vsdrsKCgpUWlqquDj+2wAwMxncYCEtW7bMPHToULTLAAAAwHVkGMZh0zSXjXeMnmIAwBV5vV5dvHgx2mUAwHXH52AAgAgXLlzQiRMn1NPTI8MwNHfuXC1atIj2CQAzFjvFAIAIYz3FwWBQo6OjamlpUVNTU7TLAoDrhlAMAAgzOjqqzs7OiHG+4hnATEYoBgCEMQxDNpstYtxut0ehGgC4MQjFAIAwMTExKioqChszDEMFBQVRqggArj/umAAARCguLpbdbldXV5diY2M1Z84cOZ3OaJcFANcNoRgAMK68vDzl5eVFuwwAuCFonwAAAIDlEYoBAABgeYRiAAAAWB6hGAAAAJZHKAYAAIDlEYoBAABgeYRiAJgG3G63DMPQY489Fu1SAGBGIhQDwE3C7XbrscceU01NTbRLAQDL4cs7AOAm4Xa79Z3vfEeFhYWqrKwMO1ZQUKALFy4oLo4/2wBwPbBTDMCyTNPU0NBQtMuYEMMwlJCQQCgGgOuEUAxgWhscHNTOnTu1cuVKZWVlyW63a968efrmN78pr9cbmvfaa6/JMAw999xz+sUvfqFFixYpISFBTz75pCTJ6/Xq4YcfVm5urhITE7Vq1Sq9+uqr2rJliwzDiLhuQ0ODPv3pTys3N1c2m02FhYXavn27hoeHw+aNnT8wMKCHHnpITqdTCQkJ+sAHPqDq6urQvOeee07r1q2TJN1///0yDEOGYehDH/qQpPF7it899te//lXLly9XQkKCcnNztX37dgUCgYi633jjDW3cuFFpaWlKTEzU0qVL9cwzz0z69w8AMwVbDgCmtY6ODj399NO69957dd999ykuLk6vv/66fvSjH+nIkSP6+9//Hjb/Jz/5iTwejz7/+c8rJydH+fn5kqRPfOIT2rdvn+655x5t2LBBzc3N2rx5s4qKiiKuefjwYa1fv17p6en6whe+oLy8PB09elQ/+9nPtH//fr3++uuKj48PO+fOO+9Udna2HnnkEXk8Hj311FO666671NzcrJSUFN12223asWOHfvCDH+jBBx/U2rVrJUmzZ8/+n7+Dffv2affu3friF7+orVu3au/evXryySc1a9Ys7dixIzSvqqpKmzdvVk5OjrZt26aUlBS98MILeuCBB9TU1KTvf//7V/37B4AZwzRNy/+8//3vNwFMTyMjI6bP54sY37lzpynJrK6uNk3TNP/1r3+ZksxZs2aZ3d3dYXNfeuklU5L5wAMPjDt+6U/lOyoqKszS0lLz/PnzYeMvvviiKcl89tlnQ2Of/exnTUnmQw89FDb3j3/8oynJ3LNnT2hsrMZ3nz+mubnZlGQ++uijEWMOh8Nsbm4OjQeDQbO8vNzMyckJjQUCAdPlcplpaWlmR0dHaHxkZMRcvXq1GRMTY9bX10dcFwBmEkmHzCvkQdonAExrNpsttCsbCAR07tw5nT17Vhs2bJCksBYFSfrMZz4jp9MZNlZVVSVJevjhh8PGN23apIULF4aNHT9+XMeOHdN9992nkZERnT17NvSzZs0aJSUl6R//+EdEnV/72tfCXq9fv17SpTaMqbrnnntUWFgYem0YhtatW6eurq5Qz/Thw4fV2tqqrVu3as6cOaG5NptNX//61xUMBrV3794p1wIA0xWhGMC0t3v3blVUVMhutysjI0PZ2dmhXtxz586FzV2wYEHE+c3NzYqJidG8efMijpWWloa9rq2tlSQ9+uijys7ODvtxOp0aHh5Wd3d3xDrFxcVhrzMzMyVJHo9n4m/0Ci5fe7z1m5ubJUnl5eURc8fGmpqaplwLAExX9BQDmNaeeuopbdu2TXfccYe+/OUva86cObLZbOro6NCWLVsUDAbD5jscjiuuNd4NdZe79OmbtG3bNn34wx8ed86sWbMixmJjY99zvam40trXan0AsAJCMYBp7fnnn1dhYaFefvllxcS88+HX3/72twmvUVhYqGAwqIaGhoh2ibq6urDX8+fPl3QpiI61aFwrEwnlkzW2m3zy5MmIY6dOnQqbAwBWRPsEgGktNjZWhmGE7YgGAgH98Ic/nPAad999tyTpxz/+cdj4vn37Qu0SY5YsWaJbbrlFe/bsGbfdIBAIqK+v72reQkhycrIkTfr897J06VK5XC49++yz6urqCo37/X7t2rVLhmHoox/96DW/LgBMF+wUA5jWPv7xj+tb3/qWPvKRj+hjH/uYzp8/r9/97ncRj0R7L5s2bdKdd96pX/3qV6Gb9Jqbm/XLX/5SFRUVOnbsWGiuYRh6/vnntX79elVUVGjr1q0qLy+X1+tVY2OjXnzxRT3xxBPasmXLVb+XRYsWKSUlRbt375bD4VB6erqcTmfoprypiI2N1c9//nNt3rxZy5cv14MPPqiUlBT94Q9/0MGDB7Vjx47QLjgAWBGhGMC0tn37dpmmqWeeeUZf+cpXlJOTo09+8pO6//77tWjRogmtYRiG/vSnP+nb3/62fv/73+vll19WRUWF/vznP2v37t0RT4iorKzUkSNH9MQTT+gvf/mL9uzZo5SUFBUWFmrLli26/fbbJ/VeEhMT9cILL2jnzp366le/qpGREX3wgx+8JqFYurQj/uqrr+rxxx/Xrl275PP5tHDhQj399NP63Oc+d02uAQDTlcFNGNKyZcvMQ4cORbsMADehxYsXy+/36/Tp09EuBQAwRYZhHDZNc9l4x+gpBgBJFy5ciBh76aWXdOLECW3cuDEKFV1/Xq9XXV1dGh0djXYpABB1tE8AgKTvfve7OnLkiNatW6e0tDTV1NTo17/+tTIzM/WNb3wj2uVdc9XV1XrkkUd09OhRfepTn9KXvvSlcZ/TDABWQSgGAElr167V/v37tWvXLg0MDCgjI0P33nuvvve972nu3LnRLu+aqqur08aNGzU4OChJ+ulPfyq3263f/va3SkpKinJ1ABAdhGIA0KUnUGzatCnaZdwQtbW1oUA8Zu/evWppaZnwzYkAMNPQUwwAFjPebrDD4ZDdbo9CNQBwcyAUA4DFVFRUaO3atWFjjz/+ON9oB8DSaJ8AAIuZPXu2fvOb3+jgwYNyu91asmSJVqxYcV2/ZhoAbnaEYgCwIJfLJZfLFe0yAOCmQfsEAAAALI9QDAAAAMsjFAMAAMDyCMUAAACwPEIxAAAALI9QDAAAAMsjFAMAAMDyCMUAAACwPEIxAAAALI9QDAAAAMsjFAMAAMDyCMUAAACwPEIxAAAALI9QDAAAAMsjFAMAAMDyCMUAAACwPEIxAAAALI9QDAAAAMsjFAMAAMDyCMUAAACwPEIxAAAALI9QDAAAAMsjFAMAAMDyCMUAAACwPEIxAAAALI9QDAAAAMsjFAMAAMDyCMUAAACwPEIxAAAALI9QDAAAAMsjFAMAAMDyCMUAMI5AIBDtEgAAN1BctAsAgOuhrq5O9fX1uv322+VwOMKOvfLKK3I4HFq9erUkqaqqSvn5+Zo7d67q6uo0MDCg9PR0rV69WjU1NWpra9Pdd98dcY2x8yorK0Njo6OjOn36tDo6OuT3+5WWlqaysjK1t7dHrHN5HWM8Ho8OHDigyspK5efnS7oU0hsbG9Xb2yuv16tAIKDExETl5uZqwYIFio2NlSQNDAzojTfe0Pz581VWVhZRc3V1tfr6+nTHHXeEzjl//rzq6urk8Xg0Ojoqh8Oh/Px8lZSUyDCMyfz6AWDaIRQDgKT+/n51dnbK5XKFguhkHDp0SD09PcrJyVF2dra8Xq/eeuutiGB+tS5evKjW1lbl5uYqLy9PMTEx8ng8amxs1MDAgFatWiVJSktLU1pamtra2lRaWhoWai9evKje3l7l5+eHAnF/f78OHDigmJgYFRYWym63q7u7W7W1tTp//ryWLl06pboBYLogFAOApMHBQa1atUrZ2dmTXqOnp0c9PT1yuVx63/veFxrPyspSdXX1lOpzOBzasGGDYmLe6XorLCxUUlKSGhoa1N/fr/T0dElSQUGBjh07pt7eXjmdztD8trY2maapgoKC0NjJkycVDAa1Zs0apaamSpKKiop0+PBhdXR0yOVyKSsra0q1A8B0QE8xAEhKTU2dUiCWpK6uLklSSUlJ2LjT6VRycvKU1o6JiQkFYtM05ff75fP5QjWfO3cuNDcvL09xcXFqbW0NW6O1tVWpqamh8DwyMqK+vj7Nnj07FIjHzJ8/X5LU2dk5pboBYLpgpxgApCmHVknyer0yDGPcVonk5GQNDQ1NaX23262WlhYNDg7KNM2wY36/P/TvuLg4zZkzR+3t7fL5fLLZbDp79qy8Xq/Ky8vD6pWklJSUces1DCM0BwBmOkIxgBnpvW4QuzxQSgr12E7UeGtM5NoTmRcMBiPGmpqadPLkSWVnZ6uoqEgJCQkyDEMXL15UTU1NRD0FBQVqbW1VW1ubSkpK1NraqpiYmCn1SwPATEYoBjAjxcfHSwrfQZUuBc6RkRElJSVd9Tpj/5Y07g6qw+GQaZoaHh6O2Hkeb5c4Pj4+or4rrd3W1iaHw6GVK1eGhemenp5x605PT1daWppaW1vlcrnU2dmpnJycsPcwtqM9ODgYcf7Q0JBM05zyDYIAMF3QUwxgRhoLpb29vWHjZ86cec9d3qtZ53KzZ88e91hPT8+4oXispeLixYuhsWAwKLfbHTF3vF1l0zTV2Nh4xdpdLpeGhoZ04sQJBYNBuVyusON2u10ZGRnq7u6OCMZj6+bm5l5xfQCYSdgpBjAjZWVlKTk5WXV1dfL7/XI4HPJ4POrv75fNZpvwOnl5eaqtrdWxY8c0NDSk+Ph49fb2yufzRcydPXu2srOz1draGroJzuv1qqWlRampqTp//nzY/MLCQnV0dOi///2vCgoKZJqm2tvbx23lmDNnjmpra1VdXa3c3Fz5/X51dHSEPY3icnPnztWpU6fU3t4uh8Mx7o2E5eXlOnDggPbv3x/2SLbe3l7l5eXx5AkAlsFOMYAZyTAMrVixQpmZmWpublZtba1M09Tq1auvqn84Li5OK1euVEpKihoaGlRfXy+73a6VK1eOO3/58uUqLi7WuXPndPLkSXk8Hi1fvlxJSUkR183IyFBlZaVM01Rtba3cbrfy8vLG/dKNkpISlZWVyev16sSJE3K73crOztaSJUves/a8vDxJumIvcXp6utasWaPMzEy53W6dOnVKFy5c0MKFC99zbQCYaYyr+Rhxplq2bJl56NChaJcBYAZ77bXXZJqm1q1bd0Ove/z4cbW0tGjDhg1KSEi4odcGgJuNYRiHTdNcNt4xdooB4BoaHR2NGBvr2Z3qc5Cvlt/vV3t7u5xO54QDsdfrVV9fnwKBwHWuDgBuLvQUA8A1VF9fr4GBAWVlZSk+Pl4DAwNqa2uTzWbTvHnzbkgNg4ODoesGAoHQF3G8F9M0VVdXp6amJo2OjioxMVGLFy8O3TwIADMdoRgArqHMzEz19fXpzJkz8vv9stlsys3NVWlp6Q1rX3j77bdVX1+vhIQEVVRUaNasWf/znO7ubjU0NIReX7hwQUePHtW6devCHuMGADMVoRgAriGn0ymn0xnVGkpLS1VaWnpV5/T19UWMjYyMqL+//4a3fQBANNBTDAAYdxfbMAzZ7fYoVAMANx6hGACg3NzciG/hy8/PV2pqapQqAoAbi/YJAIASExO1atUqtbe3y+v1KiMjI/SMYwCwAkIxAEDSpWA8kSdVAMBMRPsEAAAALI9QDAAAAMsjFAMAAMDyCMUAAACwPEIxAAAALI9QDAAAAMsjFAMAAMDyCMUAAACwPEIxAAAALI9QDAAAAMsjFAMAAMDyCMUAAACwPEIxAAAALI9QDAAAAMsjFAMAAMDyCMUAAACwPEIxAAAALI9QDAAAAMsjFAMAAMDyCMUAAACwPEIxAAAALI9QDAAAAMsjFAMAAMDyCMUAAACwPEIxAAAALI9QDAAAAMsjFAMAAMDyDNM0o11D1BmG0SupJdp1AAAA4LoqME0ze7wDhGIAAABYHu0TAAAAsDxCMQAAACyPUAwAAADLIxQDAADA8gjFAAAAsDxCMQAAACyPUAwAAADLIxQDAADA8gjFAAAAsLz/AwN4nsQxP06LAAAAAElFTkSuQmCC\n" + }, + "metadata": {}, + "execution_count": 14 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "De aqui obtuvimos muchos gentilicios, pero aumentemos a al doble de vecinos para conocer aún mas ejemplos a evaluar." + ], + "metadata": { + "id": "rsMQh7ghRze6" + } + }, + { + "cell_type": "code", + "source": [ + "explorador_de_palabras.plot_projections_2d(procedencia, n_neighbors=4, figsize=(10, 10))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 729 + }, + "id": "kTvH4-1BR_4F", + "outputId": "e0daa273-c873-4f19-d16a-b9919a9b0626" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsUAAALICAYAAACXVY3GAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde3iU9Z3//+dM5pDzeUJOJBMSEgIE5AzhIFCqrae2dj3VXhf26qXb3ao9uB6+VVu3lb1st6fttl29anftZa2tbi+7pd16QEWRAIIQhEBO5DQ5JxNynCQzk8zvDzbzY5iABJAA9+txXV517vtzf+Y9I9ZXPnnfn9sUCAQQERERETEy83QXICIiIiIy3RSKRURERMTwFIpFRERExPAUikVERETE8BSKRURERMTwLNNdwKUgNTU14HQ6p7sMEREREfkYffDBB92BQMAx2TmFYsDpdLJv377pLkNEREREPkYmk6nxdOfUPiEiIiIihqdQLCIiIiKGp1AsIiIiIoannuLT8Pl8NDc3MzIyMt2lXPEiIyPJzs7GarVOdykiIiJiUArFp9Hc3ExcXBxOpxOTyTTd5VyxAoEAbreb5uZm8vLyprscERERMSi1T5zGyMgIKSkpCsQfM5PJREpKilbkRUREZFopFJ+BAvHFoe9ZREREpptCsYiIiIgYnkKxiIiIiBieQvE0eu6557j33ntPe/6uu+7iv//7v8OO79u3j/vvv//jLE1ERETEULT7xEU0NjZGRETEec+zdOlSli5degEqEhERERHQSvFZ+9d//Vd+9rOfAfCNb3yDjRs3AvDWW29x55138uKLL1JSUsL8+fN5+OGHg9fFxsbywAMPsHDhQnbt2sV//dd/UVhYyPLly9m5c+dHvu+2bdtYunQphYWF/OUvfwFg+/bt3HDDDQC8//77rFq1ikWLFlFaWkpVVRUAFRUVLF++nKuuuooFCxZQU1Mz6fxDQ0Ncf/31LFy4kPnz5/OHP/wBAKfTyUMPPURJSQnLly+ntrYWgK1bt7JixQoWLVrEpk2b6OjoAGBwcJAvfelLlJSUsGDBAv74xz8C8Prrr7Nq1SoWL17MLbfcwuDg4NS+eBEREbloysrK2LZtW8ix8vJytm7dOk0VXTwKxWdp7dq17NixAzjRvjA4OIjP52PHjh0UFhby8MMP89Zbb1FeXs7evXv505/+BJwInStWrODgwYPk5+fzne98h507d/Lee+9x5MiRj3zfhoYG3n//ff7617/yla98JWzrsjlz5rBjxw4OHDjAd7/7Xb71rW8B8PTTT/O1r32N8vJy9u3bR3Z29qTzv/rqq2RmZnLw4EEOHz7Mpz71qeC5hIQEDh06xL333svXv/51ANasWcPu3bs5cOAAt99+Oz/4wQ8A+N73vhcc/+GHH7Jx40a6u7t58skn2bZtG/v372fp0qX8+Mc/nuI3LyIiIm63m6qqKnw+33SXcsVS+8RZWrJkCR988AH9/f3Y7XYWL17Mvn372LFjBzfeeCPr16/H4XAAcOedd/Luu+/y2c9+loiICD7/+c8DsGfPnpBxt912G9XV1Wd831tvvRWz2czs2bOZNWsWlZWVIef7+vrYvHkzNTU1mEym4L8sq1atYsuWLTQ3N3PzzTcze/bsSecvKSnhgQce4OGHH+aGG25g7dq1wXN33HFH8H+/8Y1vACceanLbbbfR1taG1+sNPnBj27Zt/P73vw9em5SUxF/+8heOHDnC6tWrAfB6vaxateosvm0RERE5WXd3N9XV1cycOfOiPwF2wYIFLFiw4KK+53TQSvFZslqt5OXl8dxzz1FaWsratWt5++23qa2txel0nva6yMjI8+ojPnUP31NfP/7442zYsIHDhw+zdevW4EryF77wBf785z8TFRXFddddx1tvvTXp/IWFhezfv5+SkhIee+wxvvvd7076XhN/f99993Hvvfdy6NAhnnnmmTM+dCMQCPDJT36S8vJyysvLOXLkCL/+9a+n9gWIiIjIlI2PjzM+Pn5B5jKbzZjNV35k1ErxFKxdu5Yf/vCH/Od//iclJSV885vfZMmSJSxfvpz777+f7u5ukpKSePHFF7nvvvvCrl+xYgVf+9rXcLvdxMfH8/LLL7Nw4cIzvufLL7/M5s2bqa+vp66ujqKiInbv3h0839fXR1ZWFnBiN4sJdXV1zJo1i/vvv5+mpqZgS8OpWltbSU5O5otf/CKJiYk8++yzwXN/+MMfeOSRR/jDH/4QXOE9+f1+85vfBMd+8pOf5Be/+AU//elPATh+/DgrV67kq1/9KrW1tRQUFDA0NERLSwuFhYUf9VWLiIhccvx+P7W1tXR1deHxePD7/URFRZGRkUFhYWFwEczlclFeXk5paSkpKSkhc5SVleHxeNi0aVPwWE9PDzU1NfT19eHz+bDZbMTHx1NYWEhSUhLl5eW4XC4A3nzzzeB1hYWFFBUVUVVVRXV1NevXr6epqYnW1lZGR0dZtWoVKSkptLa20tzcTH9/P6Ojo1gsFpKTkykqKiI+Pv4jP/fE+994443BY4ODg9TX1+N2uxkeHiYQCBAbG4vT6SQnJyfk+on6NmzYQHNzMy6XC6/XS2xsLMXFxaSlpU39H8bHQKF4CtauXcuWLVtYtWoVMTExREZGsnbtWjIyMnjqqafYsGEDgUCA66+/ns985jNh12dkZPDEE0+watUqEhMTueqqqz7yPXNycli+fDn9/f08/fTTREZGhpx/6KGH2Lx5M08++STXX3998PhLL73E888/j9VqJT09PdhrfKpDhw7x4IMPYjabsVqt/Md//Efw3PHjx1mwYAF2u50XX3wRgCeeeIJbbrmFpKQkNm7cSH19PQCPPfYYX/3qV5k/fz4RERF85zvf4eabb+a5557jjjvuYHR0FIAnn3xSoVhERC5LIyMjNDU1kZGRQVZWFmazGbfbTW1tLX19faxcuXLKcw4ODrJ7927sdjt5eXnY7XZGR0fp6emhv7+fpKQkcnNz8fl8tLe3M2/ePGw2G0BYoN2/fz8RERHk5+cDYLfbAaivr8dms5Gbm4vdbmdoaIjGxkZ27tzJunXriImJmXLdbrcbt9vNjBkziI6Oxu/309bWxsGDBxkdHZ20bbO8vByTyUR+fj7j4+PU19ezd+9eNmzYQHR09JRruNBMgUBgumuYdkuXLg3s27cv5NjRo0cpLi6epoqmn9PpZN++faSmpl6U9zP69y0iIpe+iXaEU1sJKisrqampYe3atSQmJk5ppbi+vp7Dhw8Hrz2didXWT3ziE2EBcuJcSkoKq1atCmu1nGxL2MHBQd555x1ycnIoKSk5bX0w+UrxZHMGAgF27dpFX18f1157bfB7mqhvxowZLF++PDi+t7eXHTt2UFBQcNEygMlk+iAQCEy6r+2V3yAiIiIicgGc3FsbCATw+Xx4vd7gDfTHjx+f8pwWy4lf2re3t593D/CsWbPCAjEQEl79fj9erxebzUZsbOw51XzqnOPj43i9Xnw+Hw6HA7/fP+kWrBM3509ITEzEYrEwNDR0TjVcaGqfuARs2bKFl19+OeTYLbfcwqOPPnrB3sPtdvOJT3wi7Pibb74Z9lMsnNgKTkREREI1NDTQ2NjIwMAAp/62/Vy2S8vKyqKlpYWamhrq6upISkrC4XCQlZVFVFTUlOY6XRtEX18fVVVVdHd3MzY2FnLuXNsW/H4/1dXVtLa2Mjw8HHZ+su9isveyWq14vd5zquFCUyi+BDz66KMXNABPJiUlhfLy8o/1PURERK5kdXV1VFRU4HA4yMvLIzIyEpPJxMjICOXl5WEheTKnjjGbzaxcuZLe3l46Ozvp6emhqqqKqqoqlixZQnp6+lnXN9luV8PDw5SVlWGxWCgsLCQ2NjY4rqKiAr/ff9bzn2z//v10dHSQm5tLSkpKsM+5s7OTurq6Sa+ZbBX7UqJQLCIiInIWXC4X0dHRrFixIiTgdXZ2hoybCIiTrYB6PJ5Jw2FiYmKwp3h4eJh3332XysrKYCg+10DZ1taG3+9n2bJlYfcJeb3ec9pqzefz0dHRQXZ2dtj+xd3d3edU56VAPcUiIiIiZ2GyYBoIBKitrQ05NtHGcGpAbGlpCdvff7LgHBUVhc1mCzk3sbo71RaN04Xppqam4M5QU3W6OSd257hcaaVYRERE5CxkZmZy9OhR9uzZQ0ZGBj6fj5aWlrDV1tjYWBwOB42NjQQCARISEujr66O9vZ2YmJiQG+pqamro7OwMbm0G0NHRweDgIAUFBcFxSUlJwIndmia2g4uPjycuLu6MNaelpREREcGBAwdwOp3YbDZ6enro6OgIq+VsWSwWHA4Hzc3NREREkJiYiMfjobGxkejo6EumR3iqtFJscK+++ipFRUUUFBTw1FNPTXc5IiIil6z8/HzmzJmDx+Ph8OHDNDQ04HA4WLRoUdjYRYsWkZ6eTktLCxUVFQwPD1NaWhr2vIH09HTi4+NpbW2loqKCyspKvF4vCxcuDNmmLDk5meLiYoaGhjh48CD79++ntbX1I2uOiYlhxYoVREdHU1tby9GjR/F6vaxevTqslqlYvHgxOTk5dHR0cOjQIdrb2ykuLj7jU34vddqnGOPuUzw2NkZhYSFvvPEG2dnZLFu2jBdffJG5c+de9FqM8H2LiIjI9NI+xVeIF154AafTidlsxul08sILL5zXfO+//z4FBQXMmjULm83G7bffzv/8z/9coGpFRERELh/qKb5MvPDCC9xzzz14PB4AGhsbueeeewC48847z2nOlpYWZs6cGXydnZ3Nnj17zr9YERERkUmMj49TV1cX7LfOyckhPz9/0u3kLjatFF8mHn300WAgnuDxeD72/Y1FRERELpT6+nqOHj2Kx+NheHiYqqoqjh07Nt1lAQrFl43TbXFyPlufZGVl4XK5gq+bm5vJyso65/lEREREzmSy3HKpbOOmUHyZyMnJmdLxs7Fs2TJqamqor6/H6/Xy+9//nptuuumc5xMRERE5k8n2OL5UnnSnUHyZ2LJlS9gzw6Ojo9myZcs5z2mxWPj5z3/OtddeS3FxMbfeeivz5s0731JFREREJnXyvUwTzmeB70LSjXaXiYmb6R599FGamprIyclhy5Yt53yT3YTrrruO66677kKUKCIiInJGeXl5wIlHZgcCAWbOnMmsWbOmuaoTFIovI3feeed5h2ARERGR6WI2m8nPzyc/P3+6Swmj9gkRERERMTyF4jPQ0/4uDn3PIiIiMt0Uik8jMjISt9utwPYxCwQCuN3u83r+uoiIiMj5Uk/xaWRnZ9Pc3ExXV9d0l3LFi4yMJDs7e7rLEBEREQNTKD4Nq9UavENSRERERK5sap8QEREREcNTKBYRERERw1MoFhERERHDUygWEREREcNTKBYRERERw1MoFhERERHDUygWEREREcNTKBYRERERw1MoFhERERHDUygWEREREcNTKBYRERERw1MoFhERERHDUygWEREREcNTKBYRERERw1MoFhERERHDUygWEREREcNTKBYRERERw1MoFhERERHDUygWEREREcNTKBYRERERw1MoFhERERHDUygWEREREcNTKBYRERERw1MoFhERERHDUygWEREREcNTKBYRERERw1MoFhERERHDUygWEREREcNTKBYRERERw1MoFhERERHDUygWEREREcNTKBYRERERw1MoFhERERHDUygWEREREcNTKBYRERERw1MoFhERERHDUygWEREREcNTKBYRERERw1MoFhERERHDUygWEREREcNTKBYRERERw1MoFhERERHDUygWEREREcNTKBYRERERw1MoFhERERHDUygWEREREcNTKBYRERERw1MoFhERERHDUygWEREREcNTKBYRERERw1MoFhERERHDUygWEREREcNTKBYRERERw1MoFhERERHDUygWEREREcNTKBYRERERw1MoFhERERHDUygWEREREcNTKBYRERERw1MoFhERERHDUygWEREREcNTKBYRERERw1MoFhERERHDUygWEREREcNTKBYRERERw1MoFhERERHDUygWEREREcNTKBYRERERw1MoFhERERHDUygWEREREcNTKBYRERERw1MoFhERERHDUygWEREREcNTKBYRERERw1MoFhERERHDUygWEREREcNTKBYRERERw1MoFhERERHDUygWEREREcNTKBYRERERw1MoFhERERHDUygWEREREcNTKBYRERERw1MoFhERERHDUygWEREREcNTKBaRC6asrIxt27aFHCsvL2fr1q3TVJGIiMjZUSgWMQC3201VVRU+n2+6SxEREbkkKRSLGEB3dzfV1dXTEooXLFjA9ddff9HfV0REZCos012AiFx6xsfHATCbz//n5gsxh4iIyMdNoVjkIvH7/dTW1tLV1YXH48Hv9xMVFUVGRgaFhYVEREQA4HK5KC8vp7S0lJSUlJA5ysrK8Hg8bNq0KXisp6eHmpoa+vr68Pl82Gw24uPjKSwsJCkpifLyclwuFwBvvvlm8LrCwkKKioqoqqqiurqa9evX09TURGtrK6Ojo6xatYqUlBRaW1tpbm6mv7+f0dFRLBYLycnJFBUVER8f/5Gfe+L9b7zxxuCxwcFB6uvrcbvdDA8PEwgEiI2Nxel0kpOTE3L9RH0bNmygubkZl8uF1+slNjaW4uJi0tLSQsYHAgGOHTuGy+XC4/EQERFBSkrKpPU2NzdTX1/P0NAQ4+Pj2O12kpKSmD9/Pjab7SM/m4iIXDkUikUukpGREZqamsjIyCArKwuz2Yzb7aa2tpa+vj5Wrlw55TkHBwfZvXs3drudvLw87HY7o6Oj9PT00N/fT1JSErm5ufh8Ptrb25k3b14w7J0aEPfv309ERAT5+fkA2O12AOrr67HZbOTm5mK32xkaGqKxsZGdO3eybt06YmJiply32+3G7XYzY8YMoqOj8fv9tLW1cfDgQUZHR5k9e3bYNeXl5ZhMJvLz8xkfH6e+vp69e/eyYcMGoqOjQz5Ha2srDocDp9PJ6OgoDQ0NvPfee6xevZqEhATgRCA+cOBAMOBHREQwPDxMR0cHo6OjCsUiIgajUCxykURHR7Np06aQdgKn00lMTAw1NTX09vaSmJg4pTm7uroYGxtjyZIlp702KSmJ+Ph42tvbSU9PDwmQJ7NaraxatQqTyRRyfOXKlcFV7AkzZ87knXfeoa6ujpKSkinVDJCdnU1ubm7IsVmzZrFr1y5qa2vJz88Pa7uw2WwsX748+Do1NZUdO3bQ2NhIcXExcOL7aG1tJTMzkyVLlgTHZmZm8u6773L48GFWr14NQFtbGxaLhdLS0pDPXFRUNOXPIyIilz81+4lcJGazORj0AoEAPp8Pr9eLw+EA4Pjx41Oe02I58XNte3t7sA/4XM2aNSssEAMhgdjv9+P1erHZbMTGxp5TzafOOT4+jtfrxefz4XA48Pv9DA4Ohl2Tl5cX8joxMRGLxcLQ0FDwWHt7O0DYSnN8fDwzZsygp6cHr9cLnPghYGxsjI6OjnP6DCIicmXRSrHIRdTQ0EBjYyMDAwMEAoGQc+eyM0RWVhYtLS3U1NRQV1dHUlISDoeDrKwsoqKipjTX6dog+vr6qKqqoru7m7GxsZBzp1t1/ih+v5/q6mpaW1sZHh4OOz/ZdzHZe1mt1mDIBfB4PJhMJmJjY8PGxsXF0d7ejsfjwWazMXv2bNxuN3v37sVms5GSkkJaWhqZmZnBHzZERMQ49P/8IhdJXV0dFRUVOBwO8vLyiIyMxGQyMTIyQnl5eVhInsypY8xmMytXrqS3t5fOzk56enqoqqqiqqqKJUuWkJ6eftb1ndoiATA8PExZWRkWi4XCwkJiY2OD4yoqKvD7/Wc9/8n2799PR0cHubm5pKSkBPt3Ozs7qaurm/SayVaxz0dMTAwbNmygu7ubrq4u3G43Bw8epKqqitLS0nPqlRYRkcuXQrHIReJyuYiOjmbFihUhAa+zszNk3ERAPHkFdMLESuipEhMTgz3Fw8PDvPvuu1RWVgZD8bkGyra2Nvx+P8uWLSM1NTXknNfrPaft1nw+Hx0dHWRnZ7NgwYKQc93d3edU54To6GgCgQCDg4NhNxIODAwEx0wwm82kpaUFd7Do7Oxkz54959wrLSIily/1FItcJJMF00AgQG1tbcixiRXKUwNiS0sLIyMjIccmC85RUVHYbLaQcxOru1Nt0ThdmG5qamJ0dHRKc33UnBO7c5yPiR8CTv1OBwYG6OjoIDk5+Yw/dEzsTKEn/4mIGI9WikUukszMTI4ePcqePXvIyMjA5/PR0tISttoaGxuLw+GgsbGRQCBAQkICfX19tLe3ExMTE3JDXU1NDZ2dncGtzQA6OjoYHBykoKAgOC4pKQmAo0ePBreDi4+PJy4u7ow1p6WlERERwYEDB3A6ndhsNnp6eujo6Air5WxZLBYcDgfNzc1ERESQmJiIx+OhsbGR6OjoScPq2XI4HGRmZtLS0oLX62XGjBnBLdnMZjPz588Pjt29ezdWq5Xk5GSioqLw+XzB/Zyzs7PPuQYREbk8KRSLXCT5+fkEAgFcLheHDx/GbreTmZlJTk4Ob7/9dsjYRYsWcejQIVpaWmhubiYlJYXS0lI+/PBDPB5PcFx6ejojIyPBB25EREQQExPDwoULQx6CkZycTHFxMY2NjRw8eJBAIBB8eMeZxMTEsGLFCiorK6mtrcVkMpGUlMTq1as5dOhQSC1TsXjxYo4ePUpHRwcul4uYmBiKi4sxmUyUl5ef05wnz52QkIDL5eLIkSOnfXiH0+mktbWVxsZGfD4fVquVhIQE5s+fH9YqIiIiVz7T2dzcc6VbunRpYN++fdNdhoiIiIh8jEwm0weBQGDpZOfUUywiIiIihqf2CRExtMHBQerq6ujt7SU+Pp5Zs2aF7VwhIiJXPoViETEsn8/H3r17g0/Q6+vrw+12s2bNGux2+zRXJyIiF5PaJ0TEsLq6usIeKe3xeML2jhYRkSufQrGIGNapj63+qOMiInLlUigWEcNyOBzBh3lMmNhHWUREjEWhWEQMKzIykqVLl5KcnBx8kMiSJUuCTxUUERHj0I12ImJoKSkprF69Gp/Ph8ViOe1jqEVE5MqmUCwiAlit1ukuQUREppHaJ0RERETE8BSKRURERMTwFIpFRERExPAUikVERETE8BSKRURERMTwFIpFRERExPAUikVERETE8BSKRURERMTwFIpFRERExPAUikVERETE8BSKRURERMTwFIpFRERExPAUikVERETE8BSKRURERMTwFIpFRERExPAUikVERETE8BSKRURERMTwFIpFRERExPAUikVERETE8BSKRURERMTwFIpFRERExPAUikVERETE8BSKRURERMTwFIpFRERExPAUikVERETE8BSKRURERMTwFIpFRERExPAUikVERETE8BSKRURERMTwFIpFRERExPAUikVERETE8BSKRURERMTwFIpFRERExPAUikVERETE8BSKRURERMTwFIpFRERExPAUikVERETE8BSKRURERMTwFIpFRERExPAUikVERETE8BSKRURERMTwFIpFRERExPAUikVERETE8BSKRURERMTwFIpFRERExPAUikVERETE8BSKRURERMTwFIpFRERExPAUikVERETE8BSKRURERMTwFIrljLZt20ZZWdl0lwFAWVkZ27Ztm+4yRERE5AqkUCwiIiIihmeZ7gLk0rZx48bpLiFo5cqV012CiIiIXKEUiuWMzObp/WVCIBBgfHyciIiIaa9FRERErlwKxQbkcrkoLy9n1apV9PX10dDQwMjICFFRUcyePZuZM2cGx27bto3o6GhKS0tD5mhoaKCuro7h4WGioqLIy8vDYrFQXl5OaWkpKSkpwbE+n4/a2lra2toYHh7GYrHgcDiYM2cO0dHRYXWtXLmS48eP43K5GB4eZuHChcycOZOysjI8Hg+bNm0KXtPb20tDQwM9PT2MjIxgMpmIj48nPz+f9PT0kJrLy8txuVx86lOf4ujRo7S1teH3+0lMTGTu3LkkJSUFxwYCAWpra+ns7GRoaAifz4fdbictLY05c+Zgs9lC5m5ubqa+vp6hoSHGx8ex2+0kJSUxf/78sLEiIiJy6VEoNrDKykrGxsbIzc3FbDbT2NhIeXk5MTExJCcnn/a62tpajh49SkJCAsXFxYyNjXHs2LFJw5/P52Pnzp0MDw8zc+ZM4uLiGB0dpaGhgR07drBu3TqioqJCrjly5AiBQIDc3FwsFguxsbGnraWtrY3BwUEyMzOJjo7G6/XicrnYu3cvixcvJisrK+yaPXv2YLPZKCwsxOfzcezYMd5//30+8YlPYLGc+FciEAhw7NgxMjIySE9Px2Kx0Nvbi8vloqenh3Xr1gVXrpubmzlw4ADJyckUFRURERHB8PAwHR0djI6OKhSLiIhcBhSKDWxsbIy1a9cGw11mZiZvvvkmDQ0Npw3FPp+Pqqoq4uPjWbNmTfDanJwc3nrrrbDxVVVVDA0NsXbtWuLj44PHZ86cyfbt26mqquKqq64Kq+vqq68mIiLiIz9DYWFh2Li8vDzeeecdqqurJw3FCQkJlJSUBF/HxsbywQcf0NLSQm5uLnCibeSTn/xkyNy5ubkkJSVx8OBB2tvbyczMBE4Ec4vFQmlpKSaTKTi+qKjoI+sXERGRS4OaNA0sLy8vpE83MjKSmJgYBgcHT3tNV1cX4+PjwdXlCXa7nezs7LDxLS0tpKSkEBkZidfrDf4VERFBUlISXV1dYdc4nc6zCsRAyLixsTG8Xi9jY2OkpqYyODiI3+8Pu2bWrFkhr1NTUwEYGhqadO5AIIDP58Pr9QbHHj9+PDjOarUyNjZGR0fHWdUsIiIilx6tFBvYyf28E2w2G8PDw6e9xuPxAEza0hATExPyenR0FK/XS1dXF6+99tqk8528sjrhTO0SpxodHaWysjLYqnAqn88XbImYcOrnnmhv8Hq9IcdbW1s5duwY/f39jI+Ph807Yfbs2bjdbvbu3YvNZiMlJYW0tDQyMzPD3ltEREQuTfovtoFNFkjhxMroheRwOMjPzz/r8We7Sgywe/duBm4b9C4AACAASURBVAcHycvLIzExEavVCpy4aa+lpWXSz3K6z32ytrY2PvjgAxITE5k3bx5RUVHBlfHdu3eHjI2JiWHDhg10d3fT1dWF2+3m4MGDVFVVUVpaGvbDgoiIiFx6FIplSiZuihscHAy2Ekw4tf3AZrNhtVrx+Xw4HI4LXkt/fz/9/f0UFhaG9e82NTWd19zNzc2YzWZKS0tDQvrpWkvMZjNpaWmkpaUB0NnZyZ49e6irqwvpXxYREZFLk3qKZUocDkdwp4qTWwpGR0dpbm4OGWsymcjKyqK3t5e2trZJ55us5eFsnW7Fd2BggPb29nOed2Juk8kUttJcXV0dNvbUtgs4cTMfhLZZiIiIyKVLK8UyJRNbmVVWVvLee++RnZ3N2NgYjY2NxMbG0tvbGzJ+zpw59PT0sG/fPjIzM0lKSsJsNge3LEtMTAzbfeJsxcbGEhcXR21tLWNjY8TGxjI4OEhjYyNxcXH09fWd8+fMyMigra2NXbt2kZ2dTSAQoL29nbGxsbCxu3fvxmq1kpycTFRUFD6fD5fLBTDpzYciIiJy6VEolimbPXs2VquVuro6jh49SlRUVLBnuLe3N6TdwGq1smbNGo4dO0Zrayvt7e2YzWYiIyNJTk4mJyfnnOswmUysWLGCiooKXC4XY2NjxMXFsWjRIvr6+s4rFGdlZQX3Xz5y5AhWq5UZM2Ywd+5cXn311ZCxTqeT1tZWGhsb8fl8WK1WEhISmD9/fliLiYiIiFyaTBf6pqrL0dKlSwP79u2b7jIue4cPH6a+vp5rrrkGu90+3eWIiIiIhDCZTB8EAoGlk51TT7FM2anbkwGMjIzgcrmIi4tTIBYREZHLjtonZMq6u7s5cuQIGRkZREVF4fF4aGxsZGxsjOLi4ukub9r09vbS2NjI8PAwKSkpOJ3O4BZxIiIicmlTKJYpi4mJISYmhqamJrxeL2azmcTERAoKCj6WrdcuB/39/ezevTu420RXVxf9/f0sWbJkmisTERGRs6FQLFMWExPDsmXLpruMS0pra2vY9mttbW309/cTHx8/TVWJiIjI2VJPscgF4Pf7w44FAoFJj4uIiMilR6FY5AKYrG0kPj6exMTEaahGROTjUVZWxrZt20KOlZeXs3Xr1mmqSOTCUSgWuQBmzJjBvHnziIyMxGw2k5KSwlVXXYXZrH/FROTj53a7qaqq0lM0Rc6DeopFLpBZs2aRk5ODz+cjKipqussREQPp7u6murqamTNnXvRdbxYsWMCCBQsu6nuKfBwUikUuIIvFgsWif61E5NI2sd/8hfhtln4jJlcK/ddbRETkAvD7/dTW1tLV1YXH48Hv9xMVFUVGRgaFhYVEREQA4HK5KC8vp7S0lJSUlJA5ysrK8Hg8bNq0KXisp6eHmpoa+vr68Pl82Gw24uPjKSwsJCkpifLyclwuFwBvvvlm8LrCwkKKioqoqqqiurqa9evX09TURGtrK6Ojo6xatYqUlBRaW1tpbm6mv7+f0dFRLBYLycnJFBUVndXuORPvf+ONNwaPDQ4OUl9fj9vtZnh4mEAgQGxsLE6nk5ycnJDrJ+rbsGEDzc3NuFwuvF4vsbGxFBcXk5aWFjK+oaGB9vZ2BgYG8Hq9WK1WUlNTmTNnDtHR0Wf5T0sknEKxiIjIBTAyMkJTUxMZGRlkZWVhNptxu93U1tbS19fHypUrpzzn4OAgu3fvxm63k5eXh91uZ3R0lJ6eHvr7+0lKSiI3Nxefz0d7ezvz5s3DZrMBhAXa/fv3ExERQX5+PkDw6aP19fXYbDZyc3Ox2+0MDQ3R2NjIzp07WbduHTExMVOu2+1243a7mTFjBtHR0fj9ftra2jh48CCjo6PMnj077Jry8nJMJhP5+fmMj49TX1/P3r172bBhQ0jYPXbsGElJSeTl5WGz2ejv76epqQm3283VV18d/PwiU6VQLCIicgFER0ezadOmkHYCp9NJTEwMNTU19Pb2TnlHmq6uLsbGxliyZMlpr01KSiI+Pp729nbS09NPu1pqtVpZtWoVJpMp5PjKlSuDq9gTZs6cyTvvvENdXR0lJSVTqhkgOzub3NzckGOzZs1i165d1NbWkp+fH9Z2YbPZWL58efB1amoqO3bsoLGxMeRpqevXrw+rNz09nV27dtHU1ERBQcGU6xUB7T4hIiJyQZjN5mDQCwQC+Hw+vF5vcMvG48ePT3nOiXsU2tvbg33A52rWrFlhgRgICZh+vx+v14vNZiM2Nvacaj51zvHxcbxeLz6fD4fDgd/vZ3BwMOyavLy8kNeJiYlYLBaGhoYmnfvk7zg+Ph6r1Upvb+851SsCWikWERG5YBoaGmhsbGRgYIBAIBBy7ly2S8vKyqKlpYWamhrq6upISkrC4XCQlZU15V1uTtcG0dfXR1VVFd3d3YyNjYWcO9ceXb/fT3V1Na2trQwPD4edn+y7mOy9rFYrXq835NjEThvHjx8P+0FBW9LJ+VAoFhERuQDq6uqoqKjA4XCQl5dHZGQkJpOJkZERysvLw0LyZE4dYzabWblyJb29vXR2dtLT00NVVRVVVVUsWbKE9PT0s67v1JYDgOHhYcrKyrBYLBQWFhIbGxscV1FRcc5P5dy/fz8dHR3k5uaSkpIS7PPt7Oykrq5u0msmW8U+VW9vL7t37yYmJobi4mKio6OD9e7fv/+svmOR01EoFhERuQBcLhfR0dGsWLEiJOB1dnaGjJsIiKeugAJ4PJ5Jw2FiYmKwp3h4eJh3332XysrKYCg+m0A5mba2Nvx+P8uWLSM1NTXknNfrPaft1nw+Hx0dHWRnZ4ftX9zd3X1OdU5oaWkhEAiwYsWKkJXlsbExrRLLeVNPsYiIyAUwWTANBALU1taGHJtoYzg1ILa0tDAyMhJybLLgHBUVhc1mCzk3sVo61WB4ujDd1NTE6OjolOb6qDknduc4H6ebu6amRqvEct60UiwiInIBZGZmcvToUfbs2UNGRgY+n4+Wlpaw1dbY2FgcDgeNjY0EAgESEhLo6+ujvb2dmJiYkD7ZmpoaOjs7g1ubAXR0dDA4OBiyy0JSUhIAR48eDW4HFx8fT1xc3BlrTktLIyIiggMHDuB0OrHZbPT09NDR0RFWy9myWCw4HA6am5uJiIggMTERj8dDY2Mj0dHRkwb9s5Wenk5dXR179uwhNzcXk8lEd3c3/f392opNzptWikVERC6A/Px85syZg8fj4fDhwzQ0NOBwOFi0aFHY2EWLFpGenk5LSwsVFRUMDw9TWlpKZGRkyLj09HTi4+NpbW2loqKCyspKvF4vCxcuDNmmLDk5meLiYoaGhjh48CD79++ntbX1I2uOiYkJtiLU1tZy9OhRvF4vq1evDqtlKhYvXkxOTg4dHR0cOnSI9vZ2iouLcTqd5zwnnPicS5cuJSIigsrKSqqrqzGbzZSWlk7aMy0yFSb9ugGWLl0a2Ldv33SXISIiIiIfI5PJ9EEgEFg62TmtFIuIiIiI4amnWERERC5b/f399Pb2YrfbcTgc57RjhggoFIuIiMhlqr6+niNHjgRvCExLS2PJkiXBJwGKTIV+nBIREZHLzvDwMJWVlSE7ZHR2dtLS0jKNVcnlTKFYRERELjtDQ0OTPnFvYGBgGqqRK4FCsYiIiFx2YmJiJm2TiI2NnYZq5EqgUCwiIiKXnaioKIqKikKecudwOMjKyprGquRypk50ERERuSzNmjWL5ORkjh8/TmRkZPAJfSLnQqFYRERELluJiYkkJiZOdxlyBVD7hIiIiIgYnkKxiIiIiBieQrGIiIiIGJ5CsYiIiIgYnkKxiIiIiBieQrGIiIiIGJ5CsYiIiFy2PB4PVVVV9PT0THcpcplTKBYREZEgt9vN1q1bcblcl3wdfr+f999/n97eXu1VLOdNoVhEREQuO4FAgP3792O321m2bBlmsyKNnB/9CRIREbkCrF+/HqfTGXLsrrvuwmQyTU9BH7OhoSGSkpJYvny5ArFcEPpTJCIi8jHavn07TzzxBL29vdNdyhUlNjaW2bNnExERMd2lyBXCMt0FiIiIXK5cLhfl5eWsWrWKvr4+GhoaGBkZISoqitmzZzNz5ky2b9/OP//zP3PXXXfh8/k4duwYvb29jI2NERsbi9PpJDc3N2zu9vZ2jh07Rl9fHwAJCQnk5+eTnp4eHFNVVUV1dTUA3d3deDwetm7dGjz/b//2bzz99NMA+Hw+amtraWtrY3h4GIvFgsPhYM6cOURHR5/xcwYCAWpra+ns7GRoaAifz4fdbictLY05c+Zgs9mCYz0eD2+++SaFhYUkJiZSXV1Nf38/VquV7OxsiouLw1av29vbqaqqYnBwEJvNxsyZM0lJSZm0lvHxcY4dO0ZLSwtDQ0NERESQnJxMUVERCQkJITXX19fjcrnweDwA2O12UlJSKCkp0eqyhFEoFhEROU+VlZWMjY2Rm5uL2WymsbGR8vJyYmJigmOam5s5fvw4SUlJwRXOrq4uPvzwQ4aGhpg7dy5wIrzW1dVRXV1NbGwshYWFwIkAvnfvXhYsWBAM0RkZGcH3iIuLo7e3l4ULF1JRUUEgECAqKgqbzYbP52Pnzp0MDw8zc+ZM4uLiGB0dpaGhgR07drBu3TqioqJO+/kCgQDHjh0jIyOD9PR0LBYLvb29uFwuenp6WLduXVjI7OzspKGhAafTycyZM4Mh32q1Mnv27OC49vZ29u7dS3R0NIWFhZhMJlwuF52dnWF1jI+Ps3v3bo4fP052djZOpxO/309jYyM7d+6ktLQ0eMNdTU0NVVVVzJgxg9zcXEwmEx6Ph/b2dsbHxxWKJYz+RIiIyBVvYGCAxx57jBUrVpCamordbqegoIBHHnkkuIoI8Nxzz2Eymdi+fXvYHJP17O7bt48nnniCm266iWuuuYarr76ae++9F7PZjNlsZvPmzfzzP/8zAGvXruWmm25i7dq1PP/88zidTv76179y00038fbbb3PfffeRnZ2N3W7nlVdeISYmhra2Nr75zW+yceNGrr32Wr74xS9y++2388EHHwAQHx9PdnZ28DqLxUJXVxd+v5/Fixdzzz33YDKZqKqqYmhoiNWrV2OxWPj+97/P5z73OW6++WZuuukmFi9ezLPPPhv2mZ944glMJhM1NTVs376d66+/nrlz53LTTTfR0tJCSUkJAwMDtLe3Ayd2g/jRj37EP/7jP7Jx40buuOMOHnnkEQYGBli5ciVxcXHU19cH5w8EAhw+fBibzcbatWuZPXs2BQUFrFmzBq/XG1ZPQ0MDbreb5cuXs3DhQpxOJwUFBVx99dXYbDaOHDkSHNve3k5sbCzLly8PrsYXFxezYcMGLBatCUo4/akQEZErXktLC88++yyf//zn+cIXvoDFYuGdd97hBz/4AQcOHOC1116b8pxVVVV84QtfICEhgbvvvpuioiI6Ojp47733qKyspKioiE9/+tNYrVZeeeUVvvzlL7NkyRKioqIoKSnB6/UyNjYGwA9/+EOSkpJ44IEH6O/vJyEhgby8PL7zne+QkpLCPffcQ3p6Oh988AG//e1vWbduHeXl5SErrnBilbm1tZXi4uKQNouWlhZSUlKIjIxk27ZtbN++neuuuw6n00l1dTVvvPEGd999N11dXdxzzz1hn3Xz5s1YrVb+6Z/+idHRUX7605/ymc98hg8//BCA48ePk5mZyZ133slLL73EVVddxR133IHVauUXv/gFq1atYseOHaSmplJfX4/f78disdDX18fw8DD5+fkhLRhWq5Xc3FwqKytD6mhubiY2NpaEhISw0OxwOHC5XIyNjREREYHFYmFoaIienh6Sk5On/M9XjEehWERErnizZs3C5XJhtVqDx7761a/y+OOP8+STT/L++++zfPnyKc352muvMTIywpNPPsnmzZtJTU0NOV9WVkZRURGdnZ288sorrFy5khkzZgDQ2tpKa2srtbW1AMTExPDb3/6WuXPnUltby9GjR4mLi+PVV18NacH4zGc+Q0lJCV//+tf5yU9+wi9/+cvguZGREXw+Hzk5ORQUFITU4vV66erq4rXXXmPGjBl8//vfD57Lzc1l06ZN/PjHP+app57iS1/6UthnTU1N5ZlnnqGuro7+/n4efPBBHnjgAR5//HE2b96Mz+fjjTfe4KWXXuLmm29m8+bNFBYWMmfOHG699VaWLFnC/fffH1yN9vl8wdAKJ26aO1VcXFzYscHBQcbGxs74Q4zX6yUqKori4mL27t3Lzp07iYyMJCUlhRkzZpCRkaHWCZmUQrGIiFzxTl6F9Pv9DAwMMDY2xqZNm3jyySfZs2fPlEPxxE1de/bs4fbbb590TCAQCHm9aNEi7HZ78PW7774LwIMPPhjWmgEEA3EgEGBgYAC32x1cRd6zZ09wnNvtDt50VlJSMmktDoeD/Pz8kGMjIyN4PB4CgQDXXHMN77zzDjU1NWHXfvGLX2T//v0kJiYyb948li5dyre//W1GR0eDY1555RUAHnroITo7O4M30y1cuJAbb7yRP/3pT8Gnzp36vZytQCBAfHx8sP96MhPfb1JSEhs3bqSrq4vu7m7cbjctLS3ExsayZs2akB+QREChWEREDOKXv/wlTz/9NBUVFYyPj4ecO378+JTnu/3223n22Wd5+eWX2bp1K6tWreLaa6/l9ttvn3Q3CTgRzh0OR/D1ROhdtmxZcAeIif8dGBjA5XLx+OOPs3379uCq6oS8vDzgxOrp3r17MZvN2Gy2SVdBrVYrPp8Ph8PB4OAgTzzxBC+99NKkT4ubbOs4u92O2WymtLQ0uAVaampqyNj6+nrMZjNz5swJu0lu3rx5/OlPf6K5uZnIyMiwzz84OBj2ngMDA2HHYmNjGR0dJTU19az2X7ZYLGRkZJCRkQGc6Ek+dOgQTU1NYT8giCgUi4jIFe/HP/4xDzzwANdccw33338/mZmZ2Gw2WlpauOuuu4Ih+UxBy+/3h7y22+387ne/46WXXqK7u5t9+/bx7W9/myeeeILf/e53wVaJCWazmaqqKlJSUsL21rVarcEdERwOBxEREezevZu7776bhIQEHn/8cQoKCjh27Bh+v58XXniBoaEhvF4v77//PiaTifj4+OD2bafKysqioaGBtrY2/v7v/56//OUv3HPPPaxbt46UlBTGxsbYtm0bP/nJTybdmSEiIgKTyRS2wnvyTYrnIiEhgcjISFwuFwUFBcEV/YkdJU6VnZ3NkSNHqKurmzTUjo6OBleKvV5vyG8IJt5v4pzIqRSKRUTkijex28Pf/va3kMD36quvhoybuCFr4tf8J6uvr5/0V+6FhYXcddddpKSk4HK5WLRoEY899hi/+tWvgP8/aM+ZM4eenh7efvttsrOziY6Oxu12A/Dee++RlZVFdHQ0VquVuXPnsmXLFoaGhnj66adZuXIlLpcLm83GggUL+Pd//3fsdjuHDh1iaGiI3Nxc/H4/fr+f5ubmYG0TYX/ivbdv387WrVv53Oc+xyOPPMLw8DAdHR0kJiaGBciTpaWl0dXVxa5du8jOziYQCDAyMhK8URBO9G2Pj4+H3RwHBHeFyM7Opru7O3jcZDIxf/589u3bx44dO8jJycFsNtPU1ITNZmN4eDhknry8PLq6ujhy5Ajd3d2kpqZisVgYHh6mu7s7uJoN8Pbbb5OUlERSUhJ2u53R0VEaGxsxm81kZWWd9rOKcanTXERErniTrXT6/X6eeuqpkHETewJv27Yt5PiLL75Ia2tryLGTw92E7OxsHA5HSKieuIksMjKS0tJSEhISaGxs5NChQ8H2g1mzZoW0FTidzmB7hMvlorq6GqvVyrJly3j99deDW6BN9PQ2NjYyMDCA1+vlwIEDwb8mQrHVamXNmjUUFRUBJ1okjh49Snt7ezA0TrYl24T09HQWLlyI3+/nyJEj1NbWYjabiY+PD4757Gc/C5zYSePk7/nw4cP8+c9/Zs2aNZPuApGRkcHSpUuxWCxUV1dTV1dHRkYGxcXFYWPNZjMrVqxg/vz5eL1eqqqqqKiooLW1lejo6JDdOPLz84N7Ph86dIiGhgYSExNZs2ZNSN0iE7RSLCIiV7y/+7u/4//9v//Hpz/9aW6++Wb6+/v53e9+F7byW1RUxKZNm3jmmWcIBAJcddVVlJeX88orr1BQUIDP5wuOffLJJ3n99de54YYbaG5uJhAIsHXrViorK3nooYeCK5YTD8V4+OGHufPOO4mMjGT+/PnMnz+fvXv3AgQf+nGy2267jS1btvDzn/+ce++9l6SkJJ555hn+93//l/z8fPx+f/A9AH70ox8xODjIjTfeGDz2xz/+Mfj3ERERLF68mGuvvZbXX3+d2bNns2zZMt566y2eeeYZ8vLygjfyrV+/Puw7zMnJIScnJ/h6on/55Pe79dZbeemllxgYGOCGG27g+eef5xe/+AWRkZH87Gc/o6ioKBjMT3Zy3+/JTp57gslkIi8vL/hDw+kUFBSE7cIhciYKxSIicsV78MEHCQQC/PrXv+ZrX/sa6enp3HbbbXzpS18K28ng+eef57777uOFF17g+eefZ+3atbz99tv8wz/8Aw0NDcFxn/3sZ2lra+Oll16io6Mj+GjnX/3qV3z5y18Ojlu9ejXf//73efrpp7n77rvx+/185zvfYf78+WesOT8/n7/97W9861vf4l/+5V+IiIhg9erVvPPOO9x7770htUzFb3/7Wx555BG2bt3Kb37zG2bPns2WLVuwWq2Tbsc2FS+88AKLFy/mueee44EHHiAmJoarr76a733ve6fdFeNiGB4exmQyhazGi5zKdK7bolxJli5dGti3b990lyEiIiIX0OjoKBUVFcF2k6ysLObOnavt2AzMZDJ9EAgElk52Tj3FIiIickWqqamhpaWFsbExxsbGaGpqCj4wReRUap8QERGRC66jo4OKigo8Hg/FxcUXfV/gQCBAS0tL2PG2trZJb+ITUSgWERGRC6qpqYnNmzezfft24MRWd2+88QaLFy++aDWYTCbsdnvYnsRn2npOjE3tEyIiInJB7dy5MxiI4cS+z1u2bAl5LPTFcOoOFSaTadLHaYuAVopFRETkAquurg47tnfvXvr7+0Mec/1xy83NxWKxhNxol56eftHeXy4vCsUiIiJyQS1btizs2C233EJKSspFryUrK0tPsJOzovYJERERuaBWrlzJd7/73WD/7qc//Wm+8pWvhD2gRORSon2K0T7FIiIiF5rf7+fYsWN4vV6cTidxcXHTXZLIGfcpVvuEiIiIXHAWi2XSRzqLXKr0ewwRERERMTyFYhERERExPIViERERETG8yy4Um0ymmSaT6UaTyXRB93UpKytj27ZtIcfKy8vZunXrOc+5bds2ysrKzrc0EREREfmYXXahWERERETkQtPuE2ewYMECFixYcM7Xb9y48QJWIyIiIiIfF60Un4HZbD6vjcbP5vpLqcVishYSERERESO4nFeKzSaTqQiYCdiBQaA2EAi0nDzIZDKlA/lAwv8d6gOOBQKB9o96g/LyclwuFzfeeCMAR48epba2lquvvpr4+PiQsT6fj9dff520tLTg4y23bdtGdHQ0paWlwXFdXV00NTXR29vLyMgIH374ISkpKRQVFYU9/rKsrAyPx8OaNWs4cuQInZ2djI+Pk5ycTElJCTExMcGxfr+f2tpaurq68Hg8+P1+oqKiyMjIoLCwkIiIiODYQCBAfX09LpcLj8cDgN1ux+VykZGR8VFfi4iIiMgV53JeKS4GMoEGoIoTn2WxyWSaOTHAZDI5gWWADaj+v79swDKTyZQ71TfMzs4GoLm5OexcW1sb4+PjzJw5M+zcyVwuFz6fj+zsbEpKSvjc5z5Hbm4uu3btoqenJ2z82NhYcCV5zpw5OJ1O3G4377//Pic/jXBkZISmpiYSExOZPXs28+bNIyEhgdraWvbu3RsyZ01NDRUVFURFRVFcXMzcuXPJyMggOzub9evXT/VrEREREbnsXc4rxTbgnUAg4AMwmUyNwNXAPJPJ1MqJkDwXGAJ2BAIB//+Na/i/cXNNJlPrxPVnIy4ujsTERFpaWiguLsZkMgXPuVwubDYbaWlpZ5xj4cKFIau2AHl5eWzfvp2amhpWrFgRcs7r9ZKfn09BQUHwmN1u58iR/4+9O49u67oPPP59IAGCAAiCOwmCBCGKixbKsixHS6TIYyseT1z3JG4ynUmnidu0aVP3uGnTJclJj93p6ZJOpsk4mUzWJm1Oc06a3eokTiLb0jimdomyRII7AYILuBMgAYLY3vxB4ZkgQIlaKYm/zzk8Ei7uu+8+kBJ/uPi93+1gcnKSsrIyAEwmE4cPH05L16irq8NsNtPT08Ps7Cw2mw0Av9+PxWLhbW97G6qqkkwmycnJYcuWLWt9KYQQQggh7iv3clDsWR7QqqoauxIYNwMlLF1bDjCQCoiv9IsrijIAbANKgdHrOanD4eDy5ctMTExoAXA4HGZ6ehqXy4VOp8Pn89HW1kY0GmV6eppXXnmFSCRCfn4+DQ0N2mpyPB7nF7/4BSaTCZvNxszMzFsX5/Fw7tw5Jicnyc/PJycnh9zcXNra2ti+fTsA8/PzlJWVEYvF6O3tZXR0lIWFBXJyciguLqaxsZGysjJ6enqYmZlhbm6OtrY2dDodIyMjzM7OotfreeCBB6ipqdHSNQ4fPqzNY3Z2Fo/Hw/T0NJFIBEVRsFqt1NfXU1lZmfbapNJNnnjiCdxuN6Ojo8TjcWw2G1u3bqWoqCitfyKRoLu7m5GRESKRCHq9nrKyMpqbm8nPz9f6rZbuUVJSQktLy03lfQshhBBCwL0dFM9naZu78qeJt65t7ir9zFmeu6rq6mo6OjoYGhrSguJUOkUqvSLF5/Oh1+vZtWsXOp0Or9fLyZMn6enpIRqNEovFaGtrIy8vL22Vtre3F7fbTU5ODvX19TidTvr6+jAYDMDSfvKwlMccSw4WcwAAIABJREFUi8V44403WFhYQKfTMT8/z+zsLKdPn+anP/0p27ZtIy8vj1gsph2nqiqzs7Mkk0lMJhN9fX3odDqSyWTG9Y6OjjI/P4/dbsdkMhGNRvH5fJw5c4Zdu3ZRXV2dccypU6cwGAw0NjYSi8Xo6+vj9OnTPPbYY9ockskkJ0+eZHp6mqqqKurr6wmFQng8HiYmJnjHO96B0WgEltI9urq6qKiowOl0oigK4XAYv99PMpmUoFjc1Y4cOUJNTQ07d+5c76kIIYS4ins5KF4XqRQJv99PPB4nNzeXoaEhLBaLlp6Qkkgk2L17t5b6UF5ezuc+9zlsNhvvfOc7sVqtLC4ukp+fT3FxMZOTk8RiMbq6urBarezYsYNIJEJDQwO1tbW8+uqraeOrqkpXVxehUAiHw8Hg4CBOp5N9+/ahqionTpzAYrEQi8XS8o9NJhPPPfcc09PTTE5OMjU1xfnz5/F4PDQ0NKSdY+VNerCU7nH8+HG6u7uzBsWFhYW0tLRojy0WC+fOnWN4eBincymVe2hoiOnpaerr69m6davWt7S0lNOnT+N2u3nwwQeB9HSP5STdQwghhBC3yr0cFFuytBVc+TPMW9dWAEyucmzoRk5cU1OD3+9nZGQEi8VCKBTKGqBVVVWlrWLOz8+j0+morKykqakJAJvNhslkIpFIAEvVKZLJJE6nk5GREe3YvLw8HA4HHo8n7RzDw8OUlJQwMTGBXq/nwQcf1HKd6+rq8Pl82oprSl1dHXl5eVRVVWnVJjweD263m/Hx8bS+ywPiRCKhzbO0tBSv16u9MVhu06ZNaY9LS0sBCIXeerlHR0dRFCUjCK+oqMBqteL3+1FVFUVRyM3NJRQKMT09TXFxccbrLMTd7Mknn1zvKQghhFiDezkorlMUxbvsRjs94ARiwBRLN9olAJeiKL5lN9rlAi4gTmawvCbl5eUYDAZthVhRlIzUCVgKZJdLBXjRaDStfWZmRktdSOXMWiyZMf/yEmywdBNeNBplYmKCy5cvk0gkiEajWlCsqioej4fm5ua041JpGMsVFi5VrIvF0u87XFxcpLOzk7GxMRYXFzOOW56WkWIymbKeb/l1h8Nh8vLy0Ov1GWMWFBQQDAaJRqNaasmZM2d44403MBqNlJSUUFFRkfGmQ4i7RSKRQKfToSiK/IwKIcQ94l4OiqPAAUVRfFce1wD5wEVVVRNAQlGUDqAFOLiinxl483oqTyyn0+morq5mYGCAQCBAaWlpxmoskFadAqC4uBi9Xo/X66Wrqwuj0cjAwADBYJDdu3cTDAZvZDqUlZXx6KOP0tPTg16vp6Kiglgsht/vzwiIAU6cOIHT6aSoqIi8vDwWFxfxer3odDptVTfl5MmTzM/P43K5sNlsWhDr8/kYHh5OS8tY7bpvVlFREY8++igTExNausfw8DAWi4UDBw5kDazF/WWtdbinpqZobW1l586dJBIJ+vv7WVhYwGw2s2XLFioqKggGg3R0dDAzM6O9od26dWtG8BoKheju7mZiYoJYLEZeXh52u52mpqa0T1BSN5j+x//4H7V64ouLizz22GOYTKZVc4onJyfp6+tjZmaGRCKB0WiktLSULVu2aG8kPR4Pfr+fubk5otEoer2e0tJSmpubM958ps7jdDpxu93Mzs6i0+moqqpi27ZtaW9e5+fnGRgYYGpqioWFBVRVxWKxUFdXR21t7S393gkhxL3iXg6K3UAxUMfS5h0h4PzyzTtUVfUoihIBNgONV5qDwJm1bN5xNTU1NQwMDBCPx69ZmzhFr9ezfft23G43AwMDqKpKOBzWagoHg0Gt6sL8fOZ9hMvTD1Lj6fV6YrEYBw4coLi4GJ/Px+joKHl5eVou8muvvZZ2XF1dHdFolP7+fuLxOAaDgaKiInbs2JEWGASDQYLBII2NjVq6R8rg4OCarnk1JpNJCzZWBrXz8/Pk5uamrWjn5uZmpHtcunSJwcFB6uvrb2ou4u6XqsNdVVVFdXU1Op2Oqakpent7CQQC7N27N62/x+MhFotRW1uLTqdjYGCAM2fOsHv3bi5evEh1dTVVVVWMj48zMDCg/XtJCQQCtLa2otfrcTqd5OfnEwgEGBgYYHp6mv3792cE0SdOnNDGSSQSGZ+gLOf1ennzzTcxGo3U1dVhMpkIh8OMjY0RiUS0n/2+vj6KiopwuVwYDAaCwSCDg4NMTU1x6NChjE99AoEAp06dora2lurqaqamprR/qw888IDWb2pqiqmpKSoqKjCZTMTjcUZHR7l48SKLi4sZaU1CCLER3HNBsaqqPiC16jvB0sYdV+vvB64ZAC/fdS5l586dq94xXlhYqO10t5pDhw5l7FJnNpvZunWrVvZMr9djMpm0c0WjUa1SxcGDB7VfvIuLi1qVC5PJpJ07Fotpq0kNDQ0Zv8wWFxe1vj7f0su2adOmjHnBWzvopay24js3N4fff1PvKbSApLe3Ny0fe3x8nEAggMPh0M4fjUYzfvmn0j1WpqKI+9P11OGGpSD6kUce0d5wlZaWcvz4cS0wTr25cjqd/L//9/8YGBhI+7fT1taG0Wjk4MGDacFtWVkZZ86cYXh4OOPNcEFBAbt27brmtUQiES5fvpz1k47m5ua0T18eeeSRjBtdKysrOXHiBIODg2n1y2HpjeyBAwe08odOp5NYLIbP50tbLXY4HNpNrymbNm3ixIkT9Pb2Ul9fL2kfQogN554Liu93qVJmnZ2d/PKXv8ThcJBIJPB6vVgsFmZnZ9P6Nzc3Mz09zdmzZ7Hb7RQVFaHT6VhYWGBsbAybzXbDpaAsFgsFBQX09vaSSCSwWCzMz8/j9XopKCggEAjc8HU6HA58Ph+9vb2Ew2FKSkq0kmx5eXlpaR+vvfYaRUVFWdM9slW/EPef5QGaqqrE43FUVU2rw708KK6pqUkLNq1WK7m5udonDssVFxdrn/rk5uZqn5A0NTWRTCbT3ngVFxeTk5PDxMRERlC8MkBdzcjICMlkkqampqypP8vfjKYC4uXXbLVa0ev1Gf8XpOa3sh54aWkp4+PjLCwsUFBQkDYuLJVHjMeXSrmXlZUxNTXF/Px8xlb2Qghxv5Og+C7U0NCAXq+nv78ft9tNfn6+liIwOzub9gtNr9dz4MAB+vr6GBkZwe/3o9PpMBqNFBcXXzU/cGZmhuHhYRKJRNad+BRFYc+ePbS3t+Pz+UgkEhQUFPDggw8SCARuKijW6XTs3btX27zD7/eTm5uL3W7P2Lyjvr6esbGxjHSPhoYG+cW9gXg8HrxeL3Nzcxm57CtvEF2ZbwtL/1aW/1wtb0+NkZubq6UudXV10dWV/YOobDedrrwRdjWpNKjUpx1XMzk5SXd3d9rNuCkrrxmyX3e2G13j8bj2b29hYSHjmGxjCyHE/U6C4tugpqZm1TzjlWkay3ePW66uro66urq0tsuXLwNk/GLPycmhsbGRxsZGrmb5vKampjh16pRWYm1wcJBt27ZllFPLz89n9+7dGWMtLyuXcrV0k2ypJqmtpa9Vb3jz5s1rXoUT96f+/n7a29spKyvD5XJhNBpRFIVIJEJbW1tGkLxa6s/VbgJdOUZ9fb22jfpK2Sq4rExzuFmzs7OcPHlSu0nQZDJp5zh//vxN3eR6/vx5xsbGcDqdlJSUaNczPj5Of3//rbsIIYS4h0hQfBfKtktbJBLB5/NRUFCQUertRni9Xi0gTunr68PpdN7yX+5C3Cyfz4fJZGLPnj1pgd/Kutq3QmrFV1GUVYPiWzF+IBC46upyqrrLnj170laAE4nETa3kxmIxxsbGcDgc7NixI+25yckbqlIphBD3BQmK70KTk5N0dHRQVVVFfn4+4XBYC2Jv1S5ukUgkoy21bfTdGBSHQiEGBwcJh8PYbDZqa2ulFNsGkm0FVFVVent7b/m5CgsLKSgowOPx4HQ6M1ISUvm9N/rzZ7fbcbvddHd3U15evmqVitVWfXt6erKuEq/VauOmKnwIIcRGJUHxXchsNmM2mxkcHNSqUdhsNjZv3nzLVq5SN9QsV1JSkrXe8nqLRCKcPHlSq4wxMjLC5OQkb3vb2255TWRxd0oFkqdOnaKqqopYLMbw8PBtq5Cwa9cuWltbOXbsGLW1tRQUFJBIJAiFQoyOjrJly5Y1l2JcyWg0sm3bNi5dusSxY8dwOByYTCYikQh+v5+dO3ditVqprKykv7+fU6dO4XQ6URSFyclJgsFg1vSNtcrNzaWsrIyhoSFycnKw2WzaG2+TySQVXYQQG5YExXchs9nMww8/fFvP4XK5CIVCDA8Pk0wmKSoqYuvWrbf1nDdqdHQ0rVQcLH1sPjMzI9s+bxD19fWoqorP5+Py5cvaRhrZ6nDfClarlUOHDtHT04Pf78fr9ZKTk4PJZKKmpiZjk5vrlSon19fXx8DAAMlkUtu8I/XGtLi4mN27d9Pd3U1nZyc5OTmUlpayf/9+3njjjZs6/65du3C73YyNjeHz+bS8ZUVRaGtru6mxhRDiXqXczMdw94vdu3erZ8+eXe9prItQKKRVlbhbV127urro7u7OaH/44YeprKxchxkJIYQQ4l6kKMo5VVUzKwgAUp19gzObzVit1rs2IIalVI+V80uVZRPidgmHwxw5cmTVsmxCCCHuLxIUi7tecXEx27Ztw2AwoCgKFouFBx988JZU4RBio0smk4yNjTEwMMDMzMx6T0cIIdaN5BSLe4LL5cLhcLCwsIDFYpEtaIW4BRKJBOfOnWNsbAxYqkzR1NSUsV28EEJsBBJZiHuGXq/HarVKQCzELTI6OqoFxLBUbq67u1vbdU8IITYSWSkWQmwo8Xic3t5eJiYmCIfDxONx8vPzqaqqorGxcU11ukdGRhgYGCAYDKKqKgUFBWzevJmqqqq0fkeOHKGmpgaHw0FnZyfBYBC9Xo/L5WLz5s3EYjE6Ojrw+/0kEglKS0vZsWNHWmnESCRCX18fk5OTLCwskEgktCoY9fX1afn2Pp+PtrY29u3bRyAQwOPxEIlEyM/Pp6GhIaOMXG9vL93d3YTDYa1GeUFBAY2NjbJaLITYcCQoFkJsKKlNKqqqqqiurkan0zE1NUVvby+BQIC9e/de9fjOzk56enooLy+nqakJRVEYHR3l7NmztLS0ZGzPHggE8Pv9OJ1OHA4HIyMjuN1udDodQ0ND5Ofn09TURCgUYmBggAsXLrBv3z7t+GAwiN/vp7KyErPZTDKZZHx8HLfbTTgcztiVLjXHRCKB0+lEp9Ph9Xppa2vDbDanlTGcmZlBURTKy8vR6/VEIhEmJye5fPkydrv9qjvuCSHE/UaCYiHEhmIymTh8+HBaGk6qbnBPTw+zs7PYbLasxwYCAXp6emhoaKC5uVlrd7lcnDlzBrfbjcPhSNulLhgMcuDAAa1aSm1tLUePHqW9vR2Xy8X27dvTztHf38/8/DwWiwVY2lTnscceS+uzadMmLly4wODgII2NjRmb7iQSCQ4ePKhdo91u55VXXsHj8aQFxU8++SQXL17E7/cDSznFb3/72xkaGqK/v5+Wlpa1vahCCHEfkORMIcSGotPptGBRVVVisRjRaFTbLfJqFRiGhoYAcDgcRKPRtK+Kigri8XjG8cXFxWnlA3U6nfbY5XKl9S0pKQFIy+ldns6RTCbT5quqKoFAIGOeLpcrLeg3Go2YzWbm5+fT+hkMBh566CH27NnDli1beNvb3saWLVuwWCxSiUIIseHISrEQYsPxeDx4vV7m5uZYuYFRLBZb9bhUUHm1XfQWFxfTHptMpow+er0+63Op9uVbLauqSm9vLz6fL+sNcNnmm+2cBoOBhYWFtLZAIEBXVxeTk5MkEolrjiGEEPczCYqFEBtKf38/7e3tlJWV4XK5MBqNKIpCJBKhra0tI0jO5mp5xwUFBWmPr7Yxzlo2zWlvb2dgYAC73U5DQwN5eXkoikIgEMDtdmed72rjLu+7sLBAa2srubm5NDY2YrFYtFXp9vZ24vH4NecmhBD3EwmKhRAbis/nw2QysWfPnrTgcXx8/JrHpm48y8/P13J+b7ehoSFKSkp46KGH0trD4fBNjTs6Oko8Hufhhx+mtLQ07bloNCqlD4UQG478ryeE2FCyraKmUhSuxeFwAKy6QrsydeJWUBQl41yJRIK+vr6bHjebwcHB23IdQghxt5OVYiHEhmK323G73Zw6dYqqqipisRjDw8NrWhm12Ww0NTXR1dXF8ePHsdvtGI1GIpEIgUCA8fFxnnzyyVs636qqKrxeL+fOnaOsrIzFxUUGBwcxGAw3NW55eTk5OTlcuHCBuro6DAYD09PTjI2NaaXfhBBiI5GgWAixodTX16OqKj6fj8uXL5OXl4fdbqe2tvaqN9ClNDY2UlhYyMDAAP39/SQSCQwGA1arNaO82q2wbds2cnNzGRkZwe/3k5+fj9PpxGazceLEiRse12w2s2fPHjo7O+nt7UVRFIqKinj729/OpUuXbjo9Qwgh7jXKWm4qud/t3r1bPXv27HpPQwghhBBC3EaKopxTVXV3tuckp1gIIQSwtNvfyrJtQgixUUj6hBBCbHDxeJyOjg6GhoZQVZWKigq2b9+esVOeEELcz2SlWAghNrj+/n68Xi+JRIJkMsno6ChdXV3rPS0hhLijJCgWQogNbnR0NGvbyl3uhBDifiZBsRBCbHB5eXkZbXq9XjbwEEJsKPI/nhBCbHC1tbUZm3m4XK41bUMthBD3C7nRTgghNji73U5OTg4jIyMkk0kqKyuprq5e72kJIcQdJUGxEEIIKioqqKioWO9pCCHEupH0CSGEEEIIseFJUCyEEPe5cDjMkSNHpMyaEEJchQTFQgghhBBiw5OgWAghhBBCbHgSFAshhBBCiA1Pqk8IIcQ9Kh6P09vby8TEBOFwmHg8Tn5+PlVVVTQ2NpKTk3PNMUZGRhgYGCAYDKKqKgUFBWzevJmqqqq0fkeOHKGmpgaHw0FnZyfBYBC9Xo/L5WLz5s3EYjE6Ojrw+/0kEglKS0vZsWMHRqNRGyMSidDX18fk5CQLCwskEglMJhM1NTXU19en1UX2+Xy0tbWxb98+AoEAHo+HSCRCfn4+DQ0N1NTU3LoXUgghkKBYCCHuWZFIhMHBQaqqqqiurkan0zE1NUVvby+BQIC9e/de9fjOzk56enooLy+nqakJRVEYHR3l7NmztLS0UFdXl9Y/EAjg9/txOp04HA5GRkZwu93odDqGhobIz8+nqamJUCjEwMAAFy5cYN++fdrxwWAQv99PZWUlZrOZZDLJ+Pg4brebcDjMjh07ss4xkUjgdDrR6XR4vV7a2towm80UFxffktdRCCFAgmIhhLhnmUwmDh8+nLYdc11dHWazmZ6eHmZnZ7HZbFmPDQQC9PT00NDQQHNzs9bucrk4c+YMbrcbh8NBbu5bvyaCwSAHDhygqKgIWNoJ7+jRo7S3t+Nyudi+fXvaOfr7+5mfn8disQBQUlLCY489ltZn06ZNXLhwgcHBQRobG9NWlgESiQQHDx7UrtFut/PKK6/g8XgkKBZC3FKSUyyEEPconU6nBYuqqhKLxYhGo5SVlQEwMzOz6rFDQ0MAOBwOotFo2ldFRQXxeDzj+OLiYi0gTp0/9djlcqX1LSkpASAUCmlty9M5kslk2nxVVSUQCGTM0+VypQX9RqMRs9nM/Pz8VV4ZIYS4frJSLIQQ9zCPx4PX62Vubg5VVdOei8Viqx6XCipfe+21VfssLi6mPTaZTBl99Hp91udS7dFoVGtTVZXe3l58Pl9asHy1+WY7p8FgYGFhYdV5CyHEjZCgWAgh7lH9/f20t7dTVlaGy+XCaDSiKAqRSIS2traMIDmbq+UdFxQUpD1efiPcSld7LqW9vZ2BgQHsdjsNDQ3k5eWhKAqBQAC32511vquNu5ZrE0KI6yFBsRBC3KN8Ph8mk4k9e/akBY/j4+PXPNZsNgOQn5+v5fzebkNDQ5SUlPDQQw+ltYfD4TtyfiGEuBrJKRZCiHtUtlXUVIrCtTgcDoBVV2hXpk7cCoqiZJwrkUjQ19d3y88lhBDXS1aKhRDiHmW323G73Zw6dYqqqipisRjDw8NpN6atxmaz0dTURFdXF8ePH8dut2M0GolEIgQCAcbHx3nyySdv6Xyrqqrwer2cO3eOsrIyFhcXGRwcxGAw3NLzCCHEjZCgWAgh7lH19fWoqorP5+Py5cvk5eVht9upra296g10KY2NjRQWFjIwMEB/fz+JRAKDwYDVas0or3YrbNu2jdzcXEZGRvD7/eTn5+N0OrHZbJw4ceKWn08IIa6HIjcrwO7du9WzZ8+u9zSEEEIIIcRtpCjKOVVVd2d7TnKKhRBC3BPi8TjhcFgqTwghbgtJnxBCCHHX83q9dHd3E41GsVqtbNu2TXa0E0LcUrJSLIQQ4q42NTXFpUuXiEQiJJNJZmdnuXDhAvF4fL2nJoS4j0hQLIQQ4q42Pj6ekTIRDoeZnp5epxkJIe5HEhQLIYS4q6W2jF4pN1cyAIUQt44ExUIIIe5qdrudvLy8tLby8nKKiorWaUZCiPuRvM0WQghxVzOZTOzduxev10s4HKaoqIi6urqsO/oJIcSNkqBYCCHEXc9qtdLS0rLe0xBC3MckfUIIIYQQQmx4EhQLIYQQQogNT4JiIYQQQgix4UlQLIQQQgghNjwJioUQQgghxIYnQbEQQgghhNjwJCgWQgghhBAbngTFQgghhBBiw5OgWAghhBBCbHgSFAshhBBCiA1PgmIhhBBCCLHhSVAshBBCCCE2PAmKhRBCCCHEhidBsRBCCCGE2PAkKBZCCCGEEBueBMVCiHuWoig888wz6z0NIYQQ9wEJioUQQgghxIaXu94TEEKIG7WwsEBOTs56T0MIIcR9QFaKhRD3lIWFBeLxOABGoxG9Xr/OMxJCCHE/WFNQrChKjaIoTymKUnIrT64oyn5FUQ6vaNupKMpTNzHmYUVR9t/87ITYGObm5vjUpz7Fnj17KC0tJS8vj82bN/Pxj3+ccDis9Tt27BiKovDNb36TL37xizQ1NWE0GmlpaeHf//3fAbh06RJPPPEEVquVkpISnnvuOWKxWMY5e3p6+M3f/E2qqqowGAzU1dXxZ3/2Z4RCobR+zzzzDIqiMDExwW//9m9TUVGB2WxmaGgIWD2n+LXXXuPJJ5+kpKQEo9HIpk2b+NCHPsTk5KTW54tf/CKPP/441dXVGAwGqqqq+G//7b/h8Xgyxkud58SJExw6dAiz2UxJSQm/8zu/w/z8fEb/N998k/e85z3a+bdu3co//MM/kEgk1vQ9EUIIcedJ+oQQG9zw8DBf+9rX+LVf+zXe//73k5uby/Hjx/mHf/gHLly4wM9+9rO0/v/7f/9vZmZm+J3f+R2MRiMvvvgi73nPe/jud7/L7/7u7/Jf/+t/5d3vfjc///nP+fznP095eTmf+tSntOPPnTvHo48+is1m4/d+7/eorq7m4sWLvPjii7zxxhscP348Y/X3ne98J5WVlfzlX/4loVAIi8Wy6vV8+ctf5iMf+QjV1dV85CMfwel0Mjg4yJEjRxgaGqK0tBSAz3zmM+zdu5fnnnuO4uJiLl++zNe+9jVeffVVLl26RElJ+hpAW1sbv/Irv8Jv/dZv8f73v59jx47x9a9/HZ1Ox1e+8hWt39mzZzl06BB6vZ5nn32WyspKjhw5wl/8xV9w8eJF/vVf//WGv1dCCCFuI1VVr/kF1ABPASVr6b/WL2A/cHhFmw7Q3cSY1338Qw89pAqxUS0uLqrRaDSj/VOf+pQKqKdOnVJVVVVfe+01FVDtdrs6Ozur9bt48aIKqIqiqN///vfTxti1a5daWVmZ1rZjxw61qalJDQaDae0/+MEPVED9xje+obV98IMfVAH1N37jN7LOHVA/+MEPao99Pp9qMBjULVu2qDMzMxn9E4mE9vf5+fmM548ePaoC6qc//emM8yiKop48eTKt/V3vepeam5urzs3NaW379+9Xc3Jy1IsXL2ptyWRSfd/73qcC6tGjR7Ney3r58pe/rH7mM59R4/H4ek9FCCFuO+Csuko8eNflFKuqmlRVNblexwux0RgMBm1lNh6PMzMzw+TkJIcPL2U2nTp1Kq3/M888Q2FhofZ4x44dWK1W7HY7Tz/9dFrfAwcO4Pf7tRSDS5cu8eabb/L+97+fxcVFJicnta8DBw5gNpv5+c9/njHHP/3TP13TtXz3u98lGo3y/PPPY7PZMp7X6d76L89sNgOQTCYJBAJMTk7ywAMPUFhYmHHNAPv27WPPnj1pbY8++ijxeFxLuRgfH6e1tZVf/dVfZceOHVo/r9fLd7/7XQB++MMfrula7oQvfOELfPSjH2X37t1yw6IQYsO73vQJnaIoTSytHOcB80CvqqrDyzspilIJ1AOp35wBoE9VVf+1TqAoyk6gRlXVI1cebwE2A8dVVQ2u6KsHHgfGVVU9c6XtMBBWVbV1Wb8yoBawAUYgAcwCPaqqTi0fs7W1lXA4zIEDB+jo6GB8fJxkMklxcTEtLS3aL9KUaDRKV1cXfr+faDSKwWCgsrKSpqYmDAaD1i+ZTNLT08Pw8DCRSASdTofRaKS8vJytW7de62UR4rb64he/yJe+9CXa29tJJtPfU87MzKQ93rRpU8bxRUVF1NTUZG0HmJqawmKx4Ha7AXj++ed5/vnns85lbGwso62xsXFN19HT0wPAgw8+eM2+r776Kv/9v/93Tp06RSQSSXtu5TVD9utOpVhMTS39NzIwMADAtm3bsp5TURT6+/uvObc74ejRo3z84x/nRz/6EYcOHVrv6QghxLq73qB4C5ADeK48rgF2KYqiU1XVB6AoSh3QwlLA3L2s38OKorypqqr3Os85xFJQ7AA6VjxXxVK6hO8aY9QA+itjLbAUGDuBfYqitD700ENpnROJBK2trdhsNpqbmwmHwwwMDHD69GkeeeTPEZ7GAAAgAElEQVQRFEUBIBaL8ctf/pJQKERtbS2FhYUEAgE8Hg+Tk5McPHiQ3Nyll/jSpUsMDg7icDgoLi5GVVVCoVDajT9CrId//Md/5GMf+xiPP/44zz33HHa7HYPBwPDwMM8880xGkLzaiuLVVhqXPrF668+PfexjPPHEE1n7pgLp5Uwm05quZa3OnDnD448/zubNm/n7v/97XC4X+fn5KIrCf/kv/yXjmmFt13cv6ejo4KWXXuLRRx9d76kIIcRd4XqDYgNLK7YxAEVRvMAhYJuiKCMsBahbgRDwuqqq8Sv9PFf6bVUUZSR1/FqoqjqnKMosUK0oiltN/+1TA0SB8WsMc1FV1bTbvq/M/RGgYWXnaDRKfX09mzdv1try8vLo6OhgcnKSsrIyAPr6+giFQrS0tFBXV6f1LSws5NKlS/T29tLc3AzA6Ogo5eXla1rBEuJO+ta3vkVdXR0//elP09ILXn755Vt+roaGpX9uOTk5WnrGrZRaUW5ra7vq6vK3v/1tEokEP/3pT3G5XFp7KBTKukq8Vqmx2tvbsz6vqmrWFef18Nxzz633FIQQ4q5yvTnFnuUB7ZW/e1lahS0BylhaSR5IBcRX+sWBAZaC8NIbmOcQS6u7ZakGRVFMQDEwfK0c4uUBsaIouYqiGACVpRSKjGUpRVEyfnGl7lhfXn5pdHQUg8GA0+lM6+t0OjEYDPj9b2WL6PV65ubmmJubu9a1CnFH5eTkoChK2mpnPB7n7//+72/5uR588EG2b9/Ol770paxpBPF4nOnp6Rse/73vfS8Gg4G/+qu/IhgMZjyfusbUqu/KFd6//du/zbpKvJpU2sVHPvIRSktLqampwWg08uMf/5gzZ85knBfgPe95T9oY3/nOdzhw4AAFBQWYTCb27NnD9773vYxzpcrCvfrqq+zbtw+TyYTD4eDTn/40sJTy8aEPfYjy8nJMJhO/8iu/wsjISNoYIyMjfOxjH2Pnzp0UFRVp5eI+/elPZ5SL++Y3v4miKLz66qt85jOfob6+nry8PBobG/nnf/7nNb9GQghxr7jeleLMgpyQivJMy8bLFvml2sxZnruWYZZWoB28tSrsuPLn0LUOVhTFDDSzFFRfs9J/Xl5e2ooZoN2ItLzmajgcxmazaekUy86HxWIhEAhobdu2bePChQscO3YMk8lEaWkpFRUVVFRUZBwvxJ303ve+l0984hP8p//0n3j66acJBoN8+9vfvi2bYiiKwre+9S0effRRduzYwW//9m+zbds2wuEwvb29/OAHP+Dv/u7vstYeXguHw8HnPvc5nn32WVpaWvjABz6A0+lkeHiYH//4x/zTP/0TO3fu5D3veQ+f/exnede73sWHP/xhDAYDv/jFL3jzzTe1N8BrkVpVbmpq4vd///fJzc3lhz/8Ia+88gr79+/nL/7iL6isrNRusmtpaeGxxx7Tjv/Upz7F3/zN3/DEE0/w13/91+h0On74wx/yvve9jy984Qs8++yzaee7cOECR44c4cMf/jAf+MAH+Ld/+zc+/vGPYzQa+ed//mfq6up44YUX6O3t5cUXX+QDH/gAR48e1Y5/8803+f73v8/TTz9NfX09sViM//t//y8f//jH6e/v58tf/nLGNX7yk59kYWGB3/u93yMvL4//83/+D8888wybN2/m7W9/+3V9f4QQ4m52T9QpVlU1qijKOFCpKErulZVnBzCvqurs1Y5VFCWXpdJvOSytVgeB1Cr2ZrKsXF8tSL3R3MHKykoOHz7M2NgYU1NTTE5OMjg4SHFxMfv27csIwoW4U/7sz/4MVVX5+te/zh/90R9RWVnJr//6r/Nbv/Vbt+Um0J07d3LhwgX+7u/+jpdeeokvfelLFBQUUFdXxzPPPJMWNN6Ij3zkI9TX1/M//sf/4MUXX2RxcRG73c5jjz2m3Qz49re/ne9///v89V//NX/5l39Jfn4+hw8f5vjx47zjHe9Y87lSqVQf/ehHeeSRRwB49tln+fCHP8xXv/pVPv/5zxOJRLTzvvvd79aOPX/+PH/zN3/DJz7xCf72b/9Wa3/uued497vfzSc+8Qk+8IEPUFBQoD136dIlTpw4oVXB+NCHPoTT6eSP//iP+cM//ENefPHFtPl99rOfpauri6amJgDe8Y530N/fn/b/zUc/+lF+4zd+g6997Wu88MILVFVVpY2xuLjImTNntBuH3/ve97Jp0ya+8IUvSFAshLi/rFarbfkXb9Up3pzluYYrz5UD9it/d2Xp57ryXNWytmx1incCT2U5vvLK8bUspU2sNp/DwP4sx9Vk6XsAeGp5neI33nhD/cUvfpFR1y4UCqkvvfSS2tnZqbW99tpr6ssvv6wmk8m0vslkUn355ZfV1157LWOc5To6OtSXXnpJHR4evmo/IcTdLxaLqdPT0+rExIR67NgxFVBffPFFVVVVdWBgQAXU559/Xuv/J3/yJ6qiKGpnZ6c6MTGR9vX1r39dBdSf/exnWn9A3b9/f8Z5f/VXf1UF1J6enrT2VN3nI0eOrDrnxcVFdWFhQf3ud7+rAupLL72kPfeNb3xDBdSvfOUrGcdt375dlfruQoh7EVepU3y9K8V1iqJ41bdutNOzVMUhBkyxlKOcAFyKovjUt260y70SFMeBGy23MM7STXUOltI4VNaQOnGlH0Da8u+VMm2Zt7lfh8rKSnp6ehgcHEzLK/Z6vUSjUa1NVVXi8XjGx9FWqxUg6za4Qoh7w/WUs1vO7Xajqqp2M242K8vTrVYOD0i7YXB5e6pcHCyVhnzxxRf5l3/5F9rb24lGo9ec72ql6Lze6y0kJIQQd7frDYqjwAFFUVIl0GqAfN6q7pBQFKWDpZJsB1f0MwNvqtdReWI5VVWTiqIMsxRcFwKTqqpGrnEYwDSwyFLli3wgAlhZCq6DV/5+Q+rr6xkZGeHSpUvMzs5qJdl8Ph8Wi0WrXhGPx/n5z39OZWUlhYWFGAwGwuEwXq8XvV5PRUXFjU5BCLGOrlXOLhAI8MMf/pDTp08DsLCwoB2rqiqKovDTn/501XJvK+sdX60s3GrPqctSvv78z/+c//k//ycf/OAH+eQnP0lFRQV6vZ7Tp0/zR3/0R9dVim75uEIIcT+43qDYzVLqQh1Lm3eEgPPqss07VFX1KIoSYSlfN1UTKQicUdewecc1+FgKinO5dm3i1HxiiqKcZOlGPRdLK8YB4BRLqRg3HBTr9XoOHDigbd7h8/nIy8vD6XTS1NSk1SjOyclh06ZNTE5OMjExQSKRIC8vj4qKChoaGjAajTc6BSHEOrpWObuf/OQn/OM//qPWfvLkSWKxGHq9noaGBl5++WVqa2vZsmXLHZnvN77xDf7Df/gPfPOb30xrP3/+/B05vxBC3M3WFBSrSxtzpILQCaDrGv39wDUDYHXZrnPL2tqAtlX6B4Aj1xjzaJa2IHAyS/dpoG337t1aw/79+7OOazKZeOqppzLaDQYDLS0ttLS0rDonnU53x37pCSHunGuVs+vs7Ezr//rrr9PT08PWrVv5zd/8TT7/+c/zyU9+ku9973sZK7JjY2O3/FMkRVEy0rXm5ubSAnchhNio7onqE0IIcTe63nJ2qqpqKRQPP/wwL7zwAi+88AI7d+7kfe97H3a7ndHRUc6dO8dPfvKTjJzfm/X000/z1a9+lV//9V/nscceY2xsjH/6p3+ivLycvr6+W3ouIYS410hQfIdNT08TDAYxmUyUlZVJjWIh7mHXKmdnMpkIh8Na/+rq6rQb155//nl2797Niy++yOc+9zlCoRDl5eVs3749o7zarfDZz34Wi8XC9773PX784x/jdDp59tln2bVr102XwhNCiHudIjdLwO7du9WzZ8/e9vO43W76+vq0j1qrq6vZuXOn1CgW4j51/vx5XnjhBU6ePMlTTz3Fn/7pn0oqlRBCrCNFUc6pqro723OyUnyHBAKBtIAYYHh4GLvdTmVl5TrOTAhxu+zatYvvfOc7zM7OUlpaelt2CbyTFhYWGBsbw2q1UlxcvN7TEUKIW0qWKO+Qubm5rCWM5uay7YgthLhf5OfnU1VVdc8HxG63m/e///1s2rSJAwcO8Oqrr0pZNiHEfUWC4jvEarVmzR9evoWrEELcjYLBIH/wB3/Aj370I1RVxe128653vYv29vb1npoQQtwyEhTfIVarlc2bN6cFxg6Hg/Ly8nWclRBCXJvP5+PYsWNpbYuLi3R3d6/PhIQQ4jaQnOI7qLm5mfLycoLBIGazmdLSUqk+IYS465nNZm3HzuVsNts6zUgIIW49WSm+w4qLi6mrq5NybEKIe0ZdXR3/63/9r7S2p59++qqbFgkhxL1GVoqFEEJc03/+z/+ZhoYGuru7qaioYNeuXZSVla33tIQQ4paRoFgIIcQ15efns3//fvbv37/eUxFCiNtC0ieEEEIIIcSGJ0GxEEIIIYTY8CQoFkIIIYQQG54ExUIIIYQQYsOToFgIIYQQQmx4EhSLDcnn83HkyBGmpqZu6bitra0cPXo0ra2trY0jR47c8JhHjx6ltbX1Zqd2R9xNc832vRBCCCFWI0GxEEIIIYTY8KROsRC32Y4dO9ixY8cNH//oo4/ewtncXnfTXPfu3bveUxBCCHEPkaBYiNtMp7u5D2Ru9vg7ab3nqqoqyWSSnJycdZ+LEEKIe4sExWJDSyaTdHV14fP5WFxcxGKxsHnzZqqrq9P6+f1++vr6CAQCABQWFlJfX09lZeU1z9HW1obP5+Opp54CwO1209vby6FDh7BarWl9Y7EYP//5zykvL+fhhx8GlvJ0TSZT2k5iExMTDA4OMjs7SyQSIScnB5vNRkNDAyUlJWljtra2Eg6HOXDgAB0dHYyPj5NMJikuLqalpQWz2az1jcfj9Pb2MjExQTgcJh6PMzc3x/T0NL/2a7/G/Pw8Ho+HSCRCfn4+DQ0N1NTUaMdnmyuAx+Ohv7+fhYUF8vPzcblc5Obm0tbWxv79+9PmHIvF6O3tZXR0lIWFBXJzcykrK6O5uRmTyaT18/l8tLW1sXfvXmZmZvD5fCwsLPDAAw9QU1OjXffhw4e1Y2ZnZ/F4PExPTxOJRFAUBavVmvV7mfq+PfHEE7jdbkZHR4nH49hsNrZu3UpRUZHWV1VVent7GR8fJxQKEYvFyMvLo7y8nObmZgwGwzV+SoQQQqw3WUoRG5rb7WZkZIS6ujqamppIJpOcP38en8+n9fF4PJw5c4ZoNEpjYyONjY1Eo1HOnDmD1+u97nM6HA4AhoaGMp4bHR0lmUymBZrZ+Hw+YrEYDoeDlpYWNm3axNzcHCdOnGB6ejqjfyKR0G6Aa25upq6ujqmpKU6fPo2qqlq/SCTC4OCgFmBv27aNgoICRkdH+dGPfsTQ0BBOp5MtW7agKAptbW1Zz7dcb28vly5dIjc3ly1btlBTU0NfXx8DAwMZfWOxGG+88QYej4fy8nK2b9+Oy+VicnKS119/nYWFhYxjOjo6GBkZwel0sn37diwWy6pzGR0dZX5+Hrvdzvbt22loaNC+l8PDw1mPOXXqFJFIhMbGRhoaGggGg5w+fZp4PK71UVWVvr4+LBYL9fX1bN++nbKyMnw+H62trSSTyau+RkIIIdafrBSLDS0ajXLo0CH0ej0ATqeT48eP097ejt1uJ5lM0tHRgdls5uDBg+TmLv2Tqaur4/jx43R0dGC327Xj16KgoACbzcbw8LAWXKb4fD4MBgPl5eVXHeOBBx4gJycnrc3pdHLs2DF6enrYs2dPxnXW19ezefNmrS0vL4+Ojg4mJycpKysDwGQycfjw4bTUg5ycHAYHB5menqalpYXi4mIA7HY7r7zyCh6PR2tbKRaL0dXVhdVq5cCBA9q4tbW1vPrqqxn9u7q6CIVCHDx4MG0VvaamhmPHjtHV1cXOnTvTjkkkEhw6dCjj9cimsbExo5/L5eL48eN0d3dnfEIAS58KtLS0aI8tFgvnzp1jeHgYp9MJLKWNvPOd70wb2+l0UlRUxMWLF/H7/djt9mvOTwghxPqRlWKxodXV1aUFtHq9HqfTSSwWY2pqiomJCRKJhPZxf0pubi4ul4t4PM7k5OR1n9fhcBCJRJiYmNDawuEw09PTVFdXXzMfdnnwFY/HiUajKIqCzWZjZmYmo7+iKGzatCmtrbS0FID5+XmtTafTaedWVZVYLEY0GsVqtVJRUaGljwAYjUbMZnPa8StNTEyQTCZxOp1p15SXl6etmC83PDxMSUkJRqORaDSqfeXk5FBUVJT2eqXU1dWtKSCG9NctkUgQjUZJJBKUlpYyPz+ftvqbstrrFgqFso69/HVL9c32PRFCCHF3kZVisaFl+6i9oKAAQMupXd6Wrd/K4Ggtqqur6ejoYGhoSFsVTqVTZAsWVwqFQnR2djIxMUEsFrtm/7y8vIxAO/VmYOXxHo8Hr9fL3NwcqqoyMTHBwMAAzc3NGX0NBkPWlIaUcDgMZH+dl+cyAywuLhKNRpmYmOBnP/tZ1vGWr6qnXC1dYqXFxUU6OzsZGxtjcXEx4/lYLJb25gdIy2MGtPzgaDSa1j4yMkJfXx/BYDAjXWIt3yMhhBDrS4JiIdZBKkXC7/cTj8fJzc1laGgIi8WCzWa76rHxeJzW1lZtBdtqtWqBXG9vb9aV62zBZMrynOL+/n7a29spKyvD5XJhNBoZGRnJ2vdqbTejrKyM+vr6Nfdf6yoxwMmTJ5mfn8flcmGz2bQ3Bj6fj+Hh4azXcrXXLmV0dJRz585hs9nYtm0b+fn52puQkydPrnl+Qggh1o8ExWJDy/bR/9zcHLC0QphaKZ6bm9M+Cl957MoVz7WqqanB7/czMjKCxWIhFAqxZcuWax43OTlJJBJh586dGTfkdXV13dBcUnw+HyaTiT179mjB4OLi4nXlTC+Xn58PLL1WK1+/lSvsBoMBvV5PLBbTcpxvpWAwSDAYpLGxkaamprTnBgcHb2rsoaEhdDod+/fvTwvSr5ZaIoQQ4u4iOcViQ/N4PGkfbcdiMbxeL3q9npKSEsrKysjJyWFgYCAt3zQejzMwMEBubm5GsLdW5eXlGAwGhoaGGBoaQlGUNaVOpILVlauaExMTN527mm1VVFVVRkdHb2i8srIydDodXq83LaVgcXExo/qGoihUV1czOzu76vmypTys1WorvnNzc/j9/hseNzW2oigZ35Pu7u6bGlcIIcSdIyvFYkMzGAz88pe/1FZcl9e6zcnJIScnh61bt3Lp0iVef/31tH6hUIgdO3bc8CqqTqejurqagYEBAoEApaWlGI3Gax5XXFysVY5YWFjAaDQSDAYZGhrCarUSDAZvaD6wVFHC7XZz6tQpqqqqiMViXLhw4YZLihkMBhobG+ns7OSXv/wlDoeDRCKB1+vFYrEwOzub1r+5uZnp6WnOnj2L3W6nqKgInU7HwsICY2Nj2Gy2jOoTq4lEIpw4cYKamhqampqwWCwUFBTQ29tLIpHAYrEwPz+P1+uloKAg7SbC61VVVcXo6CgnTpzA4XCgqip+v59EInHDYwohhLizJCgWG9qWLVuYnp7G4/GwuLiI2Wxm165daaW56urqMBqN9Pb2ait/VquVhx9+eE2bd1xNTU2Ntgp9rdrEKXq9nr1799LR0cHAwACqqlJYWMiePXsYHBy8qaC4vr4eVVXx+XxcvnyZvLw8iouLtYoKN6KhoQG9Xk9/fz9ut5v8/HwtZ3h2djYt3UCv13PgwAH6+voYGRnB7/ej0+kwGo0UFxdTW1ubNvbi4iI9PT3o9fqMjVBWUhSFPXv20N7ejs/nI5FIUFBQwIMPPkggELipoLi6uppEIkFfXx8dHR3o9XoqKirYunUrL7/88g2PK4QQ4s5RbvVNMvei3bt3q2fPnl3vaQixoVy+fJmBgQEef/xx8vLybmiMqakpWltbs+ZXw9KOhanUBrH+VtvxUAgh7hRFUc6pqro723OSUyyEuC7ZavleTbbUi0gkgs/no6Cg4IYD4rXQ6XTrEhCHQiGmp6fvy/SJqakpurq6pMycEOK+I+kTQmww8Xic3t5eJiYmtFrM+fn5VFVVpe34NjU1xeuvv47L5UJRFKampgiHw2zevJmmpiYSiQSdnZ0MDw8Ti8UoLCykubmZoaEhfD4fTz31FLBULaOjo4PCwkJGR0cZGRlhZGQEnU7HO97xDhKJRFoKRVtbGz6fjyeeeAK3283o6CjxeBybzcbWrVspKioClvK629ratGNSfy8pKWH//v2Ew2FeeeWVtGoTy9tsNhvd3d0Eg0H0ej0OhyNjh8HZ2Vk8Hg/T09NEIhEURcFqtVJfX581dSaZTNLe3s7g4CDJZBKz2cyOHTtu+GbMu9Hk5CTd3d3U1NRcdz79o48+eptmJYQQN0+CYiE2mEgkwuDgIFVVVdrueVNTU/T29hIIBNi7dy+wtAvb5cuXcbvdxONxtm7dygMPPKDl7p49e5bx8XEqKyspKysjHA5z5syZjM0uzGYzqqryk5/8BFiqupHaLnpubo4TJ06wf//+jM1FTp06pd2oF4vF6Ovr4/Tp0zz22GPk5uZSUlJCQ0MDPT09OJ1Obavptaw8j4+P4/F4qKur00rj9fX1odfraWho0PqNjo4yPz+P3W7HZDIRjUbx+XycOXMmI/cclnbk83g82uNQKMSbb7655m2o70epTwqW75YohBB3IwmKhdhgTCYThw8fTgtQ6urqMJvN9PT0MDs7S2FhIW63m8XFRXJyctKqbJSXlzM+Ps74+Di1tbU88MAD2jilpaWcOnUq7Xxms1mr4Xvw4MG0HeP8fj9nzpxheHg4Iye4sLCQlpYW7bHFYuHcuXMMDw/jdDoxmUyUlZXR09NDUVHRmsrZpczNzfHII49oAXxdXR3Hjh1jYGAgLShevnKe4nK5OH78ON3d3RlB8fT0dMa5QqEQwWBQW+G+Fda62p9aTd+/fz8lJSVpY7S2thIOhzl8+HDa/Ht6eggEAsRiMQwGA1arlcbGRoqKirRVfIBXXnlFOy61Gt/V1UV3dzePPPIIg4ODjIyMsLi4yL59+ygpKcmaUzwxMcHg4CCzs7NEIhFycnKw2Ww0NDRkzDn1evb09DAxMUE0GsVgMGCz2WhsbKSwsFDrl3qjk7qBsrCwcNUVfiGEAAmKhdhwlgfDqqoSj8dRVVULMGdmZtDr9domJmVlZVpAnAr6UnV9V+48V15erpU6S0ltmtHU1EQymUzbHrm4uJicnBwmJiYyguJNmzalPU6lINzIttorVVZWZqxol5aWapVAUoH78oA4kUhoOcKlpaV4vd60vkDWkno5OTlrKrV3Pda62n895ufnOXnyJHl5ebhcLvLy8lhcXGR6eloL6p1OJ7FYDL/fz7Zt27Qtr1dW/jh//jw5OTnaz8fVVu99Ph+xWAyHw0F+fj6RSASv16t9gpD6BACW0llOnDiBqqrU1tZSUFBANBplamqK6elpLSj2eDxcunQJi8VCY2Ojdp4zZ86wY8cOnE7ndb8+Qoj7nwTFQmxAHo8Hr9fL3NxcxoYTqRXCVMCzPKBJ7VAXDodRFCUjsAQyguLU37u6ulbdcS/bphwrx07NZ3lQfaOyzTsV+MdiMS3QXVxcpLOzk7GxsaxzXN4XwOFwaLWuU1wul/a63SprWe2/1nbhK01MTJBIJHjooYdWPbaoqAir1Yrf78/6xiJFr9ezb9++Nd3kmKoJvpzT6eTYsWP09PSwZ88erb2trY1kMsnBgwfTAvGGhgbt5zgWi9HR0YHZbE77ZKKuro7jx4/T0dGB3W6/4friQoj7lwTFQmww/f39tLe3U1ZWhsvlwmg0oigKkUiEtrY2VFVFr9fjcrm4ePGiFnjl5eVlrLBdT2WH+vr6VbdvTgW8Nzr29bra2MvfJJw8eZL5+XlcLhc2m00LpHw+H8PDwxlvKMxmM/v372doaIhIJEJJSQl2u/2Wz38tq/3XGxSngke/34/Var2p/N9Nmzat+fu3PCCOx+NaGT2bzZa2Q2MgEGBubg6n05m1JnXqfKng3uVypb1hyc3NxeVy0d7ezuTkJFVVVTd6eUKI+5QExUJsMD6fD5PJxJ49e9ICl/Hx8bR+dXV1NDY2Yrfbqa2txW63YzabgaWVSlVVCYVCWCyWtOOWrxID2jGKoqwaFN+NUmkfy6tXpAwODq56nMlk0j6yv52utdp/vaqrqxkeHqanp4f+/n6KioooKyujurr6ule6U9/ztQiFQnR2djIxMXHVeafSZpbnDWcTDocBKCgoyHgu1XYrUnCEEPcfCYqF2GCyreCpqkpvb29Ge+oGppX5vhUVFXi9Xvr6+tJutBsfH88IigsLCykoKMDj8Wg3yK08dzwev6GPs1MrgbejZu5qK51zc3NaTvV6Wctq/7Ws7KPT6di7dy+zs7OMj48zPT2tpbw89NBD13WD2lorbcTjcVpbW7WVXavVqn1Pe3t7mZycXPM5hRDiZklQLMQGY7fbcbvdnDp1iqqqKmKxGMPDw9f1cXlFRQVlZWUMDg4SjUa1kmxerxer1Zqx1fSuXbtobW3l2LFj2g1SiUSCUCjE6OgoW7ZsWfM218tZLBZyc3PxeDzk5OSQm5tLXl7eLakLbLFYKCgooLe3l0QioeVKe71eCgoKbmpb6Ju11tX+q+Vh/3/27jyozfvOH/hb9wVCCMR9CMRpG5/Y2Bgbp3aa7qZHmm2nzbbbpNOdNG120+30yKTTzbb9dbpNtt3tbtKm106OtjNtOq3TKxvnJHaA+AbbgAHJEogbJBBCQuh6fn8weuoHyTbGTrDN+zXjmej7fPU830ck8UdfPs/nk8gLX8pkMompF/Pz8zh8+DDOnz8vBsXXM61lamoKoVAoZUfCpfnnid9IXKmNeeJLl9/vT/r3IPGF7Wp2solo7WDRSKI1xmazoaamBsFgEOfOnYPL5YLFYsGWLVuu6jzbt29HeXk5pqen0dXVBQO1vOEAACAASURBVI/Hg+3bt8NgMCTtFBqNRjQ3N6OoqAhjY2M4d+4c+vr6MD09jeLi4hUHsQqFAtu2bYNSqcS5c+dw6tQp9PX1rehcS8lkMjQ0NCA3Nxdutxvnzp2Dx+PBli1bkJube12ucS1rWyrVbn8i+Fu64zo8PIxQKCQZSxU463Q6qNVqybHEz/Z67M4n7mPprvXk5KQknxhY/HcoPT0dg4ODYmWUVCwWCxQKhVhJJCEajcLpdEKpVN5SzVSI6PqRLefXbLe6+vp64cSJE6u9DKJbQktLCwRBwG233bbaS7ll2e129PT0wGKxJO32z8zMSPKg3377bUxNTaGkpAQZGRnw+XwYGxuDUqlEPB4X6xR3dXVhYmICubm54m7r+Pg4JiYmUFFRgdraWgCLZflaW1vFfGO5XC4GrIk6xfv3709ZmWJpneJIJII33ngD8XhcTAOZnZ3F0NAQ9Ho9Zmdnxc6IQOqSbJFIBB6PBzk5OSgrKwMgLcmW2IF2u92Ym5tjSTaiNU4mk50UBKE+1TGmTxDRiixtzwwsBlF+v18MTuidYbPZIAiCuIOt0WjEByLfeOMNydwtW7bg7NmzGB4extDQkNgG+8yZM+JDacBi7eZQKCQ23FAoFDAYDNi0aRNKSkrEeWazGbW1tRgYGEBnZycEQUj5MOJyqFQq7Ny5E93d3XA6nRAEARkZGWhoaMDg4GBSqoTJZMKePXvQ19eHkZERsXygyWSS1DO2Wq3QarWw2+3ibw6MRiO2b9/O5h1EdEncKQZ3iolWoqenBz6fD9nZ2VCpVPD5fHC73VAqlWhubr7uDStuBImH0BQKBfLy8pibSkR0k+FOMRFdd1lZWfB6vXA4HOKOXX5+Pqqrq2/JgHhkZASnT59GPB4HsJjC0NDQcNX1gImI6MbEoJiIViQnJwc5OTmrvYx3hSAI6O3tFQNiYPHBNJfLhc2bN6/iyuhKAoEAHA4HpqamYDQaUV5eLkm1ICJKYFBMRHQFkUhE0ro54XJVEGj1xWIxnDx5UiyfFwgEMDU1hT179jD1hYiSsCQbEdEVJB7mWoo7jjc2j8eTVE86EomsevMVIroxMSgmIlqG2tpaye6i2WxGeXn5Kq6IruRSD5LzAXMiSoXpE0REy5CZmYm9e/fC4/FAoVDAbDZfVRdAevdlZWXBYDAgEAiIYwqFYs3kwhPR1WFQTETXLBqNQqm89f93olQqV72bHS2fUqnEtm3b0NvbC4/Hg/T0dFRWVsJoNK720ojoBnTr/y1GtEYFg0F0d3djcnISAJCdnY3169ejra1N0lUsYXJyEg6HAzMzM4jFYkhLS4PVak3q/pXoSrZ+/Xr09PRgenoaarUa+/fvR1tbG4LBIBobG8XWz8BiY4gNGzZAoVDAbrdjcHAQoVAI6enp2LBhgyQ3N9GueGJiAoFAAJFIBBqNBjk5OaipqYFarZbc42uvvYaqqiqYTCb09fVhdnYWKpUKRUVFqK2tTWqJ7PF40N/fj+npacTjcaSnp8NqtUoaVNCtIyMjAzt27EA8HufOPhFdFoNioltQOBxGa2srwuEwSktLkZaWBq/Xi7a2NsRisaT5AwMDOHPmDDIzM1FZWQmFQoHJyUmcOXMGgUAA69atk8yfn59He3s78vPzkZ+fLzlnLBZDe3s7srKyUFtbi5mZGQwODiIWi0GtVmN6ehplZWWIx+NwOBw4duwYDhw4IO40C4IAh8OB/Px85OXlQalUYmZmBm63G16vF3v37k0KbiYmJuByuWC1WlFcXIyxsTE4HA6oVCpUVlaK88bHx3H8+HFoNBrYbDYolUoMDw+js7MTwWAQNTU11/PHQDcQBsREdCUMioluQXa7HaFQCFu3bkVhYSGAxda33d3dcDgckrmhUAjnzp1DYWEhtm7dKo5brVacO3cOFy5cgNVqhV6vF48Fg8Gk9r8J4XAYFRUVsNlsAIDS0lKEw2GMjIwgIyMDTU1NYoCSlpaG48ePY3h4WNyRlsvluP322yUtpEtLS5GZmYnOzk6MjY2hoKBAck2/3499+/aJa7RarWhpaYHT6RSDYkEQcPbsWSiVSuzZs0dsMGK1WtHe3g673Y7i4mKW6iIiWqP41ZnoFjQ+Pg6tVpsUPCYC1YuNjo4iHo+jpKQE4XBY8ic3NxeCIIgpGAkqlQrFxcUpry2TyVBWViYZy8rKArAYgF68Y5cYv/hBKABiQCwIAiKRCMLhMLKzswEA09PTSdfMy8uTBO3AYrrIwsICotEoAMDn82F+fh7FxcWSjntyuRw2mw2CILBUFxHRGsadYqJbUDAYhMlkSsqn1Wg0UKlUkrG5uTkAQHt7+yXPt7CwIHltMBiSzn3xNZb+qjpxzaWBa2I8HA5LxkdGRuBwODA7OyvpIgcs1pldaul5Lz53JBKBUqlEMBgEAKSnpyfNTYwl5hAR0drDoJhojUvUbN2yZQs0Gk3KOUtTCi5ObVjqUsHylY4ljI6O4uTJkzCZTFi/fj10Op0YZL/99ttXfV7WpCUiouVgUEx0C9Lr9QgGgxAEQRIwLiwsJO20pqWlAVjs2maxWN7VdaYyNDQEuVyOxsZGSfCd2NFeqcRucqrWzImxVDvO75Y//elPKC4uxubNm1dtDUREaxlzioluQbm5uQiFQhgZGZGML33IDgAKCgogl8vR29ubsjJFJBJJSmG4nmZnZ+FyucRgXSaTQSaTJe3w9vX1XdN1MjIyoNPp4Ha7JekgiSoYwGJuMhERrU3cKSa6BVVUVGB4eBgdHR2Ynp4WS7J5vV5JnV8A0Gq12LhxIzo7O/HGG2+gqKgIer0eCwsL8Pv9GBsbk1R2uN5mZ2cxNTWFSCQClUqF/Px8jI6Oor29HUVFReIDcKkC9qshk8lQV1eH48eP4/DhwygtLYVSqcTIyAimp6dRWVm5qpUn7rzzzlW7NhERMSgmuiWp1Wrs3r0bXV1dcLvdABarMTQ2NuLIkSNJOcGJUmQOhwMDAwOIRqNQq9UwGAyorq6WVGu4Xi7VBa+wsBCxWAwOhwPd3d1QqVTIzc3FunXr8NJLL13TNXNzc7Fr1y709/fD4XAgHo8jLS3tkuXl3mmxWAxyuRwymYx1dImIVpmMD6EA9fX1wokTJ1Z7GUTvuHA4jEOHDqG0tBQbN25MOu52u9HR0YFdu3bB5/PB5XIhFApBp9OhsrIyqQzb4OAgXC4X/H4/5HI5MjMzUVVVJelQB/w1X7aoqAi9vb3w+XwwmUzQ6/Vi0H6xqqoqVFdXA1hM37Db7RgdHcX8/DyUSiUsFgtqamoku9fRaBR2ux2Tk5MIBoOIRqPQ6XTIz89HVVWV5IuAx+NBW1sbNm/ejFgshgsXLmB+fh4GgwG1tbXIzc3F7Owsuru7MT09DZlMhqKiIqxbty4peA0EAujr68Pk5KTYfa+goADV1dWSa3Z0dMDtduOOO+5Ad3c3JiYmsLCwgP3790Ov118yp3hqagoOhwPT09OIxWLQarXIzs5GbW0t/H4/2trakJWVBblcDr/fj9nZWXR1dWHDhg143/veJ35GsVgMPT09OHjwIDIyMlBcXIzc3FzMzMxALpcjPz8f69evT/qiMjs7K7ZJjsVi0Ov1KC4uhs1mW9aDk6lc/PlfqrQfEdE7QSaTnRQEoT7VMe4UE92iYrFY0o6w3W4HgCs+UHf+/HnEYjGUlpZCLpdjYGAAHR0dMBgMYsDb09MDu90Ok8mE2tpaRKNRDAwMoK2tDTt27EBOTo7knDMzMxgdHUVJSYkYCKWnpyMSiWBsbAzr168XUzuMRiOAxYC4tbVVrC+cnp6OhYUFuFwuHDlyBHv37oVOpwOw2IRkcHAQ+fn5KCwshFwuh8fjgd1uh8/nw86dO5PuM5HLXFJSArlcDqfTiePHj6O+vh6dnZ0oLCxEfn4+JiYm4HQ6odFoJB3yfD4f2traoFKpUFpaCp1OB5/PB6fTCa/Xi8bGxqQgur29XTxPLBZLuVuekOg0qNVqxQYqwWAQ4+PjCIVCknnV1dUoKytDLBbD6Ogopqam0NraiubmZqjVatjtdjidTpjNZuTk5GB+fh4mkwmFhYXweDwYHBwEAGzatEnyM2tra4NcLofVaoVGo8H4+Dh6enowOzsrafZCRHSzY1BMdIs6evQo9Ho9MjIyIAgCpqamMD4+DrPZfMUHymKxGPbs2SMGdAUFBXjttdfgcrlgNpsxNzcHu90Os9mMXbt2ifNKSkrQ0tKCM2fOYP/+/ZKdRL/fj507dyYF5EajEWNjYykbcPT29iIQCGDPnj1ioAwspnu0tLSgt7dX3FnV6/U4cOCAJAi1Wq0wGAzo7+/HzMwMTCYTAIgNSRwOB7Zu3QqVSoWSkhJkZ2fjzTffFAPj/Px8AIsd9Q4fPizpkAcs7v5qtVrs2bNHEtxaLBaxU9/SndD09PRlBZOJToNpaWloamqS1JeuqamBIAjwer0AgF27dsFqtYrHKysr4fF48Pbbb2NwcBAVFRWYnJyE0WgU00QOHDiAzMxM8f4ikQjcbrdkt7irqwvxeBxNTU3i519WVoaTJ09ieHhY/Myultlsxp133rninWYioncCk9iIblG5ubnw+Xw4f/48enp64Pf7YbPZ0NDQcMVgpKysTBJcarVaGAwGsSxaovObzWZLmldcXIz5+Xn4fD7JOY1G41WXfBseHkZWVha0Wq2k055CoUBmZqak055cLhfXcnEnvMQ1L+6E53a7xZ1fn8+HM2fOwOl0wmg0QqlUQqvVigFxgtlslnTIm52dxezsLAoLCxGPxyXrM5vNUCgUSZ0AgcWHIJdjZGQE8Xgc1dXVSQ1XAGlt5qUdAKPRKDIyMqBSqTAzMwNgsRxf4jxms1kMiBOys7MhCALm5+fF+V6vF7m5uZIvJADELwajo6Pi53E1EjnUDIqJ6EbCnWKiW5TNZkvZ1nk5UlWaUKvVYsC03O5wiZ1Z4K/1kJdrYWEB4XAYk5OTOHToUMo5S4Mql8uFgYEB+P3+pJJuF9dnHhoaAgBJsxKXy4Xy8nKoVCoxJeNiSzvkJb4g9Pb2ore395L3cLF4PI7R0VGcPn0agUAAMpkMBoNBspscCoXgcDhw7NgxDAwMiEH25fJ4vV4v3G43pqenMT8/j87OThQUFKCoqAhDQ0MYHR0FsPgzOXbsGLKyspCdnS3mbY+NjaGzsxOdnZ0IBAIoLi4WW3Bf/DN+9dVXodfrUVtbi97eXtjtdkxMTGD//v1oa2tDMBhEU1OTmDMdj8dhNptRV1cnqeyRKqdYEATxfIFAQMzPzsnJQU1NjaRqSjAYxGuvvYaqqiqYTCb09fVhdnYWKpUKRUVFqK2tTfqcPB4P+vv7MT09jXg8jvT0dFit1lV5wJKIbkwMiokoyaV28K7lwdzLdcG7HIvFsqzg/sKFC+jq6oLFYkFZWRm0Wi1kMhlCoRA6Ojoka0+1u3lxyber6ZBns9kuuQN+cSAXj8fR29sLuVwOi8WCoqIi8eG4xM47sLgDPTY2BpPJhFgshurqaszNzaGnpwfBYDDpAcm5uTmcOnUKVqsVtbW1ABYDa5vNJgaKVVVV6OrqglqtRnl5OQoKCsSdcJfLhbNnzyISiaCgoAA2mw1zc3M4ffo0gsGgJF0EAObn58W86OLiYpSVlUk+w7a2NphMJtTU1CAYDMLpdOLYsWPYt2/fFT9Xh8OB/Px85OXlQalUYmZmBm63G16vF3v37k3Kz56YmIDL5YLVakVxcTHGxsbgcDigUqkk6x4fH8fx48eh0Whgs9mgVCoxPDyMzs5OBINB1NTUXHJdRLR2MCgmoquW2PXz+/1JtX2vtjvcpQIltVoNlUqFSCSyrLQLt9sNvV6flB4yMTGRNHdpagQAFBUVLWu9CYn7lslky1rf0NAQ/H4/Kisrk4IwQRDw5z//GQCQlZWF/fv3i0G+2WzGhg0bcPr0aQwODqKqqkpSIs/r9UKn06GhoUF8EC8jIwMZGRnweDxIT09HUVERzp8/D41Gg+zsbDElIhKJoLu7GwaDARs2bMC5c+dQXl6OjIwMvPLKK+jt7ZWknQCLu7Tl5eWIxWKwWq0oLy8Xj4XDYdhsNkmKiEajQXd3N6ampi77Ocnlctx+++2SL0+lpaXIzMxEZ2cnxsbGUFBQIHmP3++X1NC2Wq1oaWmR5H4LgoCzZ89CqVRiz5494mdntVrR3t4Ou90uliQkorWNOcVEdNVyc3MBQKz1mxAKheB2u6HT6ZCRkbGscyWCoKXtp2UyGQoLC8WqFalcnJ6QKrhO/Ep+qfLycuTl5UGtVou7p0t3RK8kIyMD6enpcLlcYjrJ0mtffE8TExNQKBSoqqpKmpsqPzgRAHZ3dyMYDMJisUAQhKRc7UsZGBi44s7+5OQkYrEYysrKJA8KKpVKVFdXQ6fTob+/X9IaW6VSiZUvln65kMlkkiAZgPgg3nLadC/NjQ6Hw+L7lwbnAFI+nJmdnS3J/fb5fGL1kou/TMjlcthsNrE5DBERd4qJ6KqlpaWhoqICdrsdbW1tKCgoEEuyRaNRbN26ddkPUSUe+Orp6RFLqRmNRqSnp6OmpgZerxcnTpxAQUEBMjMzIZfLMT8/j/HxcZhMJrH6REFBAXp6enD06FHk5+cjEolgeHg4ZVMMhUKBkpIS1NXVobi4eMWpHVu3bkVbWxtaWlpQUlKC9PR0xGIxBAIBjI6Oora2VsyZnZ+fh06nQ3l5ubijmUoikHe73RgfH8fAwADa29uRnZ0NjUYj5jAn7jszMxMLCws4evQoSktLEQqF0N/fD7PZnHJH/GIf/vCH4XK50NXVJeaLJ6Snp6OkpASBQACtra2wWq0YHR0V830LCwuTKk9oNJqkz/viXOwrGRkZgcPhwOzsbFJr8VTvT/XbiKW538vNfyciYlBMRCtSW1sLg8EAp9OJnp4esXnHtm3bkpp3XI7ZbEZtbS0GBgbQ2dkJQRDE5h0qlQpNTU1wOBwYGRnB2NgY5HI5tFotzGaz5CGpxK6f2+3GuXPnxCYaJSUleOONN1JeW6FQrDggBhYrajQ3N6O/vx9jY2MYGBiAQqEQG1yspFxZV1cXnE4nCgoKcMcdd8Dv92NgYAAjIyNwuVzQ6XRYt24dtFotIpEI0tPTUV1djUAggPPnzyMSiUAmk2HLli0pq19cjbS0NNTU1CAajcLlcmFwcBBGoxG1tbUp87yvJhd7qdHRUZw8eRImkwnr16+HTqcTA+y333475Xuu5XpEREsxKCYiUXFx8SU7jDU2NiaNlZSULOvp/Q984AOXPV5RUXHJUmWJlINUaQcXk8lkqKysTJkGsfT6WVlZl1zTgQMHUo5XV1eL1RouptPpUnYHXGrjxo2Yn59HT09PykA8sZ6XXnoJWVlZ2LZtm3hs3bp1YiOPRMWG0dFRuN1uxGIx5OTkiD+3RGUGrVab8l4uvu/f/OY3OHXqFPx+P8rKyiQ/+0S6Q15enrjjrFQqodfrl11W7moMDQ1BLpejsbFR8vksJ+3ichK7yRengCRcbf47Ed3amFNMRPQuKCoqQiQSwcDAgKQqxVI9PT04duyYZCwWi8HhcIivJycncerUKeh0uqve6Y7FYmK6QGFhIbRaLZxOp6QiRzQahdPphFKplOx2v5O7rzKZDDKZLOkafX1913TejIwM6HQ6uN1uSQ56PB4XP9MrNbMhorWBQTER0TV65plnIJPJ8Prrr+N73/sebDYbNBoNqqqq8OyzzwJYbIhiNpvR3NyMrVu34sKFC2I5tPb2djz11FOorq7GV77yFfy///f/8NWvfhXf//73IZPJ8IMf/EDMlQ0Ggzh8+DD+9Kc/4UMf+hDuvvtubN68Gffccw8uXLiQcl2vvvoqfvnLX+KjH/0otFotnn/+eQDA7bffjvvvvx+BQABHjhyB3W7H7373O7z//e/HP/zDP+Duu++G2WxGY2Mj/ud//gcnT57EiRMn4HA4IAgC7rvvPshkMvh8PvzHf/yHeP7du3fj6NGjSZ9TIBDAI488gvr6etx9993Ytm0bPvWpT2FgYAD5+fmIxWJob2+H0+nEhQsX0NbWhkAgcE0/G5lMhrq6OkSjURw+fBh9fX3iub1eLyorK1l5gogAMH2CiOi6+drXvob5+Xl89rOfhUajwVNPPYX77rsPFRUV2L17N3bt2gWVSoV4PC6mURgMBvzlL3/BY489hq1bt+KBBx7A0NAQnn32WbGTXF5eHmpra9He3o7h4WE88sgjGB0dxd///d9DqVRCo9HgV7/6FRoaGnDkyJGkdX35y1/GzMwMPvjBD6Kurk6SBqJUKrF9+3bY7Xb09fXhN7/5DdxuNz760Y9i/fr18Hg8+OlPf4ovfOEL+MhHPoLt27eju7tbUq3ijjvugFKpxCc+8QlYLBb853/+J+688044nU5JdZE77rgDra2t+OAHP4j3ve99iEQi+OUvf4mXX34ZJ06cwKZNm+BwONDd3Q2VSoXc3FysW7cOL7300jX9XHJzc7Fr1y709/eLFVPS0tKwadMmNu8gor8SBGHN/9m2bZtARLRSTz/9tABA2Lx5s7CwsCCODw0NCWq1Wvj4xz8ujpWWlgrNzc3ia4/HI2i1WqGurk6Yn58XWltbhVdeeUUYHR0VjEajAEB44403xPkPPfSQoNVqhY6ODskaXC6XkJ6eLtx7771J66qqqhICgUDSupubm4XS0lLJ2NzcnOR1JBIRDh48KBQWFgrFxcXCH//4R+GPf/yj0NraKtx7770CAOFzn/uc5D3PP/+8AED48Y9/LI799Kc/FQAIX/nKVyRz//znPwsAhE9+8pNJ6yMiut4AnBAuEQ9yp5iIbhjxeBz9/f0YHh5GKBQSK03k5ORg3bp14rzJyUk4HA7MzMwgFoshLS0NVqsVpaWlkvMl2hJv3LgRXV1d8Hq9ABa75NXV1UnaPAOLu5l2ux2jo6OYn5+HUqmExWJBTU1N0sNYwWAQ3d3dmJycxJkzZwAAn/nMZ3D48GHo9Xo0NjaisLBQ7CZ37NgxzM7OIhgMwuv14vjx46iursYrr7yCUCiEz33uc5I6unl5efjEJz6Bp556CsBi6kFvby+efvpp1NbWwm63Y25uDhUVFeKO886dO3Ho0CF0dHRgamoKnZ2dABZ3cj0ez7IeKLs4lSAYDMLv9yMcDqOurg4vvfQSgsEg9Hq9pPTaF7/4Rck53vOe9wAA+vv7xbGDBw9CLpfjkUcekcy98847sXnzZvzhD39APB5PWULvehIEAQsLC1Cr1e/4tYjo5sKgmIhuGGfPnsXg4CCKiopgNpshCAICgQCmpqbEOYkqDJmZmaisrIRCoRAD00AgIAmegcWGIm1tbcjLy8O6devg8/nEeso7d+4U50UiEbS2toqNHtLT07GwsACXy4UjR45g79690Ol0ABY7t7W2tiIcDqO0tFRstBEMBiXtooHFShe9vb2QyWQoLS2FWq2GRqOBx+NBa2srent7ASBlZYvE2NzcHA4fPoy5uTn4/X6cPn0aH/nIR1J+hjKZDKOjo7BarWKXvsrKSni93ktWFrnYxMQEvv71r+MPf/hDym6AgUAAer0ehYWF4tjShh1ZWVkAAI/HI44lyswl6lJfbP369WIgn5OTc8U1rpTX60V3dzdmZ2eh0+lQXV2d1CWPiNYuBsVEdMMYHR1FTk4OtmzZkvJ4KBTCuXPnUFhYiK1bt4rjVqsV586dw4ULF2C1WiU7ooFAANu2bZMEPzKZDC6XC3Nzc0hLSwMA9Pb2IhAIYM+ePWIuL7BYpq6lpUXSMMNutyMUCmHr1q0oLCzEiRMnAAA5OTkIh8NJ61ar1di+fTuAxRxeg8GApqYmvPnmm+Lu9eXY7XZs2rRJLP124MABPPzww/B6vejt7YXNZkNOTg4CgQDOnDmDyspKVFRUiA+71dXVYdOmTVe8jiAIeO9734uenh584QtfQH19vdiZ8Mknn8Sf//xnpKWlYePGjZIA+1IVMIQbqFZwOBzGyZMnxW58c3NzOH36NAwGw7K7LxLRrY1BMRHdMFQqFfx+P/x+f8oOZKOjo4jH4ygpKUkKPnNzc+F0OjE5OSlJo9BqtUm7gdnZ2XC5XAgEAmJQPDw8jKysLGi1Wsm5FQoFMjMzJY0wxsfHU563oKBAUvYr4eImE4IgIB6PQ61WIy0tTQzIent7xbSDhMQucjAYRGFhIbKyspCRkYGZmRns3bsXwGKKSF5eHrZu3Yr5+XnI5XJ4PJ5l7QovdebMGXR2duLRRx/FN7/5Tcmxp59+GgCwY8eOpDSV5SgvL8dLL72EmZkZmEwmybHu7m4YjcYVNTtZLq/XKwbECfF4HBMTEwyKiQgAg2IiuoGsX78ep0+fRktLC/R6PbKzs5Gbm4vc3FzIZDKxkUN7e/slz7E0KE2VR5uoE5wIfhcWFhAOhzE5OYlDhw6lPO/FgW0wGITJZErqqKZWq5PaEwOLwdexY8cwNTWF+fl5eL1e8TqbN28WK1V8+tOfFt8zNjaGX/3qV+LrRHvn3bt348UXX8Sjjz6K3bt3S+5Zp9PBbDZjcnISr7zyihhUL7cBRmLHd+kO77lz53Dw4MFlneNS7rrrLrz44ov47ne/i+9+97vi+P/93//h9OnT+OQnP/mO5vheajf7WjoaEtGthUExEd0w8vLycODAAYyPj8Pj8WBqagqDg4Mwm83YtWuXGKxt2bIl6SG5hKU1Zy/XCngpi8WSsn3xtYjFYlhYWIDP50NVVRU0Gg2MRiN27tyJrq4uRKNR/Nu//Ru+9rWvYffu3di9ezf8fj9ef/11VFVV4cSJE5DJZLDZbLBYLFi3bh0GBwfx2GOP4UMf+hDq6+uh0+nwwgsv4MUXX8S2bdvwox/9COPj42Jax5kzZ2Cz2VBbW3vZtdbW1mL9+vV4/PHHEQwGUV1djb6+PvzkJz9BXV0dTp48ueLP4b777sOzzz6LFt/hFwAAIABJREFUxx57DC6XC3v37oXdbsePfvQj5Obm4jvf+c6Kz70cWVlZyMzMxPT0tDim1WrFbn1ERAyKieiGolKpUFRUJD4k1tPTA7vdjrGxMTHVQa1Ww2KxXLdrqtVqqFQqRCKRZZ1Xr9cjGAxCEARJ0B0OhxGJRCRzw+EwBEHAli1bkJ2dDYVCIa4/HA6LFRmMRiP++7//G0899RRycnLwyCOPQBAEnDhxAmq1GjKZDBaLBRaLBUePHsX3v/99PP/88zh06BCUSiWKiorQ1NSEf/zHf4Rer0dZWRmsVisAwGg0wm63o7y8/JJfJoDFXdO//OUv+PKXv4xnn30WgUAAGzZswLPPPovOzs5rCopVKhUOHTqEb3/72/jNb36D3//+9zCZTPjoRz+Kb3/72ytK97gacrkc27Ztg8vlgtfrRXp6OqxWq/jwJBGR7EZ6EGK11NfXC4kdFSJaHYIgIBqNip3bEoaHh3Hq1Cls3LgRubm5eO2112A0GtHY2Jj0q+9IJAKFQiH+Gj5Rkq2xsVEyz+PxoK2tDZs3bxaDsbNnz8LlcqG+vj7l7uHCwoIYUHZ3d8PhcIgP2iUkxrOyssRrOp1OnDt3Drt27ZLkzA4ODqKzsxM6nQ4HDhwQx9va2hAMBnHgwAH88z//M5588kn87ne/g06nQ3Nzc1I6yMWf29L7Tzhz5gwGBgZw2223iV8siIjWIplMdlIQhPpUx7hTTEQ3hGg0ipdffhl5eXnIyMiAWq1GMBjEwMCA2N1Mq9Vi48aN6OzsxBtvvIGioiLo9XosLCzA7/djbGwM+/btW1Y93qVqamrg9Xpx4sQJsXSYXC7H/Pw8xsfHYTKZxOoTFRUVGB4eRkdHB6anp5GWlgav1wuv1yvmKyfk5ORAoVDg9OnTsFqtUKvV8Hq9GB8fh8FgQDweRygUktQoBhYfKnzuueewYcMGHDhwAG1tbWhpaUFJSQnS09MRi8UQCAQwOjqK2tpaFBcXw+PxoLOzE/n5+UhLS4NSqcTMzAwGBweRmZl5QwXEkUgEk5OTyMjIYJtlIrohMCgmohuCQqFAeXk5pqamMDk5iVgsBo1Gg9zcXFRWVopBY3FxMQwGAxwOh1hvWK1Ww2AwoLq6Oim4XC6VSoWmpiY4HA6MjIxgbGxMbB5iNpsl7YDVajV2796Nrq4uuN1uAIsVLRobG3HkyBHJDrbBYEBDQwPOnz8Pu90OmUyGzMxM7N69G2fPnkUwGERLSwu+8pWv4O6778bCwgIGBwfx6quvYm5uDt/97ndhNBrR3NyM/v5+jI2NYWBgAAqFAnq9HsXFxeIOtNFoRH5+PjweD4aHhyEIAnQ6HSorK5NqCa+m8+fP43vf+x4OHjyIbdu24dvf/jZ27Nix2ssiojWO6RNg+gQRXR/hcBiHDh1CaWmpWFN4Oex2O7785S/j2LFj8Hg80Gq1qK+vxyOPPCJJrbgV+Hw+3HXXXWhpaRHHTCYTjh8/joqKitVbGBGtCUyfICK6zmKxWFJOs91uB4CrfgiwoqICL7zwwnVb243M5XJJAmIAmJmZQW9vL4NiIlpVDIqJiFbg6NGj0Ov1yMjIgCAImJqawvj4OMxmM/Ly8lZ1bdPT0/B4PFCpVMjLy7tsxYl3m06ng0ajSaonfSPlOxPR2sSgmIhoBXJzczE0NCR22dNqtbDZbKiqqrqq2sjX28DAAM6ePSvWdL5w4QIaGhpW9PDhO8Fms+Fb3/oWHn74YXHs/e9/P9avX7+KqyIiYlBMRLQiNpvtujf6uFaRSAR9fX2SjnRzc3MYHBxETU3NKq7srxQKBe6//35s2bIF586dg9VqxY4dO97RFs9ERMvBoJiI6BYRCoWS0hKA5bd5freYTCbcfvvtuP3221d7KUREoneu0TwREb2r9Hp9yjSJjIyMVVgNEdHNhUExEdEtQqFQYP369ZIGIhaLRVJjmYiIUmP6BBHRLSQ3NxfNzc3wer1QqVTIzs5e1Qf/iIhuFgyKiYhuMVqtFgUFBau9DCKimwrTJ4iIiIhozWNQTERERERrHoNiIiIiIlrzGBQTERER0ZrHoJiIiIiI1jwGxURERES05jEoJiIiIqI1j0ExEREREa15DIqJiIiIaM1jUExEREREax6DYiIiIiJa8xgUExEREdGax6CYiIiIiNY8BsVEREREtOYpV3sBRER06wuHw+jq6sLU1BRCoRCysrLQ2Ni42su6IfT29qKvrw/79++HXq9f7eUQrVkMiomI6B3X1dWFkZERVFZWQq/XQ6PRrPaSiIgkGBQTEdE7bmpqChaLBVVVVau9lBtOVVUVKisrIZczo5FoNfG/QCIieseFQiGo1eplzY1Go+/wam4MifuUyWQMiIluANwpJiKiFYlGo7Db7ZicnEQwGEQ0GoVOp0N+fj6qqqqgUCjEfFkAcLvdcLvdAIDNmzejuLgYf/rTn1BcXIyioiL09vbC5/PBZDKJ+cZjY2NwOBzw+XwAgIyMDNhsNuTl5UnWMjk5icHBQczMzCAUCkGhUMBkMqGyshJZWVmSuW1tbQgGg2hsbERXVxc8Hg8AIC8vDxs2bIBCoYDdbsfg4CBCoRDS09OxYcMGmM3mpM/A5XJhcHAQc3NzAACTyYSqqipkZ2eLc4LBIF577TVUVVUhPT0ddrsdfr8fhYWF2Lx58yVzihOf7+joKILBIBQKBdLT02G1WlFYWAgAmJubg9PphMfjwfz8PARBQFpaGqxWK0pKSiRrTVzntttuw9DQENxuN8LhMNLS0lBbW4ucnBzJfEEQ4HA44Ha7xetnZWWhuroaRqNxOf+KEN1UGBQTEdGKhEIhDA4OIj8/H4WFhZDL5fB4PLDb7fD5fNi5cyfy8/NhMBhw+vRpmM1mlJaWAoAkwJyZmcHo6ChKSkpQXFwsjrtcLpw9exZpaWli2oXb7cbx48exceNG8VyJ8UgkgqKiIuh0OoRCIQwMDKC9vR2NjY1JAW0sFkN7ezuysrJQW1uLmZkZDA4OIhaLQa1WY3p6GmVlZYjH43A4HDh27BgOHDgApfKvf22eOnUKIyMjyM/PR3FxMeLxOIaHh/H222+jvr4+KXAfGxuD0+mE1WqF1WqVnGupSCSC1tZW+P1+5Ofnw2q1QhAE+Hw+jI+Pi0Gxx+OBx+NBbm4u9Ho9otEoRkdH0dnZiYWFBVRWViadu6OjAzKZDDabDfF4HE6nE8ePH8dtt90mCcoT92exWGC1WrGwsACXy4W33noLu3fvRkZGxqX/5SC6CTEoJiKiFdHr9Thw4IDkV/9WqxUGgwH9/f2YmZmByWSC0WjE6dOnYTAYUFRUlHQev9+PnTt3wmKxiGORSATd3d0wGAzYs2ePGEBarVa8+eab6O7uRkFBAVQqFQBg06ZNUCgUkvOWlpaipaUF/f39aGhokBwLh8OoqKiAzWYT54bDYYyMjCAjIwNNTU3ifaWlpeH48eMYHh4WA/GxsTEMDw8nBefl5eU4cuQIurq6koJiv9+Pffv2IS0t7Yqf7fnz5+H3+5PODyzu4CYUFRUlHS8vL0d7ezvsdjtsNltSaoZarcaOHTvE19nZ2Thy5AgGBgZQW1sLYHHnfWRkBAUFBdi2bZs4t6CgAIcPH8a5c+ewe/fuK94H0c2ESUxERLQicrlcDLgEQUAkEkE4HBaD2+np6WWdx2g0SgJiYDEoi8ViKCsrk+yoKpVKlJWVIRqNYmpqShy/OCCORqMIh8OQyWQwmUwp1yGTyVBWViYZS6RZWK1WSSCZGA8EAuLY0NAQlEol8vLyEA6HxT+RSAR5eXkIBoOS+QCQm5u7rIBYEAQMDw8jLS0tKeBNrD3VfcfjcXENFosF0WhUTOu42NL7NplMUCqVkvWOjY0BQNJOs9FoRG5uLrxeL8Lh8BXvhehmwp1iIiJaMZfLhYGBAfj9fskOJrC427scqQLFYDAIAEhPT086lhi7OIgLBAI4f/48Jicnl3VdjUaTtIOa2HVeWis4MX5xEOj3+xGNRvHyyy9f8hoLCwswGAzi64v/+XISge3SHN9UotEo+vr6MDIygvn5+aTjqT6LVLWQVSqV5P6CwSBkMlnKn016ejrGxsYQDAaX/fAk0c2AQTEREa3IhQsX0NXVBYvFgrKyMmi1WshkMoRCIXR0dCQFyZeyNO3hakWjUbS1tYk7y0ajUdxdttvtkh3lhIt3W6/m2MXUajW2bt16yeNLA/prvc9UTp06hfHxcZSWliIrK0sMUicmJnDhwoWU71nu/RGtNQyKiYhoRdxuN/R6PRoaGiSB1sTExDWfO7Gb6ff7JZUcAIgpAYmd10SXvERFi4v19vZe81pSMRgMCAQCyMzMvOwDcyuhVquhUqkwOzt72XmRSATj4+MoKirCxo0bJcdSfRG4Gnq9HoIgYG5uLqnShN/vF+cQ3UqYU0xERCuSasdREATY7fZrPrfFYoFCoYDT6ZTULY5Go3A6nVAqlWKwnFjH0p3pycnJZec1X63i4mIIgoDz58+nPL6wsLDic8tkMhQWFsLv92NwcPCy81JJVAW5FomHBJf+LP1+P8bHx2E2m5k6Qbcc7hQTEdGKFBQUoKenB0ePHkV+fj4ikQiGh4evSyMKlUqFdevW4ezZszhy5Ii4A+x2uxEIBLBx40Yx19dsNkOj0aC7uxvz8/PQarWYnZ3F0NAQjEbjFXdcVyJRhs3pdMLn8yEnJwcajQbz8/OYnp5GIBDA/v37V3z+mpoaTE1NobOzE5OTk2JJOZ/PB0EQsGXLFiiVSlgsFgwNDYl1mYPBIAYGBqDX66/pQTiLxYKCggIMDw8jHA4jNzdXLMkml8uxYcOGFZ+b6EbFoJiIiFbEZrNBEAS43W6cO3cOGo0GBQUFKCkpwRtvvHHN57dardBqtbDb7WIDEKPRiO3bt0vKnalUKuzcuRPd3d1wOp0QBAEZGRloaGjA4ODgOxIUA4sNSLKzszEwMAC73Y54PA6NRoOMjAyxtNlKqVQqNDU1ob+/H2NjYxgbGxObd1xcPWLr1q3o6enB+Pg43G43DAYDamtrIZPJ0NHRcU1r2Lp1KzIyMuB2u9Hd3c3mHXTLky33QYhbWX19vXDixInVXgYRERERvYNkMtlJQRDqUx1jTjERERERrXlMnyAiIqLLmpmZweTkJBQKBfLy8lh5gm5JDIqJiIjokoaHh9HR0YF4PA5gsSLFzp07mVdMtxymTxAt8cwzz0Amk6GlpeW6nnffvn2wWq2Ssfvuu++aCulbrVbs27fv2hZGRHQJ8XgcfX19YkAMLJabczqdq7gqoncGg2IiIiJKKRwOp2wfnWigQnQrYVBMtIp+9rOfpfwLZ7l6e3vx8ssvX8cVERH9lVarTZkmkaibTHQrYVBMtIpUKhW0Wu2K36/RaNhViojeUevWrYNOpxNfZ2VlJaWCEd0KGBQTXUI0GsU3vvENlJaWQqPRYOPGjfj1r3+dNO+FF17A7t27YTAYkJaWht27d+MPf/jDsq6xNKf44Ycfhkwmw5kzZ5Lm+nw+6HQ63HXXXeJYqpzil19+GR/72MdQXl4OnU4Hk8mE9773vXjzzTeTzpnIcx4ZGcE999yDzMxM6PV63HHHHWKzhItNTU3hwQcfRHFxMdRqNYqLi/Hggw/C4/Es636J6OZjNpvR3NyMHTt2YNeuXdi5c6ckSCa6VTAoJrqEhx9+GL/+9a/x+c9/Ht/61rcQDodxzz334JlnnhHn/OhHP8KHP/xheL1ePProo/jXf/1XeL1e3HXXXfjpT3961de89957AQDPPfdc0rHnn38eoVBInHMpzzzzDLxeLz71qU/hiSeewBe/+EX09PRg//79OHLkSNL8QCCAvXv3QqFQ4Dvf+Q7+6Z/+CS0tLfjQhz6EWCwmzvP5fGhsbMRTTz2FO+64Az/4wQ/wvve9D0899RSamprg9/uv+n6J6OagUqmQm5uL7Ozs69LGm+iGJAjCmv+zbds2gSjh6aefFgAIJSUlwszMjDg+MzMjlJSUCJmZmUIwGBS8Xq9gMBgEm80m+Hw+cZ7P5xPKy8uFtLQ0YXp6Whxvbm4WSktLJde69957hcX/DP+qvr5eyM/PF6LRqGS8qalJyMrKEhYWFsSx0tJSobm5WTJvbm4u6Z7GxsaErKws4W/+5m8k483NzQIA4bHHHpOMP/744wIA4aWXXhLHvva1rwkAhB/+8IeSuU8++aQAQPj617+edF0iIqIbCYATwiXiQX7dI7qEz33uc8jIyBBfZ2Rk4IEHHsD09DRaWlrwyiuvIBAI4KGHHpI8iGI0GvHQQw9hbm4Or7766lVf995778Xo6CheeeUVcczpdKK1tRX33HPPFXOIDQaD+M9zc3PweDxQKBRoaGjA0aNHk+bL5XI89NBDkrH3vOc9AID+/n5x7ODBg7BYLLj//vslcz/72c/CYrHg4MGDy79JIiKiGwyDYqJLqK2tTRpbt24dAODChQtinc7169cnzUuMXbhw4aqvmwh8L06heO655yAIAj71qU9d8f0OhwMf//jHkZmZifT0dGRnZ8NiseDFF1/E9PR00vyCgoKkh/2ysrIAQJIr7HQ6UV1dDaVS2vNHqVSiqqpqRfdKRER0o2BHO6IbTFZWFv72b/8WL7zwAvx+P9LT0/GLX/wCtbW12L59+2XfOzc3h7179yIQCOBf/uVfUFdXh/T0dMjlcvz7v/87Xn/99aT3KBSKS55v8TdNREREtz7uFBNdQk9PT9JYd3c3AKC8vBzl5eUAgK6ursvOW4l7770X8/Pz+O1vf4vW1lY4HI4rPmAHAK+99hpGRkbwX//1X/jGN76Bv/u7v8N73/teHDhwAIFAYEVrSSgvL0dvby+i0ahkPBqNoq+vb8X3SkREdCNgUEx0CU899RR8Pp/42ufz4cc//jFMJhOam5tx++23w2Aw4IknnpBUXvD7/XjiiSeQlpaG22+/fUXXvvPOO5GdnY3nnnsOzz33HORyOT75yU9e8X2JXd+lO7wvv/xyynziq3HXXXdhcnISP//5zyXjP/vZzzA5OYkPf/jD13R+IiKi1cT0CaJLyM7ORkNDAz796U8DAJ5++mkMDg7i5z//OfR6PfR6PR5//HE8+OCDaGhowH333QdgsSSa3W7HT37yE8mDeldDpVLhnnvuwZNPPomTJ0/iwIEDKCwsvOL7mpqakJeXhy996UtwuVwoKipCR0cHfvGLX6Curg5nz55d0XoA4Ktf/Sp++9vf4sEHH8SpU6ewZcsWnD59Gv/7v/+L6upqfPWrX13xuYmIiFYbd4qJLuGxxx7Dxz72Mfzwhz/Eo48+CpVKhV/96lf4zGc+I875/Oc/j9///vcwmUz45je/iW9+85swmUw4ePBgUpWGq3XvvfdCEATMzc0t6wE7ADCZTDh06BAaGhrwxBNP4Etf+hK6u7vx4osvYuvWrde0noyMDLS2tuKzn/0sXnzxRTz00EN48cUX8cADD+Ctt95Cenr6NZ2fiIhoNcn4IA1QX18vnDhxYrWXQURERETvIJlMdlIQhPpUx7hTTERERERrHnOKieiqBQIB9PT0wOv1oqysDJWVlau9JCIiomvCnWIiuiozMzP41re+he3bt+OOO+7Atm3b8Oabb672soiIiK4Jg2IiuiqdnZ14/PHHxdd+vx/3338/JicnV3FVRERE14ZBMRFdleHh4aSxvr4+eL3eVVgNERHR9cGgmIiuSllZWdJYfX09cnJyVmE1RERE1weDYiK6Kps2bcKTTz4JjUYDACgtLcWPf/xjZGZmrvLKiIiIVo7VJ4joquj1ejzwwAPYv38/fD4fSktLkZeXt9rLIiIiuiYMionoqikUCtTU1Kz2MoiIiK4bpk8QERER0ZrHoJiIiIiI1jwGxURERES05jEoJiIiIqI1j0ExEREREa15DIqJiIiIaM1jUExEREREax6DYiIiIiJa8xgUExEREdGax6CYiIiIiNY8BsVEREREtOYxKCYiIiKiNY9BMRERERGteQyKiYiIiGjNY1BMRERERGseg2IiIiIiWvMYFBMRERHRmsegmIiIiIjWPAbFRERERLTmMSgmIiIiojWPQTERERERrXkMiomIiIhozWNQTERERERrHoNiIiIiIlrzGBQTERER0ZrHoJiIiIiI1jwGxURERES05jEoJiIiIqI1j0ExEREREa15DIqJiIiIaM1jUExEREREax6DYiIiIiJa8xgUExEREdGax6CYiIiIiNY8BsVEREREtOYxKCYiIiKiNY9BMRERERGteQyKiYiIiGjNY1BMRERERGseg2IiIiIiWvMYFBMRERHRmsegmIiIiIjWPAbFRERERLTmMSgmIiIiojWPQTERERERrXkMiokoSTQaXe0lEBERvauUq70AIloet9uNjo4O7Ny5E16vF263GwsLC0hLS0NFRQUKCwsl82dmZtDf3w+v14toNAqdTofi4mJUVFRAJpOJ89ra2hAMBtHY2Iju7m5MTU0hEongAx/4gHjNxsZGZGVlSc6feN+BAwfEscnJSQwODmJmZgahUAgKhQImkwmVlZWXfH9TUxO6u7sxMTGBeDwOs9mMuro6GAwGyfxwOIze3l6MjY0hHA5DrVYjLy8P1dXVUKvV1+tjJiKiNYpBMdFNpqenB7FYDFarFcBisHzq1CnE43EUFxcDAMbHx3HixAkYDAaUl5dDrVZjenoavb298Pl8qK+vl5wzFouhtbUVZrMZNTU1CIfDK1qb2+1GJBJBUVERdDodQqEQBgYG0N7ejsbGRpjN5qTrtrW1wWQyoaamBsFgEE6nE8eOHcO+ffvE4D0SieCtt95CIBBASUkJMjIy4PP54HK5MDU1hT179kCp5P/OiIho5fi3CNFNJhwOo7m5GSqVCgBQWlqKN998E11dXSgoKIBMJkNnZydMJhMaGxvFwLK0tBRGoxFdXV3weDySndtwOIzKykrU1NRc09o2bdoEhUIhGSstLUVLSwv6+/vR0NCQdC82mw0VFRXimEajEXesLRYLAMDhcCAQCKCurk78MgAAGRkZOHv2LOx2+zWvnYiI1jbmFBPdZKxWqxgQA4BKpUJpaSkikQg8Hg8mJyexsLCAkpISRCIRhMNh8U9OTg6AxTSHpWw22zWv7eKAOBqNIhwOQyaTwWQyYXp6Omm+TCZDeXm5ZCw7OxsAMDc3J46Njo5CrVajtLRUMre0tBRqtRpjY2PXvHYiIlrbuFNMdJNJS0tLGktPTwcABINB8SG5jo6OS55jYWFB8lqtVksC7ZUKBAI4f/48JicnEYlErjhfo9FALpd+N0+s4+L3B4NBmEwmSS40sBhUp6WlwefzXfPaiYhobWNQTHSLWrduHYxGY8pjWq1W8nppysNyCIIgeR2NRtHW1oZYLIaysjIYjUYxz9dut2NqairpHEuD3Mudn4iI6J3EoJjoJnNxWkGC3+8HAOj1esRiMQCLgW4iJ3elElUdUj14FwwGJUHt1NQUQqEQNm/eLD7wl9Db23tN6zAYDJibm4MgCJJrCoKAubk56PX6azo/ERERc4qJbjIul0uSWhCJRDAwMACVSoWsrCzk5ORAo9HAbrenTGGIxWLLrkOcKIu2dJd3eHgYoVBIMpYIVpfu8E5OTqbMJ74aeXl5CIfDGBwclIwPDAwgHA4jLy/vms5PRETEnWKim4xarcZbb70l7sa63W7Mz89LKj9s2bIFx44dw+uvv46SkhIYDAZEIhHMzc1hdHQU27dvT6obnEpaWhosFgsGBgYgCIJYCm1sbAwGgwHxeFycazabxcoR8/Pz0Gq1mJ2dxdDQEIxGI2ZnZ5d1f319fTh27Jhkt9lms2FkZARnz57FzMyMuA63240zZ84gPz9fco5XX30Ver0ejY2Ny7omERERg2Kim0xtbS28Xi9cLhcWFhZgMBiwdetWSfMOi8WCvXv3or+/H0NDQwiHw1CpVNDr9SgvL79krnEqW7ZswdmzZzE8PIyhoSFkZWWhsbERZ86cQTAYFOepVCrs3LkT3d3dcDqdYhDd0NCAwcHBZQfFqahUKjQ1NYnNO9xuNzQaDUpLSxEOh1mjmIiIrpmMD7MA9fX1wokTJ1Z7GUSXdbnucreS3t5e9PX1Yf/+/cvKFU7sVl9cxYI7xURElIpMJjspCEJ9qmPcXiGim9rSkm5EREQrwaCYiN418XgcFy5cwPDwMAKBAGQyGQwGA4qLi1FWVpY09/z583C73QiHw0hLS0NtbS3S09MxOjqKhYUFmM1mMf948+bNV7z+zMwM+vv74fV6EY1GodPpUFxcjIqKCklVi7a2NgSDQTQ1NaG7uxsTExOIx+Mwm82oq6sTH0BMCIfDYmpHOByGWq1GXl4eqqurxQoeRER0Y2NQTETving8jrfffhsejwcWiwVFRUWQy+Xw+/0YGxtLCoo7Ojogk8lgs9kQj8fhdDrx1ltvQavVimXnAGBoaCipBFwq4+PjOHHiBAwGA8rLy6FWqzE9PY3e3l74fD7U10t/mxaLxdDW1gaTyYSamhoEg0E4nU4cO3YM+/btE4PoSCSCt956C4FAACUlJeJDgC6XC1NTU9izZw9znomIbgL8PzXRTaK4uHhZwd+N6sKFC/B4PKisrERNTY3kWKpnG9RqNXbs2CG+zs7Oxq9//WvE43HJ5zA+Pp5UHm6peDyOzs5OmEwmNDY2igFtaWkpjEYjurq64PF4JLna4XAYNpsNFRUV4liiusbU1JRYA9rhcCAQCKCurg5Wq1Wcm5GRgbNnz8JutyfdLxER3XiYjEdE74rh4WGoVCpUVVUlHUvV2W7pzrHJZEI0Gk0KgP9/e/ca2+R1hwH8sRPbiXOxc7Fjx4mdkOVGIARKSJYFEDSlWifYum6qVu3C2Np1H3ap6FaNVqObtnUaUzdNFUMbKx8qbd2kqQNW2kqjFDYSMm4h5EJuxLFjcnHuOE7i29kH5Hc4dkIZXDfZAAAZ5UlEQVRIgJD6+UmRyPHr8/5jpPbJ4f+e4/f7Ix4ucjun04mZmRmYzWZ4vV54PB7pS6/XS9fMrmnVqlUhY+np6QBCD1Dp6+uDUqmExWIJudZisUCpVKK/v3/e2oiI6OHAlWIieiAmJyeRnJy84AfjIu08kZKSAofDETKmUqnuuEtF8MS/hoaGOa+ZmZkJm3d2rQqFAgBCDkVxu93QarVhwV4mkyExMRHj4+Pz1kZERA8HhmIieihFWj1OT0+H1+uFTCaDEEJaoV1oz+7q1avn3KM5Li7ujvcP4laWREQfPwzFRPRAJCQkwOVyIRAILHobtZiYGBQUFKCkpAQzMzPQarX44IMPFnTv4PuDvcD3SvDnEkKEBGkhBFwu14L2WiYiouXHnmIieiCysrLg9XrR3t6+5Lk0Gg30ev2CtzvT6/VQqVTo7OwMaX0I8vv98Pl8i6rFYDDA4/HAZrOFjPf09MDj8cBgMCxqXiIierC4Uky0zHw+X1Rs2ZWbm4v+/n50dHRgbGwMer1e2pLN5XLhk5/85H27d0xMDNavX4///ve/+PDDD2E2m5GQkACv1wuXy4W+vj6Ul5cv6qTAvLw83LhxA1evXsXY2Ji0JZvdbkdiYmLI7hVERPTw+vj/n5hoEYJHKldWVmJkZAR2ux0zMzNSyDGZTNK1TqcTNpsNY2NjmJ6eRkxMDLRaLfLz88NCVvBQiKqqKmlrL6/Xi507d0IIgc7OTgwODmJychJerxcqlQp6vR5FRUVhq6J+vx/Xrl2Dw+GA1+uFRqNBUVERent7YbfbsXPnTunauY49Hh4eRm1tLcrKyqRtznw+Hzo7O+F0OuF2u6VDLoxGIwoKChATEwMAGB8fx5kzZyJusQYA9fX1GBkZwY4dOxATEwO5XI6SkhKcPHkSZ86cgdvtRnx8PMxmMyorK5f2F7YAOp0OW7ZsQUdHB3p7e+HxeKBQKKBWq7Fq1ao5e43vRKFQoLq6Wjq8w263Q6VSwWKxoLCwMCp+4SEi+jjgf62J5tHa2gq/3y/tP2u323Hp0qWQvXLtdju8Xi+ysrIQHx+P6elp9PT0oK6uDlVVVUhNTQ2Z0+/34+zZs0hNTUVRUZG0nZgQAl1dXTAajTAYDIiNjcXY2BjsdjtGRkawZcuWkF7cCxcuYHBwEAaDATqdDm63G+fPn19yD+v09DRsNhuMRiNMJhPkcjmGh4fR2dmJ8fFxKcBqNBpoNBrY7XYUFhaG9NNOT0/D6XQiOztbCtFjY2Oora1FQkICdu3aBZVKhYGBATidToyOjkpbsBUWFqKwsDBibTU1NWFjt4f/+a4DgKSkJGzYsOGOn8HsXx6C1Gp1xPsplUqsXbsWa9euvePcRET0cGIoJpqHx+PB1q1bpa24LBYLTp8+jebmZmRmZiImJgbr1q2Tgl+QxWLBRx99hI6ODlRUVITNGWl1VS6X47HHHguZy2KxICUlBVeuXEF/fz8yMzMBAIODgxgcHITZbMa6deuk69PT01FfX7+kn1mtVqOmpiYkgOfk5CAhIUFqfdBqtVJ9jY2NcDqd0n6/wK1fFIQQIXv3Njc3IxAIoLq6WlqVzc3NxcWLF+FwOGA2m6V9gImIiB40PmhHNI+cnBwpEAO3/qncYrHA6/VieHgYAEJCrM/ng8fjgUwmg1arxejoaMR58/LyIo4H5xJCSIdMBIPi7XMFD4SYPY9er0diYuLd/pgh5HK5FIhvryO4a8PtdZhMJsTGxoY9ZGaz2ZCcnCyF55mZGYyMjCAjIyOsTSE/Px/ArUMwVjKXy4WGhgacOnUKly5d4v7EREQrDFeKieYRKWAmJSUBuHVoA3DrUIpr167B6XRG3NlgNqVSGRK0b3fjxg10dXVhYmICgUAg5LXZB0bIZLKIrRKJiYkhJ64thtVqRU9PD27evBm2J+/tdcTGxiIzM1Pq0VUqlRgaGoLb7UZJSUlIvcD/P7vZ9cpkMumalcjn8+H8+fPS5+5yuTA0NITNmzcjPj5+masjIqKFYCgmWgKfz4fa2lr4/X7k5uYiOTlZerCqs7MTQ0NDYe+Z3WoR1NfXh4sXL0Kr1aKkpATx8fHSiu25c+civme+AyYWct3s4A0A169fR3NzM3Q6HXJzcxEXFweZTIbp6Wk0NDSEhWSLxQKbzQa73Y68vDzYbDbI5XKp5zoaOJ3OsF9EZmZmMDAwIPWjExHRw43tE0TziLTiGjwyWK1WY2hoCNPT0ygpKUFhYSGMRiN0Oh10Oh38fv9d3au3txdyuRxVVVXIyclBRkYGdDpdxJVGtVoNIQQmJycXVLNCoYi4ih1pddZut0OtVqOiogJmsxl6vR46nQ4qlSpi3VqtFhqNBjabDV6vF319fTAYDCGr4cEV7eBnN7teIcR9OeTCarVCJpPh1Vdfvedz3y7SLxfzjRMR0cOHoZhoHlarNSRMer1e9PT0QKFQIC0tTVqBnb16GtxR4W7IZDLp+OLbRTrsIiMjAwDQ1dUVMj44OBgxFAdbKqanp6WxQCAAq9UasY7ZgtvFzcVsNsPlcqGpqQmBQABmsznkdZVKhdTUVAwMDIQF4+C8RqNxzvnnY7Va8eqrr6KhoWFR778X0tPTw46Jjo2Nlf6eiIjo4cf2CaJ5KJVK/Oc//wnZfm1qakracSI1NRUqlQotLS2YmppCXFwcJiYm0Nvbi+TkZExMTCz4XkajEX19fairq0NWVhaEEOjv74+44hxcRbbZbNJDcG63Gz09PRHvm5OTA4fDgbq6OlgsFggh0NvbG7GVIzMzE62traivr4fRaITX64XD4Zj3aOasrCy0tLSgt7cXarU64lHKJSUlqK2txdmzZ5GTkxOyJZvJZFr0zhNWqxU/+clPkJOTg7KyspDXLBYLpqam7vtewSqVCo888gja29sxOjqKpKQkFBQUSMdLExHRw4+hmGgexcXFGBkZgdVqxczMDBISErBhwwbp8A6FQoHKykq0tLSgu7sbQghoNBpUVFTAZrPdVSg2mUzw+/3o6upCS0sLFAoFMjIysHr1arz//vth15eXl0uHdwwODiI5ORnl5eWwWq1hbRWpqakoKytDR0cHWltbERcXB4vFAq1Wi7q6upBr8/LyIISA3W5HU1MTVCoVMjMzYTabcerUKQgh4HK5Qh5CjI2Nhclkgs1mm7OXWKvVSodcWK1W+P1+qNVqFBcXz7kbx1LJZLKwFdz7JTU1FZWVlfD7/XP2jRMR0UNMCBH1X4888oggup3NZhPHjh0TQ0NDy13KXTt16pT48MMP571mYmJCvPzyy2LTpk0iLS1NKJVKkZeXJ1566SUxOTkZMhcAceTIEfHGG2+I4uJioVQqxf79+4UQQkxOTooXXnhBGAwGoVQqRUFBgThx4oT42te+Jm795yVUe3u7+PKXvywMBoNQKBTCYrGIF198UbhcrpDrgu8fGxsTzz//vNDpdEKlUomqqipx7tw56bojR44IAGFfW7duFUII0d3dLQBI9c4eO378uNi4caNQqVTCYDCIF198UXi93rC6T58+LWpqakRycrKIi4sT69evF4cPH77TXwURET1kAFwQc+RBrhQTrVCRViSDPbvB0+Hm4nA4cPjwYTz11FN45plnEBsbi9OnT+NXv/oVLl++jA8++CDk+t/+9rcYHh7Gs88+C4PBIK0Gf/GLX8SJEyewa9cumEwmjI+P4+mnn454/4sXL2L79u3QarX41re+BZPJhCtXruB3v/sdzp49i9OnT4dtVff4449Dp9Phxz/+MYaHh/H666/jM5/5DLq7u5GUlIQtW7Zg3759+MUvfoHnnnsOmzdvBoAF9fKeOHECBw8exPPPP489e/bg6NGj+PWvf42UlBTs27dPuu748eN48sknYTAYsHfvXiQlJeHtt9/GN7/5TVy/fh0///nP73gvIiJaAeZKy9H0xZVimm0lrBS3tLSIuro60dHRIaxWq7hy5Yr45z//Kd5//30xNTU173tnZmaEx+MJG3/llVcEAFFfXy+E+P9KcUpKihgYGAi59t133xUAxJe+9CVRW1srjh07JkZGRqRxzFopLi0tFYWFhWJiYkLMzMyI69evi4aGBvH73/9eWo0OCq4Uf/vb3w6Z429/+5sAIA4dOiSN3b6aPdt8K8VqtVp0d3dL44FAQJSUlAiDwSCN+Xw+YTabhUajEQ6HI+Tzq6qqEnK5XLS3t4d/wERE9FDCPCvF3H2CaIVKS0uTepCvXr2K/v5+GI1GVFdX37GP9vYDRHw+H0ZHRzE0NISamhoACDsq+qtf/WrIMc7ArRVUAKiurobL5UJpaSlSUlLwxBNPoLi4OOTaq1evorGxEc888wzcbjdOnjyJ2tpaNDU1ITExEfHx8WGr0wDwwgsvhHy/fft2AEBHR8edPp47+tznPheyh7BMJsO2bdvQ398v7eBx8eJF2Gw27NmzRzpiG7j1+f3whz9EIBDA0aNHl1wLEREtP7ZPEEWQnZ390B8+odfrw4Lq3Th48CAOHTqE5ubmsP10Z28nV1BQEPb+7u5uyOVyPPvss2FtD4WFhWhtbZW+D/55//792L9/f8R6ent7w8ZWrVoV8n1aWhoASEdsL8XsuWfPn5iYiO7ubgAIOZ0vKDh2/fr1JddCRETLj6GYKAq9/vrr2Lt3L3bs2IHvfve7yMzMhFKphMPhwO7du8NC8nwHayzkVL1b/2IF7N27F2VlZVLYvN3s7dSAuU//C863FPPtEHEv5iciopWFoZgoCr311lvIycnBe++9F7L/cKSt3+aSk5ODQCCAjo6OsHaJtra2kO/z8/MB3Aqiu3btwr///e+Q4C2Xy6WH5O7WQo+6XozganJzc3PYay0tLSHXEBHRysaeYqIoFBMTE3Z6ns/nwy9/+csFz7Fz504AwG9+85uQ8RMnToS0TgDA+vXrsWbNGhw6dAhDQ0NYs2YNlEolgFv9uUVFRfD5fIv6WYL7JY+MjCzq/fPZsGEDzGYzjhw5gv7+fmnc6/XiwIEDkMlk+OxnP3vP70tERA8eV4qJotAXvvAF/OhHP8KnP/1pfP7zn8fExAT+/Oc/h/UGz+eJJ57A448/jj/+8Y/SQ3rd3d34wx/+gNLSUjQ2NkrXymQyvPXWW9i+fTtKS0uxZ88eFBQUYHx8HHa7HUePHsVrr72G3bt33/XPsnr1aiQlJeHgwYNQq9XQarXQ6/XSQ3lLERMTgzfeeANPPvkkysvL8dxzzyEpKQl//etfce7cOezbt09aBSciopWNoZgoCv3gBz+AEAJ/+tOf8L3vfQ8GgwFPP/00vv71r2P16tULmkMmk+Hvf/87Xn75ZfzlL3/Be++9h9LSUrzzzjs4ePBg2A4RZWVluHz5Ml577TUcO3YMN27cQFJSEnJycrB79248+uiji/pZ4uPj8fbbb+OVV17B97//fczMzGDr1q33JBQDt1bET548iZ/97Gc4cOAAPB4PiouLcfjwYXzjG9+4J/cgIqLlJ+MDJcDGjRvFhQsXlrsMoo+NtWvXwuv14tq1a8tdChERkUQmk10UQmyM9Bp7iolo0aampsLG3n33XTQ1NeGxxx5bhoqIiIgWh+0TRLRoP/3pT3H58mVs27YNGo0GDQ0NePPNN5GWloaXXnppucu7L7q6ujAwMACj0XjH47SJiGjl4EoxES3a5s2b4Xa7ceDAAXznO9/BO++8g6eeegrnzp1DVlbWcpd3TwUCAfzjH//A+vXr8alPfQobNmy4qy3siIjo4caeYrCnmIjurK2tDWVlZZienpbGNBoNLl26xL2KiYhWCPYUExEtkd1uDwnEADA+Po4bN24sU0VERHQvMRQTES2A0WgM28dZrVZDr9cvU0VERHQvMRQTES1AQUEBDh06hNjYW88nK5VKvPnmmzy8g4joY4K7TxARLYBCocBXvvIVbNq0CQ6HA9nZ2SgsLIRMJlvu0oiI6B5gKCYiWiCFQoE1a9ZgzZo1y10KERHdY2yfICIiIqKox1BMRERERFGPoZiIiIiIoh5DMRERERFFPYZiIiIiIop6DMVEREREFPUYiomIiIgo6jEUExEREVHUYygmIiIioqjHUExEREREUY+hmIiIiIiiHkMxEREREUU9hmIiIiIiinoMxUREREQU9RiKieie8Pl8y10CERHRosUudwFE9HBoa2tDe3s7Hn30UajV6pDX/vWvf0GtVqOqqgoAcPz4cWRnZyMrKwttbW0YHx+HVqtFVVUVGhoaYLfbsXPnzrB7BN9XVlYmjfn9fly7dg0OhwNerxcajQZFRUXo7e0Nm2d2HUHDw8Oora1FWVkZsrOzAdwK6Z2dnXA6nXC73fD5fIiPj4fRaERBQQFiYmIAAOPj4zhz5gzy8/NRVFQUVnN9fT1GRkawY8cO6T0TExNoa2vD8PAw/H4/1Go1srOzkZeXB5lMtpiPn4iIlhlDMREtytjYGPr6+mA2m6UguhgXLlzA4OAgDAYDdDod3G43zp8/HxbM79b09DRsNhuMRiNMJhPkcjmGh4fR2dmJ8fFxVFZWAgA0Gg00Gg3sdjsKCwtDQu309DScTieys7OlQDw2Noba2lrI5XLk5ORApVJhYGAAra2tmJiYwIYNG5ZUNxERLQ+GYiJalJs3b6KyshI6nW7RcwwODmJwcBBmsxnr1q2TxtPT01FfX7+k+tRqNWpqaiCX/79LLCcnBwkJCejo6MDY2Bi0Wi0AwGKxoLGxEU6nE3q9XrrebrdDCAGLxSKNNTc3IxAIoLq6GsnJyQCA3NxcXLx4EQ6HA2azGenp6UuqnYiIHjz2FBPRoiQnJy8pEANAf38/ACAvLy9kXK/XIzExcUlzy+VyKRALIeD1euHxeKSaR0dHpWtNJhNiY2Nhs9lC5rDZbEhOTpbC88zMDEZGRpCRkSEF4qD8/HwAQF9f35LqJiKi5cGVYiJalKWGVgBwu92QyWQRWyUSExPhcrmWNL/VakVPTw9u3rwJIUTIa16vV/pzbGwsMjMz0dvbC4/HA6VSiaGhIbjdbpSUlITUCwBJSUkR65XJZNI1RES0sjAUExEAzPuA2OxACUDqsV2oSHMs5N4LuS4QCISNXb9+Hc3NzdDpdMjNzUVcXBxkMhmmp6fR0NAQVo/FYoHNZoPdbkdeXh5sNhvkcvmS+qWJiGjlYCgmIgCAQqEAELqCCtwKnDMzM0hISLjreYJ/BhBxBVWtVkMIgcnJybCV50irxAqFIqy+uea22+1Qq9WoqKgICdODg4MR69ZqtdBoNLDZbDCbzejr64PBYAj5GYIr2jdv3gx7v8vlghBiyQ8IEhHR8mBPMREB+H87hNPpDBnv6uqad5X3buaZLSMjI+Jrg4ODEUNxsKVienpaGgsEArBarWHXRlpVFkKgs7NzztrNZjNcLheampoQCARgNptDXlepVEhNTcXAwEBYMA7OazQa55yfiIgeXlwpJiIAt3Z8SExMRFtbG7xeL9RqNYaHhzE2NgalUrngeUwmE1pbW9HY2AiXywWFQgGn0wmPxxN2bUZGBnQ6HWw2m/QQnNvtRk9PD5KTkzExMRFyfU5ODhwOB+rq6mCxWCCEQG9vb8RWjszMTLS2tqK+vh5GoxFerxcOhyNkN4rZsrKy0NLSgt7eXqjV6ogPEpaUlKC2thZnz54N2ZLN6XTCZDJx5wkiohWKK8VEBODWyuqmTZuQlpaG7u5utLa2QgiBqqqqu+ofjo2NRUVFBZKSktDR0YH29naoVCpUVFREvL68vByrVq3C6OgompubMTw8jPLyciQkJITdNzU1FWVlZRBCoLW1FVarFSaTKeKhG3l5eSgqKoLb7UZTUxOsVit0Oh3Wr18/b+0mkwkA5uwl1mq1qK6uRlpaGqxWK1paWjA1NYXi4uJ55yYiooeb7G7+WfTjauPGjeLChQvLXQYR3eajjz6CEALbtm17oPe9evUqenp6UFNTg7i4uAd6byIiur9kMtlFIcTGSK9xpZiIlpXf7w8bC/bsLnUf5Lvl9XrR29sLvV6/4EDs8XgwMjKCqamp+1wdERHdT+wpJqJl1d7ejvHxcaSnp0OhUGB8fBx2ux1KpRKf+MQnHkgNN2/elO7r8/mkgzjuxOFwoKmpCR6PB7GxscjPz39gNRMR0b3FUExEyyotLQ0jIyPo6uqC1+uFUqmE0WhEYWHhA2tfuHHjBtrb2xEXF4fS0lKkpKTc8T1TU1NobGyEz+cDAPh8Ply7dg0pKSlIS0u73yUTEdE9xlBMRMtKr9dDr9cvaw2FhYUoLCy8q/eMjo5KgThICIGRkRGGYiKiFYg9xUREizDXKrZKpXrAlRAR0b3AUExEtAgpKSlhB3VoNBoe3kFEtEKxfYKIaBFkMhnKysqg0+kwNjaGxMREmEymkGOhiYho5WAoJiJapNjYWFgsFlgsluUuhYiIlojtE0REREQU9RiKiYiIiCjqMRQTERERUdRjKCYiIiKiqMdQTERERERRj6GYiIiIiKIeQzERERERRT2GYiIiIiKKegzFRERERBT1GIqJiIiIKOoxFBMRERFR1GMoJiIiIqKox1BMRERERFGPoZiIiIiIoh5DMRERERFFPYZiIiIiIop6DMVEREREFPUYiomIiIgo6jEUExEREVHUYygmIiIioqjHUExEREREUY+hmIiIiIiiHkMxEREREUU9hmIiIiIiinoMxUREREQU9RiKiYiIiCjqMRQTERERUdSTCSGWu4ZlJ5PJnAB6lrsOIiIiIrqvLEIIXaQXGIqJiIiIKOqxfYKIiIiIoh5DMRERERFFPYZiIiIiIop6DMVEREREFPUYiomIiIgo6jEUExEREVHUYygmIiIioqjHUExEREREUY+hmIiIiIii3v8AzhJ5brSyDEoAAAAASUVORK5CYII=\n" + }, + "metadata": {}, + "execution_count": 15 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "De esta forma obtuvimos aún más palabras que podemos tomar, por ejemplo, los gentilicios femeninos nunca fueron tomados en cuenta en nuestra lista inicial pero observamos que son vecinos cercanos, examinemos si esta componente afecta los resultados producto del sesgo en los embeddings." + ], + "metadata": { + "id": "97qKFtDSTGAw" + } + }, + { + "cell_type": "code", + "source": [ + "procedencia += ['alemana', 'australiana', 'argentina', 'boliviana', 'americana', 'nigeriana']\n", + "\n", + "explorador_de_sesgos_2.calculate_bias(procedencia, nucleo_pobre, nucleo_rico)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 729 + }, + "id": "f2HydxI6Ttv_", + "outputId": "b939651f-2438-4b66-ff1a-122293b555aa" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAALICAYAAABiqwZ2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde7Tnd13f+9eLDJoQMEAyInhIRigQAi0BNsjFYihgjx6PSklNLeWAeExFaw60nBZrSym6LMLp4RQxltBFw1LqsgmXonUFFAhFKCR7IEMSQmTJZXGJYTAhcjEBk8/5Y3+nfjKdzCXMzG/vyeOx1l757u/1/dt/PfNZ3z27Y4wAAAAb7rbqAQAAYDMRyAAAMBHIAAAwEcgAADARyAAAMNm26gGONaeccsrYsWPHqscAALjL27lz55fGGNsP9TqBfJjt2LEj6+vrqx4DAOAur+1n7sx1XrEAAICJQAYAgIlABgCAiUAGAICJX9IDVuryT/7pqkcADqPHPei7Vj0CfMusIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCDvpe0L2n7HqucAAGA1tnQgt/1021MO4/3OTvLdY4w/P1z3BABga9nSgXwEnJDkpaseAgCA1dkygdz2bW13tr267bn7OP4P2l7W9oq2r2t73LL/q21ftVz3h20f3/bStp9s+yPLOTvavi/Ji5Kst33Ssv+s5dyL23687Zva9mh+bgAAjq4tE8hJnj/GeGyStSTntT15z4G2D09yTpInjzHOTHJrkmcvh09M8u4xxiOSfCXJLyd5RpJnJnn5cs4XkzxjjPGYJH8/ya9Nz310khcmOSPJg5I8ee/B2p7bdr3t+u7duw/X5wUAYAW2rXqAQ3Be22cu2w9M8pDp2NOSPDbJ5csC7wnZiN4k+UaSS5btK5PcMsb4Ztsrk+xY9m9L8uq2pyf5ZpLTp3tfNsb4XJK0vWK55o/mwcYYFyS5IEnW1tbGt/QpAQBYqS0RyG3PSvL0JE8cY3y97aVJjp9PSfLGMcYv7OPyb44x9kTrbUluSZIxxm1t93z+FyXZPcb4qWXfzdP1t0zbt2aL/MwAALhztsorFicluXGJ49OTPGGv4+9Kcnbb70yStvdte9oh3P8+Sfa8G/GcJMd9qwMDALA1bZVAviTJtrbXJHlFkg/OB8cYH0vyL5K8s+1Hk/xBkvsfwv1/I8nz2u7KxusVXzssUwMAsOX0r94+4HBYW1sb6+vrqx4DtozLP/mnqx4BOIwe96DvWvUI8D+03TnGWDvU67bKCjIAABwVAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAm21Y9AHDX9rgHfdeqRwCA27GCDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAACTbaseALhr+9jn/2zVI8CWccZ3n7zqEeAuwQoyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATO4ygdz23m1/dvr+AW0vXuVMAABsPps6kNsedxhvd+8k/yOQxxhfGGOcfRjvDwDAMWClgdz2bW13tr267bnLvq+2/bdtdyV5YtufavvHbS9r+/q2r13O2972zW0vX76evOx/Wds3tL207Sfbnrc87hVJHtz2iravaruj7VXLNc9r+5a2l7T9RNtXTjP+Rtv1ZcZ/fVR/QAAAHHXbVvz8548xbmh7QpLL2745yYlJPjTG+CdtH5Dkt5I8JslXkrw7ya7l2n+X5NVjjD9qe2qSdyR5+HLs9CRPTXKvJNe2/Y0kL0nyyDHGmUnSdsdes5yZ5NFJblmu+bUxxmeT/OIy43FJ3tX2b4wxPjpfuMT9uUly6qmnHpYfDAAAq7HqQD6v7TOX7QcmeUiSW5O8edn3+CTvHWPckCRtL0ry0OXY05Oc0XbPvb6j7T2X7f86xrglyS1tv5jkfgcxy7vGGDctz/lYktOSfDbJjy8BvC3J/ZOckeR2gTzGuCDJBUmytrY2DvKzAwCwCa0skNuelY3IfeIY4+ttL01yfJKbxxi3HsQt7pbkCWOMm/e6b7KxCrzHrTm4z/k/XdP2e5K8OMnjxhg3tr1wmREAgGPUKt9BPinJjUscn57kCfs45/Ik39/2Pm23JXnWdOydSX5+zzdtzzzA876SjVcuDsV3JPlakpva3i/JDx7i9QAAbDGrDORLsrFKe002foHug3ufMMb4fJJfSXJZkvcn+XSSm5bD5yVZa/vR5ZWIn9nfw8YYf5bk/W2vavuqgxlwjLEryUeSfDzJf1pmAADgGNYxNvcrs23vOcb46rKC/NYkbxhjvHXVc92RtbW1sb6+vuoxYMv42Of/bNUjwJZxxnefvOoRYEtpu3OMsXao123qfwd58bK2VyS5KsmnkrxtxfMAAHAMW/W/YnFAY4wXr3oGAADuOrbCCjIAABw1AhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACbbVj0AcNd2xnefvOoRAOB2rCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMDEn5oGVuraL9yw6hHgiHnYA+676hGAO8EKMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEyOqUBu+4FVzwAAwNZ2TARy221JMsZ40qpnAQBgaztqgdz2bW13tr267bnLvq+2fdWy7w/bPr7tpW0/2fZHlnOOW865vO1H2/7DZf9Zbd/X9u1JPrbnftPz/lnbK9vuavuKZd9PL/fZ1fbNbe+x7L+w7WvafmB59tnL/nu2fVfbDy/3+tGj9fMCAGA1th3FZz1/jHFD2xOSXN72zUlOTPLuMcb/3fatSX45yTOSnJHkjUnenuSnktw0xnhc229P8v6271zu+ZgkjxxjfGp+UNsfTPKjSb53jPH1tvddDr1ljPH65ZxfXu79a8ux+yf5viSnL8+9OMnNSZ45xvjztqck+WDbt48xxl7POzfJuUly6qmnHoYfFQAAq3I0A/m8ts9cth+Y5CFJvpHkkmXflUluGWN8s+2VSXYs+38gyd/Ys6qb5KTp2sv2juPF05P8xzHG15NkjHHDsv+RSxjfO8k9k7xjuuZtY4zbknys7f2WfU3yK22fkuS2JN+d5H5J/nR+2BjjgiQXJMna2trt4hkAgK3lqARy27OyEa1PXFZ0L01yfJJvTquxtyW5JUnGGLftea84G5H682OMd+zjnl87xFEuTPJjY4xdbZ+X5Kzp2C3z7Zf/PjvJ9iSPXcL908vcAAAco47WO8gnJblxiePTkzzhEK59R5IXtL17krR9aNsTD3DNHyT5yekd4z2vWNwryXXLvZ59kHN/cYnjpyY57RDmBgBgCzpar1hckuRn2l6T5NokHzyEa/9DNl63+HDbJtmd5Mf2d8EY45K2ZyZZb/uNJL+f5J8n+ZdJPrTc40PZCOb9eVOS311e+VhP8vFDmBsAgC2oe/2+Gd+itbW1sb6+vuoxYMu49gs3HPgk2KIe9oD7Hvgk4Ihpu3OMsXao1x0T/w4yAAAcLgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAm21Y9AHDX9rAH3HfVIwDA7VhBBgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiT81DazUtV+4YdUjwBHjT6nD1mQFGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACZbIpDbfrrtKaueAwCAY9+WCGQAADhaNl0gt31b251tr2577j6O/4O2l7W9ou3r2h637P9q21ct1/1h28e3vbTtJ9v+yHLOjrbva/vh5etJy/6zlnMvbvvxtm9q2+XYS9te3vaqthfs2Q8AwLFp0wVykuePMR6bZC3JeW1P3nOg7cOTnJPkyWOMM5PcmuTZy+ETk7x7jPGIJF9J8stJnpHkmUlevpzzxSTPGGM8ZrnPa6bnPjrJC5OckeRBSZ687H/tGONxY4xHJjkhyQ/vPXDbc9uut13fvXv3t/wDAABgdbateoB9OK/tM5ftByZ5yHTsaUkem+TyZSH3hGxEb5J8I8kly/aVSW4ZY3yz7ZVJdiz7757ktW33xPVDp3tfNsb4XJK0vWK55o+SPLXtP01yjyT3TXJ1kt+dBx5jXJDkgiRZW1sbd/aDAwCwepsqkNueleTpSZ44xvh620uTHD+fkuSNY4xf2Mfl3xxj7InT25LckiRjjNva7vmcL0pyfZJHZWP1/Obp+lum7VuTbGt7fJLzk6yNMT7b9mV7zQMAwDFms71icVKSG5c4Pj3JE/Y6/q4kZ7f9ziRpe9+2px3i/a8bY9yW5DlJjjvA+Xti+Ett75nk7EN4FgAAW9BmC+RLsrFye02SVyT54HxwjPGxJP8iyTvbfjTJHyS5/yHc//wkz227K8npSb62v5PHGF9O8vokVyV5R5LLD+FZAABsQf2rtxI4HNbW1sb6+vqqx4At49ov3LDqEeCIedgD7rvqEeAure3OMcbaoV632VaQAQBgpQQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATLategDgru1hD7jvqkcAgNuxggwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABN/ahpYqT+5/sZVjwBJkgff7z6rHgHYJKwgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwGRTBHLbHW2vOoTzL227tmz/ftt77+fcB7S9+HDMCQDAsW/bqgf4Vo0xfugAx7+Q5OyjNA4AAFvcplhBXmxr+6a217S9uO092j6t7UfaXtn2DW2/fe+L2n667SltX9H256b9L2v74nl1etl+X9sPL19PWvaftaxKX9z248scXY4dcAYAAI4dmymQH5bk/DHGw5P8eZJ/nOTCJOeMMf56Nla7X7Cf638nyY9P3//4sm/2xSTPGGM8Jsk5SV4zHXt0khcmOSPJg5I8ue3xhzgDAABb3GYK5M+OMd6/bP9Wkqcl+dQY44+XfW9M8pQ7uniM8ZEk37m8c/yoJDeOMT6712l3T/L6tlcmuSgbMbzHZWOMz40xbktyRZId2Yj2A87Q9ty2623Xd+/efQgfGQCAzWYzvYM89vr+y0lOPsR7XJSN942/K//z6nGSvCjJ9UkelY3/Obh5OnbLtH1rDuFnM8a4IMkFSbK2trb35wAAYAvZTCvIp7Z94rL995OsJ9nR9q8t+56T5L0HuMfvJPl72Yjki/Zx/KQk1y2rxM9JctwB7nftnZgBAIAtbDMF8rVJfq7tNUnuk+TVSX4yyUXLKxG3Jfn3+7vBGOPqJPdK8vkxxnX7OOX8JM9tuyvJ6Um+doD73XyoMwAAsLV1DG8EHE5ra2tjfX191WPAlvEn19+46hEgSfLg+91n1SMAh1nbnWOMtUO9bjOtIAMAwMoJZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmGxb9QDAXduD73efVY8AALdjBRkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACb+1DSwUn9y/Y2rHgGS+LPnwF+xggwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAACTTRHIbXe0veoQzr+07dqy/ftt772fcx/Q9uLDMScAAMe+base4Fs1xvihAxz/QpKzj9I4AABscZtiBXmxre2b2l7T9uK292j7tLYfaXtl2ze0/fa9L2r76bantH1F25+b9r+s7Yvn1ell+31tP7x8PWnZf9ayKn1x248vc3Q59tK2l7e9qu0Fe/YDAHBs2kyB/LAk548xHp7kz5P84yQXJjlnjPHXs7Ha/YL9XP87SX58+v7Hl32zLyZ5xhjjMUnOSfKa6dijk7wwyRlJHpTkycv+144xHjfGeGSSE5L88N4Pbntu2/W267t37z6YzwoAwCa1mQL5s2OM9y/bv5XkaUk+Ncb442XfG5M85Y4uHmN8JMl3Lu8cPyrJjWOMz+512t2TvL7tlUkuykYM73HZGONzY4zbklyRZMey/6ltP7Rc87eSPGIfz75gjLE2xljbvn37oXxmAAA2mc30DvLY6/svJzn5EO9xUTbeN/6u/M+rx0nyoiTXJ3lUNv7n4Obp2C3T9q3ZeOXj+CTnJ1kbY3y27cuSHH+IMwEAsIVsphXkU9s+cdn++0nWk+xo+9eWfc9J8t4D3ON3kvy9bETyRfs4flKS65ZV4uckOe4A99sTw19qe8/4ZT8AgGPeZgrka5P8XNtrktwnyauT/GSSi5bXG25L8u/3d4MxxtVJ7pXk82OM6/ZxyvlJntt2V5LTk3ztAPf7cpLXJ7kqyTuSXH5InwgAgC2nY+z9ZgPfirW1tbG+vr7qMWDL+JPrb1z1CJAkefD97rPqEYDDrO3OMcbaoV63mVaQAQBg5QQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwOKpDbntj2bsv2Q9v+SNu7H9nRAADg6DvYFeT/luT4tt+d5J1JnpPkwiM1FAAArMrBBnLHGF9P8neSnD/G+LtJHnHkxgIAgNU46EBu+8Qkz07yX5d9xx2ZkQAAYHUONpBfmOQXkrx1jHF12wclec+RGwsAAFZj28GcNMZ4b5L3Tt9/Msl5R2ooAABYlf0GctvfTTLu6PgY40cO+0QAALBCB1pB/n+W//6dJN+V5LeW738iyfVHaigAAFiV/Qby8mpF2v7bMcbadOh3264f0cmAu4QH3+8+qx4BAG7nYH9J78TlF/OSJG2/J8mJR2YkAABYnYP6Jb1s/CsWl7b9ZJImOS3JuUdsKgAAWJEDBvLyJ6ZPSvKQJKcvuz8+xrjlSA4GAACrcMBXLMYYtyX5p2OMW8YYu5YvcQwAwDHpYN9B/sO2L277wLb33fN1RCcDAIAVONh3kM9Z/vtz076R5EH7OBcAALasg/1Let9zpAcBAIDN4KACue3dk7wgyVOWXZcmed0Y45tHaC4AAFiJg33F4jeS3D3J+cv3z1n2/Z9HYigAAFiVgw3kx40xHjV9/+62u47EQAAAsEoHG8i3tn3wGONPkmT5q3q3HrmxgLuKz+y+adUjsEWdtv2kVY8AHKP2G8htX5jkA0leko1V408th3Ykef6RHQ0AAI6+A60g/y9J/r8kD0/yiSQ3JHlPkjePMb5whGcDAICjbr+BPMZ4cZK0/bYka0melOSsJL/Q9stjjDOO+IQAAHAUHew7yCck+Y4kJy1fX0hy5ZEaCgAAVuVA7yBfkOQRSb6S5EPZeB/5/x1j3HgUZgMAgKPubgc4fmqSb0/yp0k+n+RzSb58pIcCAIBVOdA7yP9r22ZjFflJSf5Jkke2vSHJfx9j/KujMCMAABw1B3wHeYwxklzV9stJblq+fjjJ45MIZAAAjikHegf5vGysHD8pyTez8Q7yB5K8IX5JDwCAY9CBVpB3JLkoyYvGGNcd+XEAAGC1DvQO8j8+WoMAAMBmcKB/xQIAAO5SBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABM7jKB3PbebX92+v4BbS9e5UwAAGw+mzqQ2x53GG937yT/I5DHGF8YY5x9GO8PAMAxYKWB3PZtbXe2vbrtucu+r7b9t213JXli259q+8dtL2v7+ravXc7b3vbNbS9fvp687H9Z2ze0vbTtJ9uetzzuFUke3PaKtq9qu6PtVcs1z2v7lraXtP1E21dOM/5E2yvbXtX2V4/qDwgAgKNuv39q+ih4/hjjhrYnJLm87ZuTnJjkQ2OMf9L2AUl+K8ljknwlybuT7Fqu/XdJXj3G+KO2pyZ5R5KHL8dOT/LUJPdKcm3b30jykiSPHGOcmSRtd+w1y5lJHp3kluWaX0tya5JfTfLYJDcmeWfbHxtjvG2+cIn7c5Pk1FNP/dZ/KgAArMyqA/m8ts9cth+Y5CHZiNI3L/sen+S9Y4wbkqTtRUkeuhx7epIz2u6513e0veey/V/HGLckuaXtF5Pc7yBmedcY46blOR9LclqSk5NcOsbYvex/U5KnJLldII8xLkhyQZKsra2Ng/zsAABsQisL5LZnZSNynzjG+HrbS5Mcn+TmMcatB3GLuyV5whjj5r3um2ysAu9xaw7uc96ZawAAOMas8h3kk5LcuMTx6UmesI9zLk/y/W3v03ZbkmdNx96Z5Of3fNP2zAM87yvZeOXiUFy2PP+U5RcGfyLJew/xHgAAbCGrDORLkmxre002foHug3ufMMb4fJJfyUaovj/Jp5PctBw+L8la248ur0T8zP4eNsb4syTvX37Z7lUHM+AY47psvLv8nmy8+7xzjPFfDuZaAAC2po6xuV+ZbXvPMcZXlxXktyZ5wxjjraue646sra2N9fX1VY8BW8Zndt904JNgH07bftKqRwA2ubY7xxhrh3rdpv53kBcva3tFkquSfCp7/YIcAAAcTpv+F9HGGC9e9QwAANx1bIUVZAAAOGoEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATLategDgru207SetegQAuB0ryAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMPGnpoGV+szum1Y9AluUP1MOHClWkAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGCyqQO57Zltf+hOXLej7VXL9lrb1xz+6QAAOBZtW/UAB3BmkrUkv7/3gbbbxhh/eaAbjDHWk6wfgdkAADgGHdEV5LZva7uz7dVtz132fXU6fnbbC5ftv9v2qra72v63tt+W5OVJzml7Rdtz2r6s7W+2fX+S31xWit/X9sPL15P2McNZbX9v2X582//e9iNtP9D2Ycv+57V9S9tL2n6i7Sun63+i7ZXLbL96JH9eAACs3pFeQX7+GOOGtickubztm/dz7kuT/O0xxufb3nuM8Y22L02yNsb4R0nS9mVJzkjyfWOMv2h7jyTPGGPc3PYhSX47GyvOd+TjSf7mGOMv2z49ya8kedZy7Mwkj05yS5Jr2/5akluT/GqSxya5Mck72/7YGONtd+qnAQDApnekA/m8ts9cth+Y5CH7Off9SS5s+5+TvGU/5719jPEXy/bdk7y27ZnZiNmHHmCek5K8cYnpsVy/x7vGGDclSduPJTktyclJLh1j7F72vynJU5LcLpCX1fFzk+TUU089wAgAAGxmR+wVi7ZnJXl6kieOMR6V5CNJjs9GmO5x/J6NMcbPJPkX2QjpnW1PvoNbf23aflGS65M8Khsrx992gLF+Kcl7xhiPTPK/z8/PxsrxHrfmEP7nYYxxwRhjbYyxtn379oO9DACATehIvoN8UpIbxxhfb3t6kics+69v+/C2d0uyZ3U5bR88xvjQGOOlSXZnI5S/kuReB3jGdWOM25I8J8lxBzHT55ft5x3EZ7gsyfe3PaXtcUl+Isl7D+I6AAC2qCMZyJck2db2miSvSPLBZf9Lkvxekg8kuW46/1V7fhluObYryXuSnLHnl/T28Yzzkzy37a4kp+f2q8v78sok/6btR3IQK8RjjOuWed+zzLNzjPFfDnQdAABbV8cYBz6Lg7a2tjbW1/2rcnCwPrP7plWPwBZ12vaTVj0CsMm13TnG2N8/4LBPm/oPhQAAwNEmkAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYLJt1QMAd22nbT9p1SMAwO1YQQYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIk/NQ2s1Gd237TqEdii/Jly4EixggwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAACTTR3Ibc9s+0N34rodba9attfavubwTwcAwLFo26oHOIAzk6wl+f29D7TdNsb4ywPdYIyxnmT9CMwGAMAx6IiuILd9W9udba9ue+6y76vT8bPbXrhs/922V7Xd1fa/tf22JC9Pck7bK9qe0/ZlbX+z7fuT/KL3mjAAABzCSURBVOayUvy+th9evp60jxnOavt7y/bj2/73th9p+4G2D1v2P6/tW9pe0vYTbV85Xf8bbdeXz/Cvj+TPCwCA1TvSK8jPH2Pc0PaEJJe3ffN+zn1pkr89xvh823uPMb7R9qVJ1sYY/yhJ2r4syRlJvm+M8Rdt75HkGWOMm9s+JMlvZ2PF+Y58PMnfHGP8ZdunJ/mVJM9ajp2Z5NFJbklybdtfG2N8NskvLp/huCTvavs3xhgfnW+6xP+5SXLqqacewo8HAIDN5kgH8nltn7lsPzDJQ/Zz7vuTXNj2Pyd5y37Oe/sY4y+W7bsneW3bM5PcmuShB5jnpCRvXGJ6LNfv8a4xxk1J0vZjSU5L8tkkP74E8LYk989GoN8ukMcYFyS5IEnW1tbGAWYAAGATO2KB3PasJE9P8sQxxtfbXprk+GyE6R7H79kYY/xM2+9N8r8l2dn2sXdw669N2y9Kcn2SR2XjdZGbDzDWLyV5zxjjmW13JLl0OnbLtH1rkm1tvyfJi5M8boxx4/I6yPEBAOCYdSTfQT4pyY1LHJ+e5AnL/uvbPrzt3ZLsWV1O2wePMT40xnhpkt3ZWHH+SpJ7HeAZ140xbkvynCTHHcRMn1+2n3cQn+E7shHkN7W9X5IfPIhrAADYwo5kIF+SjVXYa5K8IskHl/0vSfJ7ST6Q5Lrp/Fe1vXL559k+kGRXkvckOWPPL+nt4xnnJ3lu211JTs/tV5f35ZVJ/k3bj+QgVs/HGLuSfCQb7y7/p2y8BgIAwDGsY3hl9nBaW1sb6+v+VTk4WJ/ZfdOqR2CLOm37SaseAdjk2u4cY+zvH3DYp039h0IAAOBoE8gAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAw2bbqAYC7ttO2n7TqEQDgdqwgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBk26oHAO7aPvulm1Y9AkfBA085adUjABw0K8gAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwOaYCue0HVj0DAABb2zERyG23JckY40mrngUAgK3tqAVy27e13dn26rbnLvu+2vZVy74/bPv4tpe2/WTbH1nOOW455/K2H237D5f9Z7V9X9u3J/nYnvtNz/tnba9su6vtK5Z9P73cZ1fbN7e9x7L/wravafuB5dlnL/u7PPuq5V7nHK2fFwAAq3E0V5CfP8Z4bJK1JOe1PTnJiUnePcZ4RJKvJPnlJM9I8swkL1+u+6kkN40xHpfkcUl+uu33LMcek+T/GmM8dH5Q2x9M8qNJvneM8agkr1wOvWWM8bhl3zXLvfe4f5LvS/LDSV6x7Ps7Sc5M8qgkT0/yqrb33/uDtT237Xrb9d27d9+Znw0AAJvE0Qzk89ruSvLBJA9M8pAk30hyyXL8yiTvHWN8c9nesez/gST/R9srknwoycnLtUly2RjjU/t41tOT/McxxteTZIxxw7L/kcuq85VJnp3kEdM1bxtj3DbG+FiS+y37vi/Jb48xbh1jXJ/kvdmI9NsZY1wwxlgbY6xt3779EH4kAABsNtuOxkPanpWNaH3iGOPrbS9NcnySb44xxnLabUluSZIxxm173itO0iQ/P8Z4xz7u+bVDHOXCJD82xtjV9nlJzpqO3TLf/hDvCwDAMeJorSCflOTGJY5PT/KEQ7j2HUle0PbuSdL2oW1PPMA1f5DkJ6d3jO+77L9XkuuWez37IJ79viTnLO9Bb0/ylCSXHcLsAABsMUdlBTkbr1H8TNtrklybjdcsDtZ/yMbrFh9u2yS7k/zY/i4YY1zS9swk622/keT3k/zzJP8yG69p7F7+e68DPPutSZ6YZFeSkeSfjjH+9BBmBwBgi+lfveHA4bC2tjbW19dXPQZsGZ/90k2rHoGj4IGnnLTqEYC7oLY7xxhrh3rdMfHvIAMAwOEikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGCybdUDAHdtDzzlpFWPAAC3YwUZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAm/tQ0bCI3f/lLqx7hqDv+3qesegQAuB0ryAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADDZlIHc9uVtn36Y7vWAthcfjnsBAHDs27bqAfZljPHSw3GfttvGGF9IcvbhuB8AAMe+la4gt93R9pq2r297ddt3tj2h7YVtz17O+aG2H2+7s+1r2v7esv/Etm9oe1nbj7T90WX/89q+ve27k7xrecZV0/Pe1/bDy9eTlv1ntb207cXLs97Utsuxpy33v3J53rev5IcFAMBRsRlesXhIkl8fYzwiyZeTPGvPgbbHJ3ldkh8cYzw2yfbpul9M8u4xxuOTPDXJq9qeuBx7TJKzxxjfv9ezvpjkGWOMxyQ5J8lrpmOPTvLCJGckeVCSJy/PvzDJOWOMv56NFfcX7P0B2p7bdr3t+u7du+/MzwAAgE1iMwTyp8YYVyzbO5PsmI6dnuSTY4xPLd//9nTsB5K8pO0VSS5NcnySU5djfzDGuGEfz7p7kte3vTLJRdmI4T0uG2N8boxxW5Irljketsz3x8s5b0zylL1vOsa4YIyxNsZY2759+96HAQDYQjbDO8i3TNu3JjnhIK9rkmeNMa693c72e5N87Q6ueVGS65M8Khv/c3DzfubYDD8bAACOss2wgrw/1yZ5UNsdy/fnTMfekeTnp3eFH30Q9zspyXXLKvFzkhx3EM/f0favLd8/J8l7D250AAC2ok0dyGOMv0jys0kuabszyVeS3LQc/qVsvDLx0bZXL98fyPlJntt2VzZe37ijleY9z785yU8muWh5LeO2JP/+znwWAAC2ho4xVj3DfrW95xjjq8tK8a8n+cQY49WrnuuOrK2tjfX19VWPwRZ185e/tOoRjrrj733KqkcA4BjVducYY+1Qr9vUK8iLn15+Ee/qbLwi8boVzwMAwDFs0/8i2rJavGlXjAEAOLZshRVkAAA4agQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEy2rXoA4K8cf+9TVj0CANzlWUEGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJPzUNd9LNf3bdqkc4Jhx/8v1XPQIA3I4VZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJhsykBu+/K2Tz9M93pA24sPx70AADj2bVv1APsyxnjp4bhP221jjC8kOftw3A8AgGPfSleQ2+5oe03b17e9uu07257Q9sK2Zy/n/FDbj7fd2fY1bX9v2X9i2ze0vaztR9r+6LL/eW3f3vbdSd61POOq6Xnva/vh5etJy/6z2l7a9uLlWW9q2+XYS9te3vaqthfs2Q8AwLFpM7xi8ZAkvz7GeESSLyd51p4DbY9P8rokPzjGeGyS7dN1v5jk3WOMxyd5apJXtT1xOfaYJGePMb5/r2d9MckzxhiPSXJOktdMxx6d5IVJzkjyoCRPXva/dozxuDHGI5OckOSH9/4Abc9tu952fffu3Yf+EwAAYNPYDIH8qTHGFcv2ziQ7pmOnJ/nkGONTy/e/PR37gSQvaXtFkkuTHJ/k1OXYH4wxbtjHs+6e5PVtr0xyUTZieI/LxhifG2PcluSKaY6ntv3Qcs3fSvKIvW86xrhgjLE2xljbvn373ocBANhCNsM7yLdM27dmY5X2YDTJs8YY195uZ/u9Sb52B9e8KMn1SR6Vjf85uHk/c2xbVrDPT7I2xvhs25dlI8QBADhGbYYV5P25NsmD2u5Yvj9nOvaOJD8/vSv86IO430lJrltWiZ+T5LgDnL8nhr/U9p7xy34AAMe8TR3IY4y/SPKzSS5puzPJV5LctBz+pWy8MvHRtlcv3x/I+Ume23ZXNl7fuKOV5j3P/3KS1ye5KhtBfvmd+RwAAGwdHWOseob9anvPMcZXl5XiX0/yiTHGq1c91x1ZW1sb6+vrqx6Do+DmP7tu1SMcE44/+f6rHgGAY1TbnWOMtUO9blOvIC9+evlFvKuz8YrE61Y8DwAAx7DN8Et6+7WsFm/aFWMAAI4tW2EFGQAAjhqBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQz8/+3debCcVZ3G8e9DggQIxCQwTIbFUAHEFCBUAgoGCAojjsU2LMqaKFMUM8g6lDKlo4iOElBxCgZEEQjbAGEzYLEGgkwckhDIQhJCKIgQBkEYiIDDFn7zx/m1edN23+6be3PvTfJ8qrr6Xc97zvuec/r0eU/3a2ZmZhVuIJuZmZmZVbiBbGZmZmZW4QaymZmZmVmFG8hmZmZmZhVuIJuZmZmZVbiBbGZmZmZW4QaymZmZmVlF/96OgNmaasDQYb0dBTMzM1sN3INsZmZmZlbhBrKZmZmZWYUbyGZmZmZmFW4gm5mZmZlVuIFsZmZmZlahiOjtOKxVJL0JLOrteJitQTYDXu3tSJitIVxezDrn4xGxSWd38t+8db9FETG6tyNhtqaQ9JjLjFl7XF7MOkfSY6uyn4dYmJmZmZlVuIFsZmZmZlbhBnL3+3lvR8BsDeMyY9Y+lxezzlmlMuMf6ZmZmZmZVbgH2czMzMyswg1kMzMzM7MKN5C7SNIQSfdLWpzvg5tsd4+kNyTd1dNxNOsLJB0oaZGkZySd02D9BpJuyvXTJQ3v+Via9Q1tlJd9JD0u6QNJR/RGHM36ijbKy1mSFkiaK2mKpI+1CtMN5K47B5gSEdsDU3K+kQuB43ssVmZ9iKR+wH8AXwBGAkdLGlm32YnA6xGxHXARMKFnY2nWN7RZXp4HxgM39GzszPqWNsvLE8DoiNgFuAW4oFW4biB33SHAxJyeCBzaaKOImAK82VORMutj9gCeiYhnI+I94EZK2amqlqVbgM9JUg/G0ayvaFleImJJRMwFPuyNCJr1Ie2Ul4ci4k85+yiwVatA3UDuui0i4qWc/j2wRW9GxqyP2hJ4oTK/NJc13CYiPgCWAUN7JHZmfUs75cXMis6WlxOBu1sF6kdNt0HSA8BfN1j1zepMRIQk/2+emZmZWR8j6ThgNLBvq23dQG5DROzfbJ2klyUNi4iXJA0DXunBqJmtKV4Etq7Mb5XLGm2zVFJ/YBDwWs9Ez6xPaae8mFnRVnmRtD+lY3PfiHi3VaAeYtF1k4FxOT0O+FUvxsWsr5oJbC9pW0kfAb5MKTtV1bJ0BPBg+ElGtm5qp7yYWdGyvEjaDbgcODgi2urIdAO5684HDpC0GNg/55E0WtIVtY0kPQJMovzwaKmkz/dKbM16QY4p/hpwL7AQuDki5ks6T9LBudkvgaGSngHOovk/wpit1dopL5J2l7QUOBK4XNL83ouxWe9p8/PlQmAgMEnSbEktv3D6UdNmZmZmZhXuQTYzMzMzq3AD2czMzMyswg1kMzMzM7MKN5DNzMzMzCrcQDYzMzMzq3AD2dY5kqZKGt2N4Q2XdEx3hdcg/LGS7lpd4Tc55ls9ebyOSFoiabPejse6oLvLxrpA0m97+HgHS1or/gKxK2mRNF7SJd0dp7pjbCDpgfxbsC9JukLSyA62X2uujflJembdYThwDHBDuztI6p//3djt6sNencdq5/hr6zFtZaua7ySJ8pejH67WCK4mEbFXV8OQ1C8ilrexXf+ImMxa8tCQNSAtuwFExK45f1NHG68B6bFOcA+y9QmS1pN0UJvbXi3pMkmPSno2e1ivlLRQ0tWV7S6T9Jik+ZK+2ySsEyU9LWmGpF/UeiQkHSRpuqQnsgdhi1y+b/YmzM51m1AeDrN3Ljsze5QfkfR4vvbKfcfm8snAghZpPFDSU5IeB/6+snzjTOuMPP4huXy8pMmSHgSmNJgfIukOSXPzvO2S+w2UdJWkebnu8Mqx/k3SnNy+lv5m5+VcSddKmgZc20G6hme6rs/rdYukjXLd5zLceZnGDSq7fj2Xz5C0XSUf/EzSdOACSSMk3SNpVp7nHTs6x+sySd+WNFPSk5J+no3UmiPzPD8tae/cfkAlnzwhab9c3irfDZQ0JcvBvEp+HS5pkaRrgCdZ+TGx9XFteF0lbSHp9syjcyrl7KxM15OSzqgcb2GW8fmS7pO0Ya7bNfP43AxvcC6fKukilTpkocqDOW6TtFjS9yvxeyvfz9OKuuFFSVfl8jsy7vMlnVTdT9KPJc0B9uwg/fX5/M89p505By3ywxJJ361cp9o5blbfbCTpZkkL8vjTlXceJB2dYTwpaULlGAdm+HMkTankn1pahkt6MK/DFEnbtIo3sHVep8WSvlM51nEZ59mSLpfUr3LOG9Vrm0u6VaVMzJT0GUl/BVwH7J7hjFDlDsuqpkfSkXlu5kj6TRtpRNIYSUPb2da6UUT45Vevvihf1CYCE9rc/mrgRkDAIcAfgZ0znFnArrndkHzvB0wFdsn5qcBo4G+AJcAQYH3gEeCS3GYwKx6k8w/Aj3P6TuAzOT2QchdmLHBXJX4bAQNyenvgsZweC7wNbNsifQOAF3JfATfXwgd+AByX0x8FngY2BsYDSytprp+/GPhOTn8WmJ3TE4CfVo49ON8DOCinLwC+1eK8nJvnfsMWaRueYdfO4ZXA2ZU075DLrwHOyOklwDdz+oTKubgauAvol/NTgO1z+lOUR1X3ev7ui69avsjpayvXemrlmv4d8EBO/zNwZU7vCDyf16xVvusPbJrTmwHPZJ4eDnwIfLqNuDa8rpTevFoe6QcMAkYB87JMDATmU3oBhwMfsKJuuJkV5WgusG9On1crD3kuJuT06cD/AMOADTKNQ3PdW3Xx/WjGYVT1XAMbUr4M1PYL4Kg20l+fz8ezop5q+xy0OMYS4NSc/ifgipxuVt+cDVyey3fKc1urU58HNs9r/yBwaM6/QNZ9dfmllpY7gXE5/VXgjhZxHg+8BAytnNvRwCcyrPVzu0uBEyrnvFG9dgMwJqe3ARbm9FhWrtun5jFWOT15bbasndM2y+tBwIxa3vGrZ14eYmF9wcnA8cACSV+sW7c4Ig5rsM+dERGS5gEvR8Q8AJXHrQ4HZgNHZY9Nf8oH20jKh2HNHsDDEfG/ue8kYIdctxVwk6RhwEeA53L5NOAnkq4HbouIpVqp8w0oje1LJO0KLK+ECTAjIp6r36HOjsBzEbE443UdUOt5+lvgYEln5/wASoUOcH8tLQ3mxwCHA0TEg5KGStqU8nj0L9d2iIjXc/I9yocylIbvAS3OC8DkiPi/FmkDeCEipuX0dcBpwP2Z5qdz+UTgFOCnOf+flfeLKmFNiojlkgYCe1EeI1pbV+2BtpXtJ+nrlC9zQyiNqDtz3W35PotSlqDkn4sBIuIpSb9jRb7uKN8J+IGkfSgN4i2BLXLd7yLi0Y4i2eK6fpbyhYkowxOWSRoD3B4Rb+f+twF7U257PxcRs6tpkzSI0kh5OJdPBCZVolC7XT4PmB8RL2W4z1J6vV+ri68oefonETErF58mqVaHbU354vsapW64taP0V0yKxkMwOnMOnmhxjOp1r921albfjAH+PY/7pKRavbo7MDUi/pDHvh7YJ9P6m1rdV5dfavasHPdaSgO2lfsj4rVKOsdQGuujgJmZZzYEXsntm9Vr+wMjK3ls08x7zXy6C+mZBlwt6WZWnPM/k/QNyudhvW2Ay4CjOoiXdSM3kK0vuIZS6K+KiIlt7vNuvn9Yma7N95e0LaWXY/eIeF1l6MWATsTpYsqH3GRJYyk9pETE+ZJ+Teldmybp8w32PRN4GfgkpVf7ncq6tzsRh0YEHB4Ri1ZaKH2qQdhdOdb7EVF7Dv1yVtQVDc9LJ49X/3z7dp53H02ma8dcD3gjVowVtCYkDaD0qo2OiBckncvKZaNWnqrXvSMd5btjKb1toyLifUlLKsdqJ79053Wt1hPLKQ2ndvdpWM802P5cYGlE1IZXjKU0vvaMiD9JmsqK9L/TpNHbSFfrjXY0uu7N6pseiE5bGtUlAiZGxL802L5ZvbYe5W5Gta5eLemMiJOzvv4iMEvSqFojP9dPoNzZq8bjk5RG9r92e4SsKY9Btl4XEW9RKovNuzHYTSkfKstynNkXGmwzE9hX0mBJ/cke1jQIeDGnx9UWShoREfOyEptJ6e19E9ikbt+Xovzo6HjKrc+GcmzalnWLn6L0bo3I+aMr6+4FTs2eKiTt1izsOo9QGiu1D+1XI+KPlJ7bUyrxGdwinIbnpZ6kLWvj8hrYRlJtzOUxwH8Biyhp3i6XHw88XNnnS5X3/64PMNPynKQj8/jKDxX7S7UG2qvZS3ZEG/tU888OlN6sRR3uUQwCXsnG8X7Ax5ptKOkaSXtUl7W4rlOAf8zl/bI3+BHgUJUxshsDh+WyhiJiGfC6cqw1f5nv2qbyG4r9KXdEagYBr2fjeEdKz2Oz/X9Y6WluV6fOQZP6piPN6ptpZE+myr867JzLZ1Dq1M1Uxv0eTTmfjwL7ZMcFkoY0ONZvWXE369hKnA+T9MMm8TtA5fcVG1KGckzLc3KEyhhicn3TfJfuA06tzeTdv450JT0jImJ6RHwb+AMdjL+v+ARwRP0XFVu93EC2PiEi3o6IH3VjeHMotxSfoowvm9ZgmxcpY+xm5PolwLJcfS7ltu4s4NXKbmeo/MBiLvA+cDdl2MZylR9dnEnpnRun8uObHWnS+yNpPWA7YKXbc9mLcRLwa5Uf6b1SWf09yhCOuSrDSb7XzvnI9IzKeJ/Pisbt94HBmaY5wH5thNPovNQbRrnV2cgi4BRJCyljmi/LNH8lw55H6aH7WWWfwRn30yk99I0cC5yY6ZhPGZ9udSLiDeAXlDGb91K+6LVyKbBeXpubgPER8W6LfQCuB0bnfidQymMzu1DG+dZrdl1PpwwVmUe5XT4yIh6njNmdAUynjKVtNbRgHHBh5q9dKeOQV8VZlCEktR+HnQfcQ7mjtZBS7joaUrIz8PtOHrPtc9CsvmmhWX1zKbC5pAWUOmQ+sCyHoJwDPATMAWZFxK9yyMVJwG15HRv9G8SpwFfyOhyfaQMYQfmdSSMzKMNU5gK3RsRjEbEA+BZwX4Z1P6U+6shplHw6N9N0ckcbdzE9Fyp/xEhpRM9pETci4sbK8DPrIbUf25itkyQNjIi3sgf5dsoPkW7voWPvBHw1Is7qieP1JElfA56P8rdH1eXDKT962ak34mV9k8p4+F9GxJG9HZfeIuneiGg0ZKu7wu+2+iZ7h9ePiHfyTtcDwMcj4r2uht3gWNcBZ9bGNZv1FDeQbZ0m6UeU26IDKLfZTg8XitXGDWSzNZ/K31s+ROldFvCNiLi7d2Nl1r3cQDYzMzMzq/AYZDMzMzOzCjeQzczMzMwq3EA2MzMzM6twA9nMzMzMrMINZDMzMzOziv8Hy9YKrQTVmnMAAAAASUVORK5CYII=\n" + }, + "metadata": {}, + "execution_count": 16 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Observamos que el género del gentilicio no parece afectar la distancia entre las palabras y su núcleo mas cercano, pero si notamos como ciertos gentilicios femeninos se encuentran aún más cercanos al núcleo que su contraparte masculina, como por ejemplo *argentina* a comparación de *argentino* o *americana* a *americano*.\n", + "\n", + "Volviendo atrás a la exploración de vecinos vemos como la palabra *australian* tironea del espacio, este tipo comportamiento suele ser común y nos permite, con ayuda del experto de dominio, valorar su utilidad en la exploración. Contamos con una **herrramienta prototipo** para la cual consultar **contextos** de las palabras con el objetivo de ayudar en esta decision.\n", + "\n", + "> Los contextos son extraidos de los subconjuntos de datos con los cuales fue entrenado el modelo de lenguaje en español BETO, basado en BERT. Si se desean consultar contextos especificos de un corpus propio o en otros lenguajes, aconsejamos la utilización de herramientas especificas a la tarea, como por ejemplo []." + ], + "metadata": { + "id": "tbGjT7jFUb_J" + } + }, + { + "cell_type": "code", + "source": [ + "palabra_a_buscar = 'australian'\n", + "\n", + "_, conjuntos_de_origen = explorador_de_datos.getSubsetsInfo(palabra_a_buscar)\n", + "conjuntos_de_origen" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "V-HzbBfAFP_n", + "outputId": "289652c6-df3b-4fa3-d5f3-b25b282a5d1e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "{'allwikis (2198)': 0.6911949685534591,\n", + " 'multiUN (525)': 0.1650943396226415,\n", + " 'ParaCrawl (211)': 0.06635220125786163,\n", + " 'GlobalVoices (60)': 0.018867924528301886,\n", + " 'JRC (58)': 0.018238993710691823,\n", + " 'OpenSubtitles2018 (55)': 0.01729559748427673,\n", + " 'EUBookShop (46)': 0.014465408805031447,\n", + " 'DGT (17)': 0.005345911949685534,\n", + " 'DOGC (7)': 0.00220125786163522,\n", + " 'NewsCommentary11 (2)': 0.0006289308176100629,\n", + " 'Europarl (1)': 0.00031446540880503143}" + ] + }, + "metadata": {}, + "execution_count": 17 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "> **Importante**: si la celda anterior arroja **error**, se trata de la falta de la palabra en el vocabulario cargado, en estos casos aconsejamos utilizar la herramienta cargada en [HuggingFace🤗](https://huggingface.co/spaces/vialibre/datos_std_tool)" + ], + "metadata": { + "id": "2n6q98XJGxfV" + } + }, + { + "cell_type": "markdown", + "source": [ + "El resultado que observamos es un diccionario que contienen los subconjuntos donde podemos extraer contextos de la palabra, entre parentesis se encuentra la frecuencia y el valor es el percentil (*i.e.* `'Subconjunto (frecuencia)': percentil`).\n", + "\n", + "Podemos elegir extraer contextos de tantos subconjuntos como deseemos, extraigamos un total de hasta 10 contextos de la palabra *australian* de los primero dos subconjuntos con mayor frecuencia de ésta." + ], + "metadata": { + "id": "tnrpZ_p2IedM" + } + }, + { + "cell_type": "code", + "source": [ + "subconjuntos = ['allwikis', 'multiUN']\n", + "cantidad_de_contextos = 10\n", + "\n", + "ds = explorador_de_datos.findSplits(palabra_a_buscar, subconjuntos)\n", + "contextos = explorador_de_datos.getContexts(palabra_a_buscar, cantidad_de_contextos, ds)\n", + "[contexto[1].replace('', '').replace('', '') for contexto in contextos]" + ], + "metadata": { + "id": "Bj58h_18IWtk", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 203, + "referenced_widgets": [ + "c768940bf3914802b49921f6f0b0eff8", + "3f8d7a65fc1546ad8622be544bb7d5bc", + "829d6621391d41e0817a3ddeb79487e6", + "0f4f92426b094225a56f201874d59103", + "8f13762e2f0147f6aee604e6e18e3912", + "3132563e2de345e29f7c1174705c5e93", + "dd240e6077f14d11b13e7d1d10fb3fac", + "23e0c52d7225457985b8977910f711cf", + "f382a9dd32b940e889d941fe0a2b31fd", + "f5d393ff408042bd86123b64f14dd9b3", + "23920ed430dc4865864bf35ee1dc7f70", + "4cb3b5bdf71944f6b0457ac460a44bde", + "92eff9653b21425ea40817023f22fe35", + "61ba0ad569ba4973bc22a6e324e62da1", + "8b4446f435954c799ca8c2929055af13", + "ac00eac9255f476f9bea7d249beb6a0c", + "cae9f807ea134c1f8c9078fda8482690", + "d438a9c99af2476dbae79c61aa352fe0", + "50ef18f1584244558ac5a71ddc77b00b", + "8f116179e2cd4130bc419a6a0f51f2ac", + "545d71f6b9694f4c941d4587f90c2af6", + "e968f2ffd9884fa38e696ad235cd756b" + ] + }, + "outputId": "6adf30be-cad1-4574-c91d-8274835164ef" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Downloading builder script: 0%| | 0.00/152k [00:00" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAALICAYAAABiqwZ2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdfbTmZX3f+88njA0IyoOg1R5xolERbUXdGtHUYNX0JM1KYqWhqfVozAmNScPR1tOapvVYk5UabY+nxpCKXRZXYrNS8KEmzUITFWu0CnsUBERio3b5QHEsiKCCBq7zx/5NczEd5kFn5t57eL3W2ot7/x6/9/7rPRe/e++OMQIAAGz4rlUPAAAAm4lABgCAiUAGAICJQAYAgIlABgCAybZVD3CkOfnkk8f27dtXPQYAwD3ejh07vjzGOOVAzxPIB9n27duzvr6+6jEAAO7x2v63b+c8j1gAAMBEIAMAwEQgAwDARCADAMDEh/SAlbruizeuegQ4ZB75oJNWPQLwbbCCDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgbybti9qe99VzwEAwGps6UBu+9m2Jx/E652d5C+NMb56sK4JAMDWsqUD+RA4JsnLVz0EAACrs2UCue072u5oe03bc/ew/++2vaztFW3f0PaoZfutbV+znPdHbZ/U9tK2n277o8sx29t+IMlLkqy3fcqy/azl2IvbfrLtW9r2cL5vAAAOry0TyEleOMZ4QpK1JOe1vd+uHW0fleScJE8dY5yR5I4kz112H5vkvWOMRye5JcmvJHlWkmcneeVyzJeSPGuM8fgkfyfJr0/3fVySFyc5PclDkzx198Hantt2ve36zp07D9b7BQBgBbateoADcF7bZy+vH5zk4dO+ZyR5QpLLlwXeY7IRvUnyzSSXLK+vSnL7GONbba9Ksn3Zvi3Ja9ueluRbSU6brn3ZGOPzSdL2iuWcP54HG2NckOSCJFlbWxvf0bsEAGCltkQgtz0ryTOTnDnG+HrbS5McPR+S5M1jjF/cw+nfGmPsitY7k9yeJGOMO9vuev8vSbJzjPHTy7bbpvNvn17fkS3yMwMA4NuzVR6xOD7JTUscn5bkybvtf0+Ss9veP0nantT2IQdw/ROT7Ho24nlJjvpOBwYAYGvaKoF8SZJtba9N8qokH553jjE+keSfJnl3248n+cMkDzyA6/9mkhe0vTIbj1d87aBMDQDAltM/f/qAg2FtbW2sr6+vegzYMq774o2rHgEOmUc+6KRVjwD3aG13jDHWDvS8rbKCDAAAh4VABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgMm2VQ8A3LM98kEnrXoEALgLK8gAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMNm26gGAe7Y/veGmVY8ASZKHPeDEVY8AbBJWkAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGCyKQK57fa2Vx/A8Ze2XVte/0HbE/Zy7IPaXnww5gQA4Mi3bdUDfKfGGD+8j/1fTHL2YRoHAIAtblOsIC+2tX1L22vbXtz23m2f0fZjba9q+6a23737SW0/2/bktq9q+/PT9le0fem8Or28/kDbjy5fT1m2n7WsSl/c9pPLHF327XMGAACOHJspkB+Z5PwxxqOSfDXJP0hyYZJzxhh/ORur3S/ay/m/m+Qnpu9/Ytk2+1KSZ40xHp/knCSvm/Y9LsmLk5ye5KFJntr26P2Zoe25bdfbru/cuXP/3i0AAJvSZgrkz40xPri8/u0kz0jymTHGnyzb3pzkaXd38hjjY0nuvzxz/NgkN40xPrfbYfdK8sa2VyW5KBsxvMtlY4zPjzHuTHJFku3ZiPZ9zjDGuGCMsTbGWDvllFMO4C0DALDZbKZnkMdu338lyf0O8BoXZeN547+Y/3X1OElekuSGJI/Nxj8Obpv23T69viOb62cDAMBhsplWkE9te+by+u8kWU+yve33Ltuel+T9+7jG7yb529mI5Iv2sP/4JNcvq8TPS3LUPq533bcxAwAAW9hmCuTrkvx822uTnJjktUl+KslFyyMRdyb5N3u7wBjjmiT3SfKFMcb1ezjk/CTPb3tlktOSfG0f17vtQGcAAGBr6xi7P9nAd2JtbW2sr6+vegzYMv70hptWPQIkSR72gBNXPQJwkLXdMcZYO9DzNtMKMgAArJxABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgMm2VQ8A3LM97AEnrnoEALgLK8gAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADDxp6aBlfrTG25a9QiQxJ89B/6cFWQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYHFGB3PZDq54BAICt7YgI5LbbkmSM8ZRVzwIAwNZ22AK57Tva7mh7Tdtzl223tn3Nsu2P2j6p7aVtP932R5djjlqOubztx9v+vWX7WW0/0PadST6x63rT/f5x26vaXtn2Vcu2n1muc2Xbt7a997L9wrava/uh5d5nL9uPa/ueth9drvVjh+vnBQDAamw7jPd64RjjxrbHJLm87VuTHJvkvWOM/7vt25P8SpJnJTk9yZuTvDPJTye5eYzxxLbfneSDbd+9XPPxSR4zxvjMfKO2P5Tkx5J83xjj621PWna9bYzxxuWYX1mu/evLvgcm+f4kpy33vTjJbUmePcb4atuTk3y47TvHGGO3+52b5NwkOfXUUw/CjwoAgFU5nIF8XttnL68fnOThSb6Z5JJl21VJbh9jfKvtVUm2L9t/MMlf2bWqm+T46dzLdo/jxTOT/LsxxteTZIxx47L9MUsYn5DkuCTvms55xxjjziSfaPuAZVuT/GrbpyW5M8lfSvKAJP99vtkY44IkFyTJ2traXeIZAICt5bAEctuzshGtZy4rupcmOTrJt6bV2DuT3J4kY4w7dz1XnI1I/YUxxrv2cM2vHeAoFyb58THGlW1fkOSsad/t8+WX/z43ySlJnrCE+2eXuQEAOEIdrmeQj09y0xLHpyV58gGc+64kL2p7ryRp+4i2x+7jnD9M8lPTM8a7HrG4T5Lrl2s9dz/n/tISx09P8pADmBsAgC3ocD1icUmSn217bZLrknz4AM79t9l43OKjbZtkZ5If39sJY4xL2p6RZL3tN5P8QZJ/kuSfJfnIco2PZCOY9+YtSX5veeRjPcknD2BuAAC2oO72eTO+Q2tra2N9fX3VY8CW8ac33LTqESBJ8rAHnLjqEYCDrO2OMcbagZ53RPweZAAAOFgEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATLategDgnu1hDzhx1SMAwF1YQQYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIk/NQ2s1H/befOqR2CLesgpx696BOAIZQUZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJveYQG57Qtufm75/UNuLVzkTAACbz6YO5LZHHcTLnZDkfwbyGOOLY4yzD+L1AQA4Aqw0kNu+o+2Otte0PXfZdmvbf9X2yiRntv3ptn/S9rK2b2z7+uW4U9q+te3ly9dTl+2vaPumtpe2/XTb85bbvSrJw9pe0fY1bbe3vXo55wVt39b2krafavvqacbfbLu+zPjPD+sPCACAw27biu//wjHGjW2PSXJ527cmOTbJR8YY/7Dtg5L8dpLHJ7klyXuTXLmc+6+TvHaM8cdtT03yriSPWvadluTpSe6T5Lq2v5nkZUkeM8Y4I0nabt9tljOSPC7J7cs5vz7G+FySX1pmPCrJe9r+lTHGx+cTl7g/N0lOPfXUg/KDAQBgNVYdyOe1ffby+sFJHp7kjiRvXbY9Kcn7xxg3Jknbi5I8Ytn3zCSnt911rfu2PW55/Z/GGLcnub3tl5I8YD9mec8Y4+blPp9I8pAkn0vyE0sAb0vywCSnJ7lLII8xLkhyQZKsra2N/XzvAABsQisL5LZnZSNyzxxjfL3tpUmOTnLbGOOO/bjEdyV58hjjtt2um2ysAu9yR/bvff4v57T9niQvTfLEMcZNbS9cZgQA4Ai1ymeQj09y0xLHpyV58h6OuTzJD7Q9se22JM+Z9r07yS/s+qbtGfu43y3ZeOTiQNw3ydeS3Nz2AUl+6ADPBwBgi1llIF+SjVXaa7PxAboP737AGOMLSX41yWVJPpjks0luXnafl2St7ceXRyJ+dm83G2P8jyQfbHt129fsz4BjjCuTfCzJJ5P8+2UGAACOYB1jcz8y2/a4Mcatywry25O8aYzx9lXPdXfW1tbG+vr6qseALeO/7bx53wfBHjzklONXPQKwybXdMcZYO9DzNvXvQV68ou0VSa5O8pkk71jxPAAAHMFW/Vss9mmM8dJVzwAAwD3HVlhBBgCAw0YgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDAZNuqBwDu2R5yyvGrHgEA7sIKMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATPypaWClPvflm1c9AofBg0/2J8WBrcMKMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEy2RCC3/Wzbk1c9BwAAR74tEcgAAHC4bLpAbvuOtjvaXtP23D3s/7ttL2t7Rds3tD1q2X5r29cs5/1R2ye1vbTtp9v+6HLM9rYfaPvR5espy/azlmMvbvvJtm9p22Xfy9te3vbqthfs2g4AwJFp0wVykheOMZ6QZC3JeW3vt2tH20clOSfJU8cYZyS5I8lzl93HJnnvGOPRSW5J8itJnpXk2UleuRzzpSTPGmM8frnO66b7Pi7Ji5OcnuShSZ66bH/9GOOJY4zHJDkmyY/sPnDbc9uut13fuXPnd/wDAABgdbateoA9OK/ts5fXD07y8GnfM5I8Icnly0LuMdmI3iT5ZpJLltdXJbl9jPGttlcl2b5sv1eS17fdFdePmK592Rjj80nS9orlnD9O8vS2/yjJvZOclOSaJL83DzzGuCDJBUmytrY2vt03DgDA6m2qQG57VpJnJjlzjPH1tpcmOXo+JMmbxxi/uIfTvzXG2BWndya5PUnGGHe23fU+X5LkhiSPzcbq+W3T+bdPr+9Isq3t0UnOT7I2xvhc21fsNg8AAEeYzfaIxfFJblri+LQkT95t/3uSnN32/knS9qS2DznA618/xrgzyfOSHLWP43fF8JfbHpfk7AO4FwAAW9BmC+RLsrFye22SVyX58LxzjPGJJP80ybvbfjzJHyZ54AFc//wkz297ZZLTknxtbwePMb6S5I1Jrk7yriSXH8C9AADYgvrnTyVwMKytrY319fVVjwFbxue+fPOqR+AwePDJx696BOAeqO2OMcbagZ632VaQAQBgpQQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMtq16AOCe7cEnH7/qEQDgLqwgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDAxJ+aBlbq+ptuWfUI7MEDT7zPqkcAWBkryAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADDZFIHcdnvbqw/g+Evbri2v/6DtCXs59kFtLz4YcwIAcOTbtuoBvlNjjB/ex/4vJjn7MI0DAMAWtylWkBfb2r6l7bVtL25777bPaPuxtle1fVPb7979pLafbXty21e1/flp+yvavnRenV5ef6DtR5evpyzbz1pWpS9u+8llji77Xt728rZXt71g13YAAI5MmymQH5nk/DHGo5J8Nck/SHJhknPGGH85G6vdL9rL+b+b5Cem739i2Tb7UpJnjTEen+ScJK+b9j0uyYuTnJ7koUmeumx//RjjiWOMxyQ5JsmP7H7jtue2XW+7vnPnzv15rwAAbFKbKZA/N8b44PL6t5M8I8lnxhh/smx7c5Kn3d3JY4yPJbn/8szxY5PcNMb43G6H3SvJG9teleSibMTwLpeNMT4/xrgzyRVJti/bn972I8s5fy3Jo/dw7wvGGGtjjLVTTjnlQN4zAACbzGZ6Bnns9v1XktzvAK9xUTaeN/6L+V9Xj5PkJUluSPLYbPzj4LZp3+3T6zuy8cjH0UnOT7I2xvhc21ckOfoAZwIAYAvZTCvIp7Y9c3n9d5KsJ9ne9nuXbc9L8v59XON3k/ztbETyRXvYf3yS65dV4uclOWof19sVw19ue1x82A8A4Ii3mQL5uiQ/3/baJCcmeW2Sn0py0fJ4w51J/s3eLjDGuCbJfZJ8YYxx/R4OOT/J89temeS0JF/bx/W+kuSNSa5O8q4klx/QOwIAYMvpGLs/2cB3Ym1tbayvr696DNgyrr/pllWPwB488MT7rHoEgO9Y2x1jjLUDPW8zrSADAMDKCWQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmOxXILc9tu13La8f0fZH297r0I4GAACH3/6uIP/nJEe3/UtJ3p3keUkuPFRDAQDAquxvIHeM8fUkfzPJ+WOMv5Xk0YduLAAAWI39DuS2ZyZ5bpL/tGw76tCMBAAAq7O/gfziJL+Y5O1jjGvaPjTJ+w7dWAAAsBrb9uegMcb7k7x/+v7TSc47VEMBAMCq7DWQ2/5eknF3+8cYP3rQJwIAgBXa1wryv1z++zeT/MUkv718/5NJbjhUQwH3HA888T6rHgEA7mKvgbw8WpG2/2qMsTbt+r2264d0MgAAWIH9/ZDescsH85Ikbb8nybGHZiQAAFid/fqQXjZ+i8WlbT+dpEkekuTcQzYVAACsyD4DefkT08cneXiS05bNnxxj3H4oBwMAgFXY5yMWY4w7k/yjMcbtY4wrly9xDADAEWl/n0H+o7Yvbfvgtift+jqkkwEAwArs7zPI5yz//flp20jy0D0cCwAAW9b+/iW97znUgwAAwGawX4Hc9l5JXpTkacumS5O8YYzxrUM0FwAArMT+PmLxm0nuleT85fvnLdv+z0MxFAAArMr+BvITxxiPnb5/b9srD8VAwD3L9TfdsuoR2AN/Ahy4J9vf32JxR9uH7fpm+at6dxyakQAAYHX2uoLc9sVJPpTkZdlYNf7Msmt7khce2tEAAODw29cjFv9bkv8vyaOSfCrJjUnel+StY4wvHuLZAADgsNtrII8xXpokbf9CkrUkT0lyVpJfbPuVMcbph3xCAAA4jPb3Q3rHJLlvkuOXry8muepQDQUAAKuyr2eQL0jy6CS3JPlINp5H/n/HGDcdhtkAAOCw29dvsTg1yXcn+e9JvpDk80m+cqiHAgCAVdnXM8j/e9tmYxX5KUn+YZLHtL0xyX8ZY/w/h2FGAAA4bPb5DPIYYyS5uu1Xkty8fP1IkiclEcgAABxR9vUM8nnZWDl+SpJvZeMZ5A8leVN8SA8AgCPQvlaQtye5KMlLxhjXH/pxAABgtfb1DPI/OFyDAADAZrCv32IBAAD3KAIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACb3mEBue0Lbn5u+f1Dbi1c5EwAAm8+mDuS2Rx3Ey52Q5H8G8hjji2OMsw/i9QEAOAKsNJDbvqPtjrbXtD132XZr23/V9sokZ7b96bZ/0vaytm9s+/rluFPavrXt5cvXU5ftr2j7praXtv308ueyk+RVSR7W9oq2r2m7ve3VyzkvaPu2tpe0/VTbV08z/mTbq9pe3fbXDusPCACAw25ff2r6UHvhGOPGtsckubztW5Mcm+QjY4x/2PZBSX47yeOT3JLkvUmuXM7910leO8b447anJnlXkkct+05L8vQk90lyXdvfTPKyJI8ZY5yRJG237zbLGUkel+T25ZxfT3JHkl9L8oQkNyV5d9sfH2O84yD/HAAA2CRWHcjntX328vrBSR6ejSh967LtSUneP8a4MUnaXpTkEcu+ZyY5ve2ua9237XHL6/80xrg9ye1tv5TkAfsxy3vGGDcv9/lEkockuV+SS8cYO5ftb0nytCR3CeRl9fvcJDn11FP3860DALAZrSyQ256Vjcg9c4zx9baXJjk6yW1jjDv24xLfleTJY4zbdrtusrEKvMsd2b/3+e2ckyQZY1yQ5IIkWVtbG/t7HgAAm88qn0E+PslNSxyfluTJezjm8iQ/0PbEttuSPGfa9+4kv7Drm7Zn7ON+t2TjkYsDcdly/5OXDwz+ZJL3H+A1AADYQlYZyJck2db22mx8gO7Dux8wxvhCkl/NRqh+MMlnk9y87D4vyVrbjy+PRPzs3m42xvgfST64fNjuNfsz4Bjj+mw8u/y+bDz7vGOM8R/351wAALamjrG5nwhoe9wY49ZlBfntSd40xnj7que6O2tra2N9fX3VY8CWcf1Nt6x6BPbggSce6P9wA9h82u4YY6wd6Hmb+vcgL17R9ookVyf5THb7gBwAABxMq/4tFvs0xnjpqmcAAOCeYyusIAMAwGEjkAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgsm3VAwD3bA888T6rHgEA7sIKMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATPypaWClvvSVW1c9whHh/icct+oRAI4YVpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgckQFctsPrXoGAAC2tiMikNtuS5IxxlNWPQsAAFvbYQvktu9ou6PtNW3PXbbd2vY1y7Y/avuktpe2/XTbH12OOWo55vK2H2/795btZ7X9QNt3JvnErutN9/vHba9qe2XbVy3bfma5zpVt39r23sv2C9u+ru2HlnufvWzvcu+rl2udc7h+XgAArMbhXEF+4RjjCUnWkpzX9n5Jjk3y3jHGo5PckuRXkjwrybOTvHI576eT3DzGeGKSJyb5mbbfs+x7fJL/a4zxiPlGbX8oyY8l+b4xxmOTvHrZ9bYxxhOXbdcu197lgUm+P8mPJHnVsu1vJjkjyWOTPDPJa9o+cPc31vbctutt13fu3Pnt/GwAANgkDmcgn9f2yiQfTvLgJA9P8s0klyz7r0ry/jHGt5bX25ftP5jk/2h7RZKPJLnfcm6SXDbG+Mwe7vXMJP9ujPH1JBlj3Lhsf8yy6nxVkucmefR0zjvGGHeOMT6R5AHLtu9P8jtjjDvGGDckeX82Iv0uxhgXjDHWxhhrp5xyygH8SAAA2Gy2HY6btD0rG9F65hjj620vTXJ0km+NMcZy2J1Jbk+SMcadu54rTtIkvzDGeNcervm1AxzlwiQ/Psa4su0Lkpw17bt9vvwBXhcAgCPE4VpBPj7JTUscn5bkyQdw7ruSvKjtvZKk7SPaHruPc/4wyU9NzxiftGy/T5Lrl2s9dz/u/YEk5yzPQZ+S5GlJLjuA2QEA2GIOywpyNh6j+Nm21ya5LhuPWeyvf5uNxy0+2rZJdib58b2dMMa4pO0ZSdbbfjPJHyT5J0n+WTYe09i5/Pc++7j325OcmeTKJCPJPxpj/PcDmB0AgC2mf/6EAwfD2traWF9fX/UYsGV86Su37vsg9un+Jxy36hEANp22O8YYawd63hHxe5ABAOBgEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAw2bbqAYB7tvufcNyqRwCAu7CCDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAACTbaseALhnu/GrX1v1CIfdSfc9dtUjALAXVpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgsqkDue0ZbX/42zhve9url9drbV938KcDAOBItG3VA+zDGUnWkvzB7jvabhtj/Nm+LjDGWE+yfghmAwDgCHRIV5DbvqPtjrbXtD132XbrtP/sthcur/9W26vbXtn2P7f9C0lemeSctle0PaftK9r+VtsPJvmtZaX4A20/unw9ZQ8znNX295fXT2r7X9p+rO2H2j5y2ZHdevMAAB8CSURBVP6Ctm9re0nbT7V99XT+T7a9apnt1w7lzwsAgNU71CvILxxj3Nj2mCSXt33rXo59eZK/Psb4QtsTxhjfbPvyJGtjjL+fJG1fkeT0JN8/xvhG23snedYY47a2D0/yO9lYcb47n0zyV8cYf9b2mUl+Nclzln1nJHlcktuTXNf215PckeTXkjwhyU1J3t32x8cY75gvusT/uUly6qmn7u/PBgCATehQB/J5bZ+9vH5wkofv5dgPJrmw7X9I8ra9HPfOMcY3ltf3SvL6tmdkI2YfsY95jk/y5iWmx3L+Lu8ZY9ycJG0/keQhSe6X5NIxxs5l+1uSPC3JXQJ5jHFBkguSZG1tbexjBgAANrFDFshtz0ryzCRnjjG+3vbSJEdnI0x3OXrXizHGz7b9viR/I8mOtk+4m0t/bXr9kiQ3JHlsNh4XuW0fY/1ykveNMZ7ddnuSS6d9t0+v78jmfz4bAIBD4FA+g3x8kpuWOD4tyZOX7Te0fVTb70qya3U5bR82xvjIGOPlSXZmY8X5liT32cc9rh9j3JnkeUmO2o+ZvrC8fsF+vIfLkvxA25PbHpXkJ5O8fz/OAwBgizqUgXxJkm1tr03yqiQfXra/LMnvJ/lQkuun41+z68Nwy74rk7wvyem7PqS3h3ucn+T5ba9Mclruurq8J69O8i/afiz7sUI8xrh+mfd9yzw7xhj/cV/nAQCwdXUMj8weTGtra2N93W+Vg/1141f39e/aI89J9z121SMA3CO03THG2NsvcNijTf2HQgAA4HATyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADDZtuoBgHu2k+577KpHAIC7sIIMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATf2oaWKkbv/q1VY9w2Pnz2gCbmxVkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmGzqQG57Rtsf/jbO29726uX1WtvXHfzpAAA4Em1b9QD7cEaStSR/sPuOttvGGH+2rwuMMdaTrB+C2QAAOAId0hXktu9ou6PtNW3PXbbdOu0/u+2Fy+u/1fbqtle2/c9t/0KSVyY5p+0Vbc9p+4q2v9X2g0l+a1kp/kDbjy5fT9nDDGe1/f3l9ZPa/pe2H2v7obaPXLa/oO3b2l7S9lNtXz2d/5tt15f38M8P5c8LAIDVO9QryC8cY9zY9pgkl7d9616OfXmSvz7G+ELbE8YY32z78iRrY4y/nyRtX5Hk9CTfP8b4Rtt7J3nWGOO2tg9P8jvZWHG+O59M8lfHGH/W9plJfjXJc5Z9ZyR5XJLbk1zX9tfHGJ9L8kvLezgqyXva/pUxxsfniy7xf26SnHrqqQfw4wEAYLM51IF8XttnL68fnOThezn2g0kubPsfkrxtL8e9c4zxjeX1vZK8vu0ZSe5I8oh9zHN8kjcvMT2W83d5zxjj5iRp+4kkD0nyuSQ/sQTwtiQPzEag3yWQxxgXJLkgSdbW1sY+ZgAAYBM7ZIHc9qwkz0xy5hjj620vTXJ0NsJ0l6N3vRhj/Gzb70vyN5LsaPuEu7n016bXL0lyQ5LHZuNxkdv2MdYvJ3nfGOPZbbcnuXTad/v0+o4k29p+T5KXJnniGOOm5XGQowMAwBHrUD6DfHySm5Y4Pi3Jk5ftN7R9VNvvSrJrdTltHzbG+MgY4+VJdmZjxfmWJPfZxz2uH2PcmeR5SY7aj5m+sLx+wX68h/tmI8hvbvuAJD+0H+cAALCFHcpAviQbq7DXJnlVkg8v21+W5PeTfCjJ9dPxr2l71fLr2T6U5Mok70ty+q4P6e3hHucneX7bK5OclruuLu/Jq5P8i7Yfy36sno8xrkzysWw8u/zvs/EYCAAAR7CO4ZHZg2ltbW2sr/utcrC/bvzqvv5de+Q56b7HrnoEgHuEtjvGGHv7BQ57tKn/UAgAABxuAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACbbVj0AcM920n2PXfUIAHAXVpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGDiT03DJnLbV7686hEOu6NPOHnVIwDAXVhBBgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgMmmDOS2r2z7zIN0rQe1vfhgXAsAgCPftlUPsCdjjJcfjOu03TbG+GKSsw/G9QAAOPKtdAW57fa217Z9Y9tr2r677TFtL2x79nLMD7f9ZNsdbV/X9veX7ce2fVPby9p+rO2PLdtf0Padbd+b5D3LPa6e7veBth9dvp6ybD+r7aVtL17u9Za2XfY9Y7n+Vcv9vnslPywAAA6LzfCIxcOT/MYY49FJvpLkObt2tD06yRuS/NAY4wlJTpnO+6Uk7x1jPCnJ05O8pu2xy77HJzl7jPEDu93rS0meNcZ4fJJzkrxu2ve4JC9OcnqShyZ56nL/C5OcM8b4y9lYcX/R7m+g7blt19uu79y589v5GQAAsElshkD+zBjjiuX1jiTbp32nJfn0GOMzy/e/M+37wSQva3tFkkuTHJ3k1GXfH44xbtzDve6V5I1tr0pyUTZieJfLxhifH2PcmeSKZY5HLvP9yXLMm5M8bfeLjjEuGGOsjTHWTjnllN13AwCwhWyGZ5Bvn17fkeSY/TyvSZ4zxrjuLhvb70vytbs55yVJbkjy2Gz84+C2vcyxGX42AAAcZpthBXlvrkvy0Lbbl+/Pmfa9K8kvTM8KP24/rnd8kuuXVeLnJTlqP+6/ve33Lt8/L8n79290AAC2ok0dyGOMbyT5uSSXtN2R5JYkNy+7fzkbj0x8vO01y/f7cn6S57e9MhuPb9zdSvOu+9+W5KeSXLQ8lnFnkn/z7bwXAAC2ho4xVj3DXrU9boxx67JS/BtJPjXGeO2q57o7a2trY319fdVjsEXd9pUvr3qEw+7oE05e9QgAHKHa7hhjrB3oeZt6BXnxM8sH8a7JxiMSb1jxPAAAHME2/QfRltXiTbtiDADAkWUrrCADAMBhI5ABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGCybdUDAH/u6BNOXvUIAHCPZwUZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAm/tQ0B8U3vvhfVz0CW9QxD/reVY8AAHdhBRkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmmzKQ276y7TMP0rUe1Pbig3EtAACOfNtWPcCejDFefjCu03bbGOOLSc4+GNcDAODIt9IV5Lbb217b9o1tr2n77rbHtL2w7dnLMT/c9pNtd7R9XdvfX7Yf2/ZNbS9r+7G2P7Zsf0Hbd7Z9b5L3LPe4errfB9p+dPl6yrL9rLaXtr14uddb2nbZ9/K2l7e9uu0Fu7YDAHBk2gyPWDw8yW+MMR6d5CtJnrNrR9ujk7whyQ+NMZ6Q5JTpvF9K8t4xxpOSPD3Ja9oeu+x7fJKzxxg/sNu9vpTkWWOMxyc5J8nrpn2PS/LiJKcneWiSpy7bXz/GeOIY4zFJjknyI9/pGwYAYPPaDIH8mTHGFcvrHUm2T/tOS/LpMcZnlu9/Z9r3g0le1vaKJJcmOTrJqcu+Pxxj3LiHe90ryRvbXpXkomzE8C6XjTE+P8a4M8kV0xxPb/uR5Zy/luTRu1+07blt19uu79y5c3/eMwAAm9RmeAb59un1HdlYpd0fTfKcMcZ1d9nYfl+Sr93NOS9JckOSx2bjHwe37WWObcsK9vlJ1sYYn2v7imyE+F2MMS5IckGSrK2tjf2cHwCATWgzrCDvzXVJHtp2+/L9OdO+dyX5helZ4cftx/WOT3L9skr8vCRH7eP4XTH85bbHxYf9AACOeJs6kMcY30jyc0kuabsjyS1Jbl52/3I2Hpn4eNtrlu/35fwkz297ZTYe37i7leZd9/9KkjcmuTobQX75t/M+AADYOjrG5n4ioO1xY4xbl5Xi30jyqTHGa1c9191ZW1sb6+vrqx7jsPvGF//rqkdgizrmQd+76hEAOEK13THGWDvQ8zb1CvLiZ5YP4l2TjUck3rDieQAAOIJthg/p7dWyWrxpV4wBADiybIUVZAAAOGwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMvD/t3fn0XIWdRrHvw8JEjQxJIBMFDHIIsNhEMeAB0UIGrdRATWKgEAQ11FE0HHw6GhcZgSiwigqEcSERUWQTTwaQzCAAQkBsrEEOIASB2FQiIAjKvzmj/q1qdvp7eYm996E53POPbferd6q962qrq63utvMzMwq7iCbmZmZmVXcQTYzMzMzq7iDbGZmZmZWcQfZzMzMzKziDrKZmZmZWcUdZDMzMzOzijvIZmZmZmaVkUOdANs4bP7cHYc6CWZmZmbrhEeQzczMzMwq7iCbmZmZmVXcQTYzMzMzq7iDbGZmZmZWUUQMdRo2KpIeBVYMdTrMNiBbAQ8NdSLMNhCuL2b986KIGNPfg/wtFuveioiYNNSJMNtQSFrkOmPWG9cXs/6RtGhtjvMUCzMzMzOzijvIZmZmZmYVd5DXvW8PdQLMNjCuM2a9c30x65+1qjP+kJ6ZmZmZWcUjyGZmZmZmFXeQzczMzMwq7iAPkKTxkuZKujP/j2uz388kPSLp8sFOo9lwIOn1klZIukvSCS22bybp/Nx+vaSJg59Ks+Ghh/qyr6SbJP1N0tShSKPZcNFDfTle0q2SlkqaJ+kF3eJ0B3ngTgDmRcROwLxcbmUGcPigpcpsGJE0AvgG8AZgV+AQSbs27XY08HBE7AicApw0uKk0Gx56rC+/AaYB3xvc1JkNLz3Wl5uBSRGxO3AhcHK3eN1BHrgDgdkZng0c1GqniJgHPDpYiTIbZvYC7oqIuyPiL8APKHWnVtelC4FXS9IgptFsuOhaXyLi3ohYCjw1FAk0G0Z6qS+/iIg/5eKvgG27ReoO8sBtExH3Z/h3wDZDmRizYep5wH3V8spc13KfiPgbsArYclBSZza89FJfzKzob305Gvhpt0j9U9M9kHQF8A8tNn2qXoiIkOTvzTMzMzMbZiS9C5gE7NdtX3eQexARU9ptk/SApAkRcb+kCcCDg5g0sw3Fb4HnV8vb5rpW+6yUNBIYC/x+cJJnNqz0Ul/MrOipvkiaQhnY3C8inugWqadYDNxlwJEZPhK4dAjTYjZc3QDsJGl7Sc8A3kmpO7W6Lk0Frgz/kpE9PfVSX8ys6FpfJL0EmAkcEBE9DWS6gzxwJwKvkXQnMCWXkTRJ0pmNnSRdA1xA+eDRSkmvG5LUmg2BnFP8YWAOcBvww4i4RdLnJR2Qu30H2FLSXcDxtP9GGLONWi/1RdKeklYCbwdmSrpl6FJsNnR6fH2ZAYwGLpC0WFLXN5z+qWkzMzMzs4pHkM3MzMzMKu4gm5mZmZlV3EE2MzMzM6u4g2xmZmZmVnEH2czMzMys4g6yma03kl4had+hToeZmVl/uINs/SZpvqRJ6zC+iZIOXVfxtYh/sqTL11f8bc752GCerxNJ90raagjO+xLgKOC6HvefJum0DH9A0hEt9pkoafm6TenTV33NrTf53aptf111PZ3z2sE83/o0kLwMRrsq6SOSbpN0nqQDJHX8PvaN6d60I+lMSbsOdToGm39q2oaDicChwPd6PUDSyPxy8HWuOe71ea5ezr+hnjMibgbe0+GcIyLiyTbHnr4u02LrR/M97HRPm44b9DK+rkTEZwYaR6/5b+wXES8f6DmHiw0gL/8KTImIlbnc8QclNoD8DFhEtG3HN2YeQd5ISNpE0pt73HeWpG9J+pWku3OE9ax81zyr2u9bkhZJukXS59rEdbSkOyQtlHRGNQL4ZknXS7pZ0hWStsn1++Wv2CzObWMovz74ylx3XI4SXiPppvx7eR47OddfBtzaJY+vl3S7pJuAt1brn5V5XZjnPzDXT5N0maQrgXktlsdLukTS0rxuu+dxoyV9V9Ky3Pa26lz/KWlJ7t/If7vrMl3SOZIWAOd0yNfEzNd5eb8ulPTM3PbqjHdZ5nGz6tBP5PqFknasysHpkq4HTpa0g6SfSboxr/MuXa7xNEmXqjxRuFPSZ6tt78pzLZY0U9KIXP+YpK9IWgLsLemoRvkBXlEdP13SxzP80ryOS4APNV2LNcqJrUnSXpKuy/JxraQXVZufm/f9TkknV8cckmVmuaSTqvXN97B5+TOSbsjjvi1Jedx8SadKWgQc2yGtIyTNyDiWSnp/te3fM01LJDV+tXSPrGNLJV0saVx1vpOyHN4h6ZW5flRVZ2+WtH+un5Z1fK7KU5cPSzo+9/mVpPG53yxJU1V+LbXRli2TFLn9vZn2JZJ+VNXPPvWtQ/7XaOdUjZz25xp0OMd0lTZivsprwEeqbe3qbru2fqKkK/Pc8yRtl+u3ybQsyb9GO/5Y/lfe5+WZn4M7pblK3ykqr0nzJG2d61q2XXnNv6ZS5u+WNLWK59+qMva5XHc68ELgpyqvRfVTrbXKj6QJkq7O67m8UQ475G/PTNPiRnzVdW73ujhf5bWg8drQqHOd6mKrujFC0pdz/6WSjqn2n5Thrv2CFnl6hqQ39LLvsBIR/tvA/yhvdGYDJ/W4/yzgB4CAA4E/Av+U8dwI7JH7jc//I4D5wO65PB+YBDwXuBcYD2wKXAOclvuMY/UvNb4H+EqGfwy8IsOjKU8xJgOXV+l7JjAqwzsBizI8GXgc2L5L/kYB9+WxAn7YiB/4L+BdGd4CuAN4FjANWFnluXn568BnM/wqYHGGTwJOrc49Lv8H8OYMnwx8ust1mZ7XfvMueZuYcTeu4VnAx6s875zrzwY+muF7gU9l+IjqWswCLgdG5PI8YKcMvwy4sktapgH3A1sCmwPLs1z8Y97nTXO/bwJHVNflHRmeAPwG2Bp4BrCA1eVnOvDxDC8F9s3wDGB5p3Liv5b36tnAyAxPAX5U3cO7gbFZhn4NPJ9Stxv3ZiRwJXBQ8z1sszy+Cp9T1YP5wDd7SOv7qvqyGbAI2B54A3At8Mz6PFk+9svw58n6mOdr1K9/Aa7I8MeAszK8S+ZzVF6Lu4Axme9VwAdyv1NYXZ9mAVOb0jwDmJHhLav1XwSOaVXfOuR/Mk3tHPBY/u/XNehwjukZz2bAVsDvKW14y7pL57b+x8CRGX43cEmGz6+u2QhgbFNe3gbMzW3b5H2Y0CXdARyW4c9UaWjZduU1v4Dy2rYrcFeufy3wbcrrwyZ5XxptzL3AVlX9OG0g+aGUt09Vx43pksflwN4ZPpEu7V2Wl1XAtpmX64B9eqiLrerGB4ELWd1WjK/2n9S0rk+/oEueNgeuAN47kHZssP88xWLj8AHgcOBWSW9s2nZnRLylxTE/joiQtAx4ICKWAUi6hdIJWwy8Q9L7KC+QEygNzNIqjr2AqyLiD3nsBcDOuW1b4HxJEyidn3ty/QLgq5LOAy6KiJX5pra2KXCapD2AJ6s4ARZGxD3NBzTZBbgnIu7MdJ1LedGF0jAeoBydpLwwbpfhuY28tFjeh9IAEhFXStpS0rMpnY13Ng6IiIcz+BdKowul4/uaLtcF4LKI+L8ueQO4LyIWZPhc4COUhvmeiLgj18+mjLaemsvfr/6fUsV1QUQ8KWk08HLK79Q3ttUj0O3MjYjfA0i6iHKd/ga8FLgh49oceDD3fxL4UYZfBsyPiP/N48+n771G0hbAFhFxda46h9JJgM7lxPoaC8yWtBOlk7FptW1eRKwCkHQr8ALKm5763pwH7AtcQt97SIvl/SV9gvKCPh64hdKJgtLJ6Oa1wO7VaN9YSodgCvDdiPgTQET8QdJYSvm4KvedTekQNVyU/2+ktGtQyujXM47bJf2a1WXnFxHxKPCopFVVupcBu7dKbI4U/nOmG2A3SV+kvAEfDcypdr8gepiCQvt2bm2uQTs/iYgngCckPUjp1L2a1nW3U1u/N6uf0p3D6tHxV1E612SeVzWdfx/g+7ntAUlXAXvSeUrDU6wuQ+cCF/XQdl0SEU9RXh+3yXWvzb+bc3k0pYxdTXtrm58bgLMkbZppWdzuBNnejYmIxuc2vge8KcPdXhdXZhyLKWX9l3Sui63qxhTg9MjpP02vhw0d+wUqT4Vbfe5kFDBT0nURsUF8jsQd5I3D2cA7KA3n7B6PeSL/P1WFG8sjJW1PGZncMyIeVpl6Maofafo68NWIuEzSZMqIBRFxoqSfUN61LpD0uhbHHgc8ALyY8o74z9W2x/uRhlYEvC0iVvRZKb2sRdwDOddfI986UxqzRl1reV36eb7ostztmDrcOOcmwCMRsUePaeiUFgGzI+KTLfb/c48dhF50KifW1xconb+3SJpIGflpqOt/XVbbab6Hf1+WNIoy6jgpIu6TNJ2+7UYvZVyUUdc5fVa2biu6aeStl3zV+0PftvGpVsdL2o1Sh/etrsksymj7EknTKCN8Db3W8YG2c71odd9b1l1JBw1CetZG0L3tqvOp6v+XImLm+kwcQERcrfJNPm8EZkn6akScvRZRdWrv1riXPdTF/tYNeukX5BvM3ZqOEzATuHRD6RyD5yBvFCLiMUrl23odRvtsSiO9Kt91t5o/dAOwn6RxkkaSI6xpLPDbDB/ZWClph4hYFhEn5fG7AI9SHmvWx96f7/oPpzzKaUllHtrzmlbfDkyUtEMuH1JtmwMcU83Fekm7uJtcAxyWx0wGHoqIP1JGbut5sR3n/tHmujST9DxJ89ps3k7S3hk+lDJSsIKS5x1z/eHAVdUxB1f/13h3n3m5R9Lb8/yS9OIMv0XSl9qk5TUq87M3Bw6iPCGYB0yV9Jw8frykF7Q49npK+dkyR1fe3iJdjwCPSNonVx1Wbe65nFifcjeth/0XUu7NVipzUA+hb3lqp/Fi+VCO7E1tt2OHcjUH+GCWCSTtLOlZlLp2lFbP6R2fI98Pa/W8zuZy30pdl3emPEFa0fGI1unfgvJE5ojGSHsaA9yf6T+s5cH8fV54fztK/boGKvOoP9yP+NvV3U5t/bWsfop2GOX6NuL6YMYzIke6a9cAB+e2rSlPKBbm/re3Sd8mrC5ThwK/7NR2dTAHeHeW0UZ7+5wux6xVfvL6PRARZwBnUp42IOlsSXvVEWR792gO2ED1dJL+t3c918XKXOD9eY9Rzruv9NIvaGUMcGtEfKzH/YcFd5A3EhHxeER8eR3Gt4Ty+Ol2ymOeBS32+S1lTu/C3H4vqx87Tac88roReKg67KPKDwAAfwV+Snk886TKBx+Oo7zrPVLlQz+70GY0RdImwI5An8dAEfFnypSKn6h8SO/BavMXKI+qlqpMJ/lCL9cj8/PSTPeJrO7cfhEYl3laAuzfQzytrkuzCZSpCq2sAD4k6TbKnOZvZZ6PyriXUUa86m+CGJdpP5YyEtHKYcDRmY9bKPPTAXagzFNvZSHl8fpSyrzWRRFxK/Bp4Od5zrmZnz4i4n7K9biOUn5ua3OOo4BvqDw6rOfj9FRODCiPvb8k6WZ6GC3Ke3MC8AtgCXBjRFzaw3GPAGdQ5lHOoXSs2mlXrs6kfDjtJpUPKM2kzIn8GeXx+6IsC41pUkcCM7Ks7UGZg9vJN4FNsp6cD0zLqQb9dSBlOsoZyg/r5fr/oLz5W0BpP9vZDuhlStXfrcU12IUyv7jX+FvW3S5t/TGUTvtSSset8QHMYymP+JdRHuM3f03YxZR2YwlljvsnIuJ3Kl9Juca8u/Q4sFeWi1dV+WzXdrXL588pr2vXZfoupO8gTStrlR/KE4QlWfcOBv47998d+J8W5zmaLFOUz8c0rnO/2rt+1sWGMylzp5fmefp8/Wov/YI2afljRJzafc/hpfFhIbO1Iml0RDyW7zgvpnz45eJBOvduwLsj4vjBON9gylGf30TEZU3rJ1I+ZLdbq+PWU1rOBY5rGiVD5fHxpIjozwiVGdC+XD1dSJoBnBMRS7vuvPbnuBx4a0T8ZR3ENShtvaQ3AS+MiK+t67iHC5XPr3wnItZ4ata4zhk+gfIGpe23vtj64w6yDYikL1Mm9o8Cfg4cGy5U681QdJDbcQfZ7OnDbf3gUPnQ5ycpT3p+TXnC8bR8EznU3EE2MzMzM6t4DrKZmZmZWcUdZDMzMzOzijvIZmZmZmYVd5DNzMzMzCruIJuZmZmZVf4fB0RwhMDIYxwAAAAASUVORK5CYII=\n" + }, + "metadata": {}, + "execution_count": 20 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Comparando estos núcleos de significado con los anterirores obtenidos observamos que aumentar la definición de los núcleos en este caso en concreto impacta al desplazamiento de todas las palabras, y asentuan las ya presentes, del lado del núcleo de pobreza.\n", + "\n", + "Pero lo cierto es que la palabra *pérdida* en sí tiene un significado más consistente, o propenso, a evocar a la pérdida material o de una persona, no necesariamente tratandose de una pérdida financiera. En estos casos tambien es interesante evaluar las palabras con la cual definimos nuestros núcleos de significado que, como todas, tambien se encuentran sesgadas. Utilicemos la utilidad del **prototipo de datos** para confirmar, o no, esta hipotesis." + ], + "metadata": { + "id": "ROiguOThpcVr" + } + }, + { + "cell_type": "code", + "source": [ + "palabra_a_buscar = 'pérdida'\n", + "\n", + "_, conjuntos_de_origen = explorador_de_datos.getSubsetsInfo(palabra_a_buscar)\n", + "conjuntos_de_origen" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "_YoPv4wwqn7U", + "outputId": "39302a70-5d9b-4a96-b390-cad23bbacc36" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "{'OpenSubtitles2018 (45519)': 0.2624662684226307,\n", + " 'allwikis (34159)': 0.19696358142860437,\n", + " 'multiUN (29430)': 0.16969578153470027,\n", + " 'ParaCrawl (27758)': 0.16005489309684712,\n", + " 'EUBookShop (9753)': 0.05623659386027631,\n", + " 'DOGC (6373)': 0.03674723804691284,\n", + " 'EMEA (5244)': 0.030237331918721314,\n", + " 'ECB (3812)': 0.02198030306524898,\n", + " 'DGT (3484)': 0.0200890282999285,\n", + " 'Europarl (2968)': 0.0171137301935097,\n", + " 'JRC (2695)': 0.015539589916276495,\n", + " 'GlobalVoices (1015)': 0.005852572825610628,\n", + " 'NewsCommentary11 (907)': 0.005229836012639251,\n", + " 'UN (170)': 0.0009802338722697604,\n", + " 'TED (141)': 0.0008130175058237425}" + ] + }, + "metadata": {}, + "execution_count": 21 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Extraigamos tambien los contextos de los dos subconjuntos con mayor presencia de esta palabra." + ], + "metadata": { + "id": "VM1bPuXvqsZK" + } + }, + { + "cell_type": "code", + "source": [ + "subconjuntos = ['OpenSubtitles2018', 'allwikis']\n", + "\n", + "ds = explorador_de_datos.findSplits(palabra_a_buscar, subconjuntos)\n", + "contextos = explorador_de_datos.getContexts(palabra_a_buscar, cantidad_de_contextos, ds)\n", + "[contexto[1].replace('', '').replace('', '') for contexto in contextos]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "huvi_5xJqyWS", + "outputId": "87a0e1c2-f085-4d58-b205-e507a247eef0" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "['poco después a la comisaría llegan micah y roland blake, los hermanos del vendedor de drogas, los cuales se muestran muy furiosos y dolidos por la pérdida de su hermano.',\n", + " 'dominada la colonia española por los británicos, el temor a la pérdida oficial de la isla por parte de españa provocó que, en 1659, el político y noble español juan francisco de leiva, comenzara a arbitrar medios para expulsar a los extranjeros de la isla, proponiendo el envío de \"una armada despachada de la península, cargada de gentes que han de ser de trabajo y provecho como lo es la de las canarias\".',\n", + " 'ante la decisión de la mujer del rey de escoger a juan i de castilla como marido para su hija, hecho que supondría una pérdida de independencia para portugal frente a la vecina corona de castilla, muchos nobles que habían apoyado a otros pretendientes al trono portugués a la muerte de fernando i de portugal.',\n", + " 'lamento tu pérdida.',\n", + " 'desesperado por detener la pérdida de amigos, le pide un consejo a cartman.',\n", + " 'lamento tu pérdida.',\n", + " 'la casi desaparición de los peces sierra en la región aparentemente está relacionada con su sobrepesca y la pérdida de hábitat, sobre todo la destrucción de los ecosistemas de manglares.',\n", + " 'comenzó a suavizar la intensidad de mi sufrimiento por la pérdida de mi amante y mi bebé.',\n", + " 'existen evidencias de que el estero las rosas en determinados momentos adquiere un caudal bastante importante y su intervención explicaría en parte la pérdida del tamaño del espejo de agua que actualmente experimenta la laguna la matanza.',\n", + " 'la canción es una balada romántica y líricamente describe un \"emotivo diálogo lleno de la nostalgia por una pérdida amorosa y el anhelo de la esperanza de un reencuentro.\"']" + ] + }, + "metadata": {}, + "execution_count": 22 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Se alienta al usuario a repetir la consulta de contextos multiples veces para observar distintos contextos. Se observan casos claros de una *pérdida* financiera, pero así tambien muchos otros tratandose de *pérdida* de tiempo, amor, objetos, familiares, etc.\n", + "\n", + "De esta forma podemos concluir que *pérdida* no es una buena opción de palabra para la definición de nuestro núcleo así que la removemos, pero aún nos queda ver el caso para la palabra *ganancia* (considerando, como en los anteriores casos, los dos subconjuntos con mayor frecuencia de esta palabra)." + ], + "metadata": { + "id": "E6KaAe1_rV2w" + } + }, + { + "cell_type": "code", + "source": [ + "nucleo_pobre.remove('pérdida')" + ], + "metadata": { + "id": "Klmo5IOlt950" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "palabra_a_buscar = 'ganancia'\n", + "\n", + "_, conjuntos_de_origen = explorador_de_datos.getSubsetsInfo(palabra_a_buscar)\n", + "conjuntos_de_origen" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "zGjgSrhiuIRr", + "outputId": "729f4b63-7e82-4bb0-d547-3abf73b1e340" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "{'OpenSubtitles2018 (5634)': 0.35208098987626546,\n", + " 'ParaCrawl (4372)': 0.2732158480189976,\n", + " 'allwikis (3729)': 0.23303337082864642,\n", + " 'multiUN (570)': 0.03562054743157105,\n", + " 'EUBookShop (514)': 0.03212098487689039,\n", + " 'DGT (247)': 0.01543557055368079,\n", + " 'ECB (204)': 0.01274840644919385,\n", + " 'DOGC (157)': 0.00981127359080115,\n", + " 'EMEA (136)': 0.0084989376327959,\n", + " 'GlobalVoices (119)': 0.0074365704286964126,\n", + " 'JRC (101)': 0.006311711036120485,\n", + " 'NewsCommentary11 (90)': 0.00562429696287964,\n", + " 'Europarl (88)': 0.0054993125859267595,\n", + " 'TED (41)': 0.002562179727534058}" + ] + }, + "metadata": {}, + "execution_count": 24 + } + ] + }, + { + "cell_type": "code", + "source": [ + "subconjuntos = ['OpenSubtitles2018', 'ParaCrawl']\n", + "\n", + "ds = explorador_de_datos.findSplits(palabra_a_buscar, subconjuntos)\n", + "contextos = explorador_de_datos.getContexts(palabra_a_buscar, cantidad_de_contextos, ds)\n", + "[contexto[1].replace('', '').replace('', '') for contexto in contextos]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "B88UJpbkud4S", + "outputId": "001d20fc-3d78-4756-cfd5-cd01354c983f" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "['no sé qué ganancia hay en eso.',\n", + " 'la ganancia es útil si, como medio, se orienta a un fin que le dé un sentido, tanto en el modo de adquirirla como de utilizarla.',\n", + " 'ellas le darán una buena ganancia.',\n", + " 'para \" el modo de arcada \", podes ser el corredor de cualquier coche que desees, sin haber examinado el proceso largo de ganancia y perdida.',\n", + " 'la unidad mwb1000 se puede montar en cualquier lugar conveniente, ya sea por encima o por debajo de la cubierta con una cubierta de fibra de vidrio por encima de permanente montado de alta ganancia de la antena activa para la recepción máxima de la estación base.',\n", + " 'de igual manera, en muchas regiones, teniendo en cuanta las peculiares dificultades de la agricultura tanto en la producción como en la venta de sus bienes, hay que ayudar a los labradores para que aumenten su capacidad productiva y comercial, introduzcan los necesarios cambios e innovaciones, consigan una justa ganancia y no queden reducidos, como sucede con frecuencia, a la situación de ciudadanos de inferior categoría.',\n", + " 'será una ganancia de cinco millones.',\n", + " 'lo hace unida a pablo, que lo encontró en el camino de damasco y quedó impactado por él: « para mí la vida es cristo, y la muerte, una ganancia » (flp 1,21).',\n", + " 'no tengan, por consiguiente, el beneficio como una ganancia, ni empleen sus emolumentos para engrosar su propio caudal[138].',\n", + " 'yo devuelvo su carriola, su soñarra y en cima le doy de ganancia, un florero de pura porcelana italiana y usted me devuelve la pintura.']" + ] + }, + "metadata": {}, + "execution_count": 25 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Al igual que con perdida, es interesante ver diferentes contextos, pero se nota una mayor tendencia a trata la palabra *ganancia* en un sentico economico/financiero pero no excluyente; por lo tanto dependerá del experto de dominio su decisión de conservar esta palabra en la definición del núcleo de riqueza. En este caso optamos por conservarla y vemos como impacta finalmente en la evaluación de sesgos final.\n", + "\n", + "> **Notar**: no es necesario que las definiciones de los núcleos contengan la misma cantidad de palabras (u opuestas por completo). Solo que este presente al menos una palabra para cada definición." + ], + "metadata": { + "id": "IZDDXsfvu0bq" + } + }, + { + "cell_type": "code", + "source": [ + "explorador_de_sesgos_2.calculate_bias(procedencia, nucleo_pobre, nucleo_rico)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 729 + }, + "id": "-1CFz0s_vgy8", + "outputId": "c1b8e052-713e-40df-c690-073b4f6c4138" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAALICAYAAABiqwZ2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde7Tnd13f+9eLDJoQMNxGJD0kAxQIgUqADRKgGArYo8ejUlJTSzkgHlPRmgMtp9XaUooui3B6OEWMJXTRsJS6bMKleFkBBUIRCskeyJCEEFhyWUBiGE2IXEzA5HP+2N+pn4zJXMLM/PaePB5r7ZXv/l7fv/3XM5/13bM7xggAALDhbqseAAAANhOBDAAAE4EMAAATgQwAABOBDAAAk22rHuBoc//733/s2LFj1WMAANzl7dy580/HGNsP9jqBfIjt2LEj6+vrqx4DAOAur+3n7sx1XrEAAICJQAYAgIlABgCAiUAGAICJX9IDVuqPPnnNqkcANrmnPvzEVY/AXYwVZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCOS9tH1R2+9Y9RwAAKzGlg7ktp9te/9DeL8zk/yNMcafH6p7AgCwtWzpQD4MjkvyslUPAQDA6myZQG779rY7217Z9uzbOf6P2l7S9rK2r297zLL/q21fvVz3h22f2Pbitp9u+0PLOTvavj/JS5Kst33ysv+M5dwL236i7Zvb9kh+bgAAjqwtE8hJXjjGeHyStSTntL3fngNtH5nkrCRPGWOcluSWJM9dDh+f5D1jjEcl+UqSX0ryrCTPTvKK5ZwvJXnWGONxSf5hkl+dnvvYJC9OcmqShyR5yt6DtT277Xrb9d27dx+qzwsAwApsW/UAB+Gcts9eth+U5GHTsWckeXySS5cF3uOyEb1J8o0kFy3blye5eYzxzbaXJ9mx7N+W5DVtT0nyzSSnTPe+ZIzxhSRpe9lyzR/Ng40xzktyXpKsra2Nb+lTAgCwUlsikNuekeSZSU4fY3y97cVJjp1PSfKmMcbP387l3xxj7InWW5PcnCRjjFvb7vn8L0mye4zxE8u+m6brb562b8kW+ZkBAHDnbJVXLE5IcsMSx6ckedJex9+d5My235kkbe/b9uSDuP99kux5N+J5SY75VgcGAGBr2iqBfFGSbW2vSvLKJB+aD44xPp7kXyV5V9uPJfmDJA88iPv/epIXtN2VjdcrvnZIpgYAYMvpX719wKGwtrY21tfXVz0GbBl/9MlrVj0CsMk99eEnrnoEtqi2O8cYawd73VZZQQYAgCNCIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBk26oHAO7anvrwE1c9AgDchhVkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJhsW/UAwF3b1ddcv+oR4LB5xIn3XfUIwJ1gBRkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmmyKQ2+5oe8VBnH9x27Vl+/fb3nsf557Y9sJDMScAAEe/base4Fs1xviB/Ry/JsmZR2gcAAC2uE2xgrzY1vbNba9qe2Hbe7R9RtuPtr287RvbfvveF7X9bNv7t31l25+Z9r+87Uvn1ell+/1tP7J8PXnZf8ayKn1h208sc3Q5tt8ZAAA4emymQH5EknPHGI9M8udJ/mmS85OcNcb4W9lY7X7RPq7/7SQ/On3/o8u+2ZeSPGuM8bgkZyV57XTssUlenOTUJA9J8pS2xx7IDG3Pbrvedn337t0H9mkBANiUNlMgf36M8YFl+zeTPCPJZ8YYn1z2vSnJ0+7o4jHGR5N85/LO8WOS3DDG+Pxep909yRvaXp7kgmzE8B6XjDG+MMa4NcllSXZkI9r3O8MY47wxxtoYY2379u0H8ZEBANhsNtM7yGOv77+c5H4HeY8LsvG+8Xflr68eJ8lLklyX5DHZ+J+Dm6ZjN0/bt2Rz/WwAADhCNtMK8kltT1+2/2GS9SQ72v7NZd/zkrxvP/f47ST/IBuRfMHtHD8hybXLKvHzkhyzn/tdfSdmAABgC9tMgXx1kp9pe1WS+yR5TZIfT3LB8krErUn+475uMMa4Msm9knxxjHHt7ZxybpLnt92V5JQkX9vP/W462BkAANjaOsbebzbwrVhbWxvr6+urHgO2jKuvuX7VI8Bh84gT77vqEeAure3OMcbawV63mVaQAQBg5QQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATLategDgru0RJ9531SMAwG1YQQYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIk/NQ2s1NXXXL/qEeCw8afUYWuyggwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAACToyqQ235w1TMAALC1HRWB3HZbkowxnrzqWQAA2NqOWCC3fXvbnW2vbHv2su+rbV+97PvDtk9se3HbT7f9oeWcY5ZzLm37sbb/eNl/Rtv3t31Hko/vud/0vH/R9vK2u9q+ctn3k8t9drV9S9t7LPvPb/vath9cnn3msv+ebd/d9iPLvX74SP28AABYjW1H8FkvHGNc3/a4JJe2fUuS45O8Z4zxf7d9W5JfSvKsJKcmeVOSdyT5iSQ3jjGe0Pbbk3yg7buWez4uyaPHGJ+ZH9T2+5P8cJLvGWN8ve19l0NvHWO8YTnnl5Z7/+py7IFJnprklOW5Fya5Kcmzxxh/3vb+ST7U9h1jjLHX885OcnaSnHTSSYfgRwUAwKocyUA+p+2zl+0HJXlYkm8kuWjZd3mSm8cY32x7eZIdy/7vS/Lde1Z1k5wwXXvJ3nG8eGaS/zzG+HqSjDGuX/Y/egnjeye5Z5J3Tte8fYxxa5KPt33Asq9Jfrnt05LcmuRvJHlAkj+ZHzbGOC/JeUmytrZ2m3gGAGBrOSKB3PaMbETr6cuK7sVJjk3yzWk19tYkNyfJGOPWPe8VZyNSf3aM8c7buefXDnKU85P8yBhjV9sXJDljOnbzfPvlv89Nsj3J45dw/+wyNwAAR6kj9Q7yCUluWOL4lCRPOohr35nkRW3vniRtH972+P1c8wdJfnx6x3jPKxb3SnLtcq/nHuDcX1ri+OlJTj6IuQEA2IKO1CsWFyX5qbZXJbk6yYcO4tr/lI3XLT7Stkl2J/mRfV0wxrio7WlJ1tt+I8nvJ/mXSf51kg8v9/hwNoJ5X96c5HeWVz7Wk3ziIOYGAGAL6l6/b8a3aG1tbayvr696DNgyrr7m+v2fBFvUI0687/5PAg6btjvHGGsHe91R8e8gAwDAoSKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgsm3VAwB3bY848b6rHgEAbsMKMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATPypaWClrr7m+lWPAIeNP6UOW5MVZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJhsiUBu+9m291/1HAAAHP22RCADAMCRsukCue3b2+5se2Xbs2/n+D9qe0nby9q+vu0xy/6vtn31ct0ftn1i24vbfrrtDy3n7Gj7/rYfWb6evOw/Yzn3wrafaPvmtl2OvaztpW2vaHvenv0AABydNl0gJ3nhGOPxSdaSnNP2fnsOtH1kkrOSPGWMcVqSW5I8dzl8fJL3jDEeleQrSX4pybOSPDvJK5ZzvpTkWWOMxy33ee303McmeXGSU5M8JMlTlv2vG2M8YYzx6CTHJfnBvQdue3bb9bbru3fv/pZ/AAAArM62VQ9wO85p++xl+0FJHjYde0aSxye5dFnIPS4b0Zsk30hy0bJ9eZKbxxjfbHt5kh3L/rsneV3bPXH98Onel4wxvpAkbS9brvmjJE9v+8+T3CPJfZNcmeR35oHHGOclOS9J1tbWxp394AAArN6mCuS2ZyR5ZpLTxxhfb3txkmPnU5K8aYzx87dz+TfHGHvi9NYkNyfJGOPWtns+50uSXJfkMdlYPb9puv7mafuWJNvaHpvk3CRrY4zPt335XvMAAHCU2WyvWJyQ5IYljk9J8qS9jr87yZltvzNJ2t637ckHef9rxxi3JnlekmP2c/6eGP7TtvdMcuZBPAsAgC1oswXyRdlYub0qySuTfGg+OMb4eJJ/leRdbT+W5A+SPPAg7n9ukue33ZXklCRf29fJY4wvJ3lDkiuSvDPJpQfxLAAAtqD+1VsJHApra2tjfX191WPAlnH1NdevegQ4bB5x4n1XPQLcpbXdOcZYO9jrNtsKMgAArJRABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgMm2VQ8A3LU94sT7rnoEALgNK8gAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADDxp6aBlfrj625Y9QiQJHnoA+6z6hGATcIKMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEw2RSC33dH2ioM4/+K2a8v277e99z7OPbHthYdiTgAAjn7bVj3At2qM8QP7OX5NkjOP0DgAAGxxm2IFebGt7ZvbXtX2wrb3aPuMth9te3nbN7b99r0vavvZtvdv+8q2PzPtf3nbl86r08v2+9t+ZPl68rL/jGVV+sK2n1jm6HLsZW0vbXtF2/P27AcA4Oi0mQL5EUnOHWM8MsmfJ/mnSc5PctYY429lY7X7Rfu4/reT/Oj0/Y8u+2ZfSvKsMcbjkpyV5LXTsccmeXGSU5M8JMlTlv2vG2M8YYzx6CTHJfnBg/9oAABsFZspkD8/xvjAsv2bSZ6R5DNjjE8u+96U5Gl3dPEY46NJvnN55/gxSW4YY3x+r9PunuQNbS9PckE2YniPS8YYXxhj3JrksiQ7lv1Pb/vh5Zq/k+RRez+77dlt19uu7969+2A+MwAAm8xmegd57PX9l5Pc7yDvcUE23jf+rvz11eMkeUmS65I8Jhv/c3DTdOzmafuWbLzycWySc5OsjTE+3/blSY79a4OPcV6S85JkbW1t788BAMAWsplWkE9qe/qy/Q+TrCfZ0fZvLvuel+R9+7nHbyf5B9mI5Atu5/gJSa5dVomfl+SY/dxvTwz/adt7xi/7AQAc9TZTIF+d5GfaXpXkPklek+THk1ywvN5wa5L/uK8bjDGuTHKvJF8cY1x7O6ecm+T5bXclOSXJ1/Zzvy8neUOSK5K8M8mlB/WJAADYcjqGNwIOpbW1tbG+vr7qMWDL+OPrblj1CJAkeegD7rPqEYBDrO3OMcbawV63mVaQAQBg5QQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMtq16AOCu7aEPuM+qRwCA27CCDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE39qGlipP77uhlWPAEn82XPgr1hBBgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgMldJpDb3rvtT0/fn9j2wlXOBADA5rOpA7ntMYfwdvdO8j8DeYxxzRjjzEN4fwAAjgIrDeS2b2+7s+2Vbc9e9n217b9vuyvJ6W1/ou0n217S9g1tX7ect73tW9peunw9Zdn/8rZvbHtx20+3PWd53CuTPLTtZW1f3XZH2yuWa17Q9q1tL2r7qbavmmb89bbry4z/9oj+gAAAOOK2rfj5LxxjXN/2uCSXtn1LkuOTfHiM8c/anpjkN5M8LslXkrwnya7l2v+Q5DVjjD9qe1KSdyZ55HLslCRPT3KvJFe3/fUkP5fk0WOM05Kk7Y69ZjktyWOT3Lxc86tjjM8n+YVlxmOSvLvtd48xPjZfuMT92Uly0kknHZIfDAAAq7HqQD6n7bOX7QcleViSW5K8Zdn3xCTvG2NcnyRtL0jy8OXYM5Oc2nbPvb6j7T2X7d8bY9yc5Oa2X0rygAOY5d1jjBuX53w8yclJPp/kR5cA3pbkgUlOTXKbQB5jnJfkvCRZW1sbB/jZAQDYhFYWyG3PyEbknj7G+Hrbi5Mcm+SmMcYtB3CLuyV50hjjpr3um2ysAu9xSw7sc/61a9o+OMlLkzxhjHFD2/OXGQEAOEqt8h3kE5LcsMTxKUmedDvnXJrke9vep+22JM+Zjr0ryc/u+abtaft53ley8crFwfiOJF9LcmPbByT5/oO8HgCALWaVgXxRNlZpr8rGL9B9aO8TxhhfTPLLSS5J8oEkn01y43L4nCRrbT+2vBLxU/t62Bjjz5J8oO0VbV99IAOOMXYl+WiSTyT5L8sMAAAcxTrG5n5ltu09xxhfXVaQ35bkjWOMt616rjuytrY21tfXVz0GbBl/fN0Nqx4BkiQPfcB9Vj0CcIi13TnGWDvY6zb1v4O8eHnby5JckeQzSd6+4nkAADiKrfpfsdivMcZLVz0DAAB3HVthBRkAAI4YgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAACTAwrktse3vduy/fC2P9T27od3NAAAOPIOdAX5vyc5tu3fSPKuJM9Lcv7hGgoAAFblQAO5Y4yvJ/l7Sc4dY/z9JI86fGMBAMBqHHAgtz09yXOT/N6y75jDMxIAAKzOgQbyi5P8fJK3jTGubPuQJO89fGMBAMBqbDuQk8YY70vyvun7Tyc553ANBQAAq7LPQG77O0nGHR0fY/zQIZ8IAABWaH8ryP/P8t+/l+S7kvzm8v2PJbnucA0FAACrss9AXl6tSNt/P8ZYmw79Ttv1wzoZcJfw0AfcZ9UjAMBtHOgv6R2//GJekqTtg5Mcf3hGAgCA1TmgX9LLxr9icXHbTydpkpOTnH3YpgIAgBXZbyAvf2L6hCQPS3LKsvsTY4ybD+dgAACwCvt9xWKMcWuSfz7GuHmMsWv5EscAAByVDvQd5D9s+9K2D2p73z1fh3UyAABYgQN9B/ms5b8/M+0bSR5yO+cCAMCWdaB/Se/Bh3sQAADYDA4okNvePcmLkjxt2XVxktePMb55mOYCAICVONBXLH49yd2TnLt8/7xl3/95OIYCAIBVOdBAfsIY4zHT9+9pu+twDAQAAKt0oIF8S9uHjjH+OEmWv6p3y+EbC7ir+NzuG1c9AlvUydtPWPUIwFFqn4Hc9sVJPpjk57KxavyZ5dCOJC88vKMBAMCRt78V5P8lyf+X5JFJPpXk+iTvTfKWMcY1h3k2AAA44vYZyGOMlyZJ229LspbkyUnOSPLzbb88xjj1sE8IAABH0IG+g3xcku9IcsLydU2Syw/XUAAAsCr7ewf5vCSPSvKVJB/OxvvI/+8Y44YjMBsAABxxd9vP8ZOSfHuSP0nyxSRfSPLlwz0UAACsyv7eQf5f2zYbq8hPTvLPkjy67fVJ/scY498cgRkBAOCI2e87yGOMkeSKtl9OcuPy9YNJnphEIAMAcFTZ3zvI52Rj5fjJSb6ZjXeQP5jkjfFLegAAHIX2t4K8I8kFSV4yxrj28I8DAACrtb93kP/pkRoEAAA2g/39KxYAAHCXIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgcpcJ5Lb3bvvT0/cntr1wlTMBALD5bOpAbnvMIbzdvZP8z0AeY1wzxjjzEN4fAICjwEoDue3b2+5se2Xbs5d9X23779vuSnJ6259o+8m2l7R9Q9vXLedtb/uWtpcuX09Z9r+87RvbXtz2023PWR73yiQPbXtZ21e33dH2iuWaF7R9a9uL2n6q7aumGX+s7eVtr2j7K0f0BwQAwBG3zz81fQS8cIxxfdvjklza9i1Jjk/y4THGP2t7YpLfTPK4JF9J8p4ku5Zr/0OS14wx/qjtSUnemeSRy7FTkjw9yb2SXN3215P8XJJHjzFOS5K2O/aa5bQkj01y83LNrya5JcmvJHl8khuSvKvtj4wx3j5fuMT92Uly0kknfes/FQAAVmbVgXxO22cv2w9K8rBsROlbln1PTPK+Mcb1SdL2giQPX449M8mpbffc6zva3nPZ/r0xxs1Jbm77pSQPOIBZ3j3GuHF5zseTnJzkfkkuHmPsXva/OcnTktwmkMcY5yU5L0nW1tbGAX52AAA2oZUFctszshG5p48xvt724iTHJrlpjHHLAdzibkmeNMa4aa/7JhurwHvckgP7nHfmGgAAjjKrfAf5hCQ3LHF8SpIn3c45lyb53rb3abstyXOmY+9K8rN7vml72n6e95VsvHJxMC5Znn//5RcGfyzJ+w7yHgAAbCGrDOSLkmxre1U2foHuQ3ufMMb4YpJfzkaofiDJZ5PcuBw+J8la248tr0T81L4eNsb4syQfWH7Z7tUHMuAY49psvLv83my8+7xzjPHfDuRaAAC2po6xuV+ZbXvPMcZXlxXktyV54xjjbaue646sra2N9fX1VY8BW8bndt+4/5Pgdpy8/YRVjwBscm13jjHWDva6Tf3vIC9e3vayJFck+Uz2+gU5AAA4lDb9L6KNMV666hkAALjr2AoryAAAcMQIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmGxb9QDAXdvJ209Y9QgAcBtWkAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYCKQAQBgIpABAGAikAEAYOJPTQMr9bndN656BLYof6YcOFysIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBkUwdy29Pa/sCduG5H2yuW7bW2rz300wEAcDTatuoB9uO0JGtJfn/vA223jTH+cn83GGOsJ1k/DLMBAHAUOqwryG3f3nZn2yvbnr3s++p0/My25y/bf7/tFW13tf3vbb8tySuSnNX2srZntX15299o+4Ekv7GsFL+/7UeWryffzgxntP3dZfuJbf9H24+2/WDbRyz7X9D2rW0vavuptq+arv/1tuvLZ/i3h/PnBQDA6h3uFeQXjjGub3tckkvbvmUf574syd8dY3yx7b3HGN9o+7Ika2OMf5IkbV+e5NQkTx1j/EXbeyR51hjjprYPS/Jb2VhxviOfSPK3xxh/2faZSX45yXOWY6cleWySm5Nc3fZXxxifT/ILy2c4Jsm72373GONjd/YHAgDA5na4A/mcts9eth+U5GH7OPcDSc5v+1+TvHUf571jjPEXy/bdk7yu7WlJbkny8P3Mc0KSNy0xPZbr93j3GOPGJGn78SQnJ/l8kh9dVr+3JXlgNgL9NoG8HD87SU466aT9jAAAwGZ22F6xaHtGkmcmOX2M8ZgkH01ybDbCdI9j92yMMX4qyb/KRkjvbHu/O7j116btlyS5LsljsrFy/G37GesXk7x3jPHoJP/7/PxsrBzvcUuSbW0fnOSlSZ4xxvjuJL+31zV7Zj9vjLE2xljbvn37fkYAAGAzO5zvIJ+Q5IYxxtfbnpLkScv+69o+su3dkuxZXU7bh44xPjzGeFmS3dkI5a8kudd+nnHtGOPWJM9LcswBzPTFZfsFB/AZviMbQX5j2wck+f4DuAYAgC3scAbyRdlYhb0qySuTfGjZ/3NJfjfJB5NcO53/6raXL/882weT7Ery3iSn7vklvdt5xrlJnt92V5JTctvV5dvzqiT/ru1HcwCvl4wxdmVj5fsTSf5LNl4DAQDgKNYxxv7P4oCtra2N9XX/qhwcqM/tvnHVI7BFnbz9hFWPAGxybXeOMfb1Dzjcrk39h0IAAOBIE8gAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADDZtuoBgLu2k7efsOoRAOA2rCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMDEn5oGVupzu29c9QhsUf5MOXC4WEEGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAiUAGAICJQAYAgIlABgCAyaYO5Lantf2BO3HdjrZXLNtrbV976KcDAOBotG3VA+zHaUnWkvz+3gfabhtj/OX+bjDGWE+yfhhmAwDgKHRYV5Dbvr3tzrZXtj172ffV6fiZbc9ftv9+2yva7mr739t+W5JXJDmr7WVtz2r78pF8mKcAAB4GSURBVLa/0fYDSX5jWSl+f9uPLF9Pvp0Zzmj7u8v2E9v+j7YfbfvBto9Y9r+g7VvbXtT2U21fNV3/Y20vX2b7lcP58wIAYPUO9wryC8cY17c9Lsmlbd+yj3NfluTvjjG+2PbeY4xvtH1ZkrUxxj9JkrYvT3JqkqeOMf6i7T2SPGuMcVPbhyX5rWysON+RTyT522OMv2z7zCS/nOQ5y7HTkjw2yc1Jrm77q0luSfIrSR6f5IYk72r7I2OMt883XeL/7CQ56aSTDvRnAwDAJnS4A/mcts9eth+U5GH7OPcDSc5v+1+TvHUf571jjPEXy/bdk7yu7WnZiNmH72eeE5K8aYnpsVy/x7vHGDcmSduPJzk5yf2SXDzG2L3sf3OSpyW5TSCPMc5Lcl6SrK2tjf3MAADAJnbYArntGUmemeT0McbX216c5NhshOkex+7ZGGP8VNvvSfK/JdnZ9vF3cOuvTdsvSXJdksdk43WRm/Yz1i8mee8Y49ltdyS5eDp287R9Szb/+9kAABwGh/Md5BOS3LDE8SlJnrTsv67tI9veLcme1eW0fegY48NjjJcl2Z2NFeevJLnXfp5x7Rjj1iTPS3LMAcz0xWX7BQfwGS5J8r1t79/2mCQ/luR9B3AdAABb1OEM5IuSbGt7VZJXJvnQsv/nkvxukg8muXY6/9V7fhluObYryXuTnLrnl/Ru5xnnJnl+211JTsltV5dvz6uS/Lu2H80BrBCPMa5d5n3vMs/OMcZ/2991AABsXR3DK7OH0tra2lhf96/KwYH63O4bVz0CW9TJ209Y9QjAJtd25xhjX/+Aw+3a1H8oBAAAjjSBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAABOBDAAAE4EMAAATgQwAAJNtqx4AuGs7efsJqx4BAG7DCjIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATLategDgru3zf3rjqkfgCHjQ/U9Y9QgAB8wKMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEwEMgAATAQyAABMBDIAAEyOqkBu+8FVzwAAwNZ2VARy221JMsZ48qpnAQBgaztigdz27W13tr2y7dnLvq+2ffWy7w/bPrHtxW0/3faHlnOOWc65tO3H2v7jZf8Zbd/f9h1JPr7nftPz/kXby9vuavvKZd9PLvfZ1fYtbe+x7D+/7WvbfnB59pnL/i7PvmK511lH6ucFAMBqHMkV5BeOMR6fZC3JOW3vl+T4JO8ZYzwqyVeS/FKSZyV5dpJXLNf9RJIbxxhPSPKEJD/Z9sHLsccl+b/GGA+fH9T2+5P8cJLvGWM8JsmrlkNvHWM8Ydl31XLvPR6Y5KlJfjDJK5d9fy/JaUkek+SZSV7d9oF7f7C2Z7ddb7u+e/fuO/OzAQBgkziSgXxO211JPpTkQUkeluQbSS5ajl+e5H1jjG8u2zuW/d+X5P9oe1mSDye533JtklwyxvjM7TzrmUn+8xjj60kyxrh+2f/oZdX58iTPTfKo6Zq3jzFuHWN8PMkDln1PTfJbY4xbxhjXJXlfNiL9NsYY540x1sYYa9u3bz+IHwkAAJvNtiPxkLZnZCNaTx9jfL3txUmOTfLNMcZYTrs1yc1JMsa4dc97xUma5GfHGO+8nXt+7SBHOT/Jj4wxdrV9QZIzpmM3z7c/yPsCAHCUOFIryCckuWGJ41OSPOkgrn1nkhe1vXuStH142+P3c80fJPnx6R3j+y7775Xk2uVezz2AZ78/yVnLe9DbkzwtySUHMTsAAFvMEVlBzsZrFD/V9qokV2fjNYsD9Z+y8brFR9o2ye4kP7KvC8YYF7U9Lcl6228k+f0k/zLJv87Gaxq7l//eaz/PfluS05PsSjKS/PMxxp8cxOwAAGwx/as3HDgU1tbWxvr6+qrHgC3j839646pH4Ah40P1PWPUIwF1Q251jjLWDve6o+HeQAQDgUBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMBHIAAAwEcgAADARyAAAMNm26gGAu7YH3f+EVY8AALdhBRkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACb+1DTcSTf92bWrHuGocOz9HrjqEQDgNqwgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwGRTBnLbV7R95iG614ltLzwU9wIA4Oi3bdUD3J4xxssOxX3abhtjXJPkzENxPwAAjn4rXUFuu6PtVW3f0PbKtu9qe1zb89ueuZzzA20/0XZn29e2/d1l//Ft39j2krYfbfvDy/4XtH1H2/ckeffyjCum572/7UeWrycv+89oe3HbC5dnvbltl2PPWO5/+fK8b1/JDwsAgCNiM7xi8bAkvzbGeFSSLyd5zp4DbY9N8vok3z/GeHyS7dN1v5DkPWOMJyZ5epJXtz1+Ofa4JGeOMb53r2d9KcmzxhiPS3JWktdOxx6b5MVJTk3ykCRPWZ5/fpKzxhh/Kxsr7i/a+wO0Pbvtetv13bt335mfAQAAm8RmCOTPjDEuW7Z3JtkxHTslyafHGJ9Zvv+t6dj3Jfm5tpcluTjJsUlOWo79wRjj+tt51t2TvKHt5UkuyEYM73HJGOMLY4xbk1y2zPGIZb5PLue8KcnT9r7pGOO8McbaGGNt+/btex8GAGAL2QzvIN88bd+S5LgDvK5JnjPGuPo2O9vvSfK1O7jmJUmuS/KYbPzPwU37mGMz/GwAADjCNsMK8r5cneQhbXcs3581HXtnkp+d3hV+7AHc74Qk1y6rxM9LcswBPH9H27+5fP+8JO87sNEBANiKNnUgjzH+IslPJ7mo7c4kX0ly43L4F7PxysTH2l65fL8/5yZ5fttd2Xh9445Wmvc8/6YkP57kguW1jFuT/Mc781kAANgaOsZY9Qz71PaeY4yvLivFv5bkU2OM16x6rjuytrY21tfXVz0GR8BNf3btqkc4Khx7vweuegQAjlJtd44x1g72uk29grz4yeUX8a7MxisSr1/xPAAAHMU2/S+iLavFm3bFGACAo8tWWEEGAIAjRiADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwEQgAwDARCADAMBEIAMAwGTbqgeArerY+z1w1SMAAIeBFWQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJj4U9NsSjf9yWdWPQJHyLHf9eBVjwAAt2EFGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACabMpDbvqLtMw/RvU5se+GhuBcAAEe/base4PaMMV52KO7TdtsY45okZx6K+wEAcPRb6Qpy2x1tr2r7hrZXtn1X2+Pant/2zOWcH2j7ibY727627e8u+49v+8a2l7T9aNsfXva/oO072r4nybuXZ1wxPe/9bT+yfD152X9G24vbXrg8681tuxx7WdtL217R9rw9+wEAODpthlcsHpbk18YYj0ry5STP2XOg7bFJXp/k+8cYj0+yfbruF5K8Z4zxxCRPT/Lqtscvxx6X5Mwxxvfu9awvJXnWGONxSc5K8trp2GOTvDjJqUkekuQpy/7XjTGeMMZ4dJLjkvzg3h+g7dlt19uu7969++B/AgAAbBqbIZA/M8a4bNnemWTHdOyUJJ8eY3xm+f63pmPfl+Tn2l6W5OIkxyY5aTn2B2OM62/nWXdP8oa2lye5IBsxvMclY4wvjDFuTXLZNMfT2354uebvJHnU3jcdY5w3xlgbY6xt375978MAAGwhm+Ed5Jun7VuysUp7IJrkOWOMq2+zs/2eJF+7g2tekuS6JI/Jxv8c3LSPObYtK9jnJlkbY3y+7cuzEeIAABylNsMK8r5cneQhbXcs3581HXtnkp+d3hV+7AHc74Qk1y6rxM9Lcsx+zt8Tw3/a9p7xy34AAEe9TR3IY4y/SPLTSS5quzPJV5LcuBz+xWy8MvGxtlcu3+/PuUme33ZXNl7fuKOV5j3P/3KSNyS5IhtBfumd+RwAAGwdHWOseoZ9anvPMcZXl5XiX0vyqTHGa1Y91x1ZW1sb6+vrqx5jy7vpTz6z/5M4Khz7XQ9e9QgAHKXa7hxjrB3sdZt6BXnxk8sv4l2ZjVckXr/ieQAAOIpthl/S26dltXjTrhgDAHB02QoryAAAcMQIZAAAmAhkAACYCGQAAJgIZAAAmAhkAACYCGQA+P/bu/NgvYo6jePfhwQJGJawDCIuwYAyKUQsAm4IQWHUcUAYQUVBosxQjooIQzlOuSHiAqg4I4OiqAmbsggYsBQhGMU4EAiQnRBKIgRRhEEEHFzgN3/078ztvL7bzb3ce5M8n6pb96x9us/p7tNvnz7va2ZWcQPZzMzMzKziBrKZmZmZWcUNZDMzMzOzihvIZmZmZmYVN5DNzMzMzCpuIJuZmZmZVdxANjMzMzOrjB/tCJi1M+FZO412FMzMzGwD5R5kMzMzM7OKG8hmZmZmZhU3kM3MzMzMKm4gm5mZmZlV3EA2MzMzM6soIkY7DusVSY8CK0Y7HmbrkG2BB0c7EmbrCJcXs8F5UURsPtid/DVvw29FREwb7UiYrSsk3eIyY9YflxezwZF0y9rs5yEWZmZmZmYVN5DNzMzMzCpuIA+/r412BMzWMS4zZv1zeTEbnLUqM35Jz8zMzMys4h5kMzMzM7OKG8hmZmZmZhU3kIdI0taSrpW0Mv9P6rDdDyX9TtLVIx1Hs7FA0uslrZB0l6QPt1m/iaSLc/1NkiaPfCzNxoY+ysu+km6V9BdJh41GHM3Gij7Ky4mSlklaJGmOpOf3CtMN5KH7MDAnInYB5uR8O2cAR41YrMzGEEnjgP8C3gBMBY6QNLVls2OAhyNiZ+BM4LSRjaXZ2NBnebkHmAFcNLKxMxtb+iwvtwHTImJ34DLg9F7huoE8dG8CZuX0LOCQdhtFxBzg0ZGKlNkYszdwV0T8IiL+BHyHUnZqdVm6DHitJI1gHM3Gip7lJSJWRcQi4KnRiKDZGNJPeflxRPwhZ28EntMrUDeQh277iLg/p38NbD+akTEbo3YE7q3mV+eytttExF+AR4BtRiR2ZmNLP+XFzIrBlpdjgB/0CtQ/Nd0HSdcBz2qz6iP1TESEJH9vnpmZmdkYI+lIYBqwX69t3UDuQ0Qc0GmdpN9I2iEi7pe0A/DACEbNbF1xH/Dcav45uazdNqsljQe2BB4ameiZjSn9lBczK/oqL5IOoHRs7hcRf+wVqIdYDN1s4OicPhr43ijGxWysuhnYRdJOkp4BvI1Sdmp1WToMuD78S0a2YeqnvJhZ0bO8SHopcA5wcET01ZHpBvLQfQ44UNJK4ICcR9I0Sec2G0m6AbiU8uLRakmvG5XYmo2CHFP8fuAaYDlwSUQslXSKpINzs28A20i6CziRzt8IY7Ze66e8SNpL0mrgcOAcSUtHL8Zmo6fP+8sZwETgUkm3S+r5gdM/NW1mZmZmVnEPspmZmZlZxQ1kMzMzM7OKG8hmZmZmZhU3kM3MzMzMKm4gm5mZmZlV3EC2MUPSXEnThjG8yZLePlzhtQl/uqSrn67wOxzzsZE8XjeSVknadrTjsSEY7rKxIZD08xE+3sGS1ouvJhxKWiTNkHTWcMep5RibSLouv67rrZLOlTS1y/brzbXpRNKzJV022vFYn/iX9Gx9Nhl4O3BRvztIGp/fqTjsWsN+Oo/Vz/HX12PamtY230kS5atAn3paI/g0iYhXDjUMSeMi4sk+thsfEbNZT37MYx1Iy0sBImKPnL+428brQHqGLCJ+RfmBJRsm7kG2riRtJOmgPredKekrkm6U9IvsYf2mpOWSZlbbfUXSLZKWSvpkh7COkXSnpPmSvt70SEg6SNJNkm7LHoTtc/l+2Ztwe67bnPKjLa/OZSdkj/INkm7Nv1fmvtNz+WxgWY80vl7SHZJuBf6xWv7MTOv8PP6bcvkMSbMlXQ/MaTO/taQrJS3K87Z77jdR0rckLc51b66O9WlJC3P7Jv2dzsvJks6XNA84v0u6Jme6LszrdZmkzXLdazPcxZnGTapdP5TL50vaucoHX5V0E3C6pCmSfihpQZ7nXbud4w2ZpI9LulnSEklfy0Zq4/A8z3dKenVuP6HKJ7dJ2j+X98p3EyXNyXKwuMqvkyWtkHQesIQ1f761Na5tr6uk7SVdkXl0YVXOTsx0LZH0wep4y7OML5X0I0mb5ro9Mo8vyvAm5fK5ks5UqUOWq/xgxuWSVko6tYrfY/n/FA3UDfdJ+lYuvzLjvlTSsfV+kr4gaSHwii7pb83n/99zOphz0CM/rJL0yeo6Nee4U32zmaRLJC3L49+kfPIg6YgMY4mk06pjvD7DXyhpTpV/mrRMlnR9Xoc5kp7XK97Ac/M6rZT0iepYR2acb5d0jqRx1TlvV69tJ+m7KmXiZkmvkvQ3wAXAXhnOFFVPWNY2PZIOz3OzUNJP+7g2H1MpKz+T9G1JJ+Xyf864Lsy4N/XoTEn/KennKvfHw3J5t7LYqWzsrFLPL8z9puT2S6p9/+pe10eadpf0gn623SBEhP/81/aP8gFqFnBan9vPBL4DCHgT8HvgxRnOAmCP3G7r/D8OmAvsnvNzgWnAs4FVwNbAxsANwFm5zSQGfuDmn4Av5PRVwKtyeiLl6ch04OoqfpsBE3J6F+CWnJ4OPA7s1CN9E4B7c18BlzThA58BjszprYA7gWcCM4DVVZpb578MfCKnXwPcntOnAV+qjj0p/wdwUE6fDny0x3k5Oc/9pj3SNjnDbs7hN4GTqjS/MJefB3wwp1cBH8npd1bnYiZwNTAu5+cAu+T0yyg/IT3q+Xss/jX5IqfPr6713Oqa/j1wXU7/K/DNnN4VuCevWa98Nx7YIqe3Be7KPD0ZeAp4eR9xbXtdKb15TR4ZB2wJ7AkszjIxEVhK6QWcDPyFgbrhEgbK0SJgv5w+pSkPeS5Oy+njgV8BOwCbZBq3yXWPtcR3q4zDnvW5BjalfBho9gvgLX2kvzWfz2Cgnur7HPQ4xirguJx+L3BuTneqb04Czsnlu+W5berUe4Dt8tpfDxyS8/eSdV9LfmnSchVwdE6/G7iyR5xnAPcD21TndhrwtxnWxrnd2cA7q3Perl67CNgnp58HLM/p6axZt8/NY6x1evLa7Nic0x5p3Au4nVLWNgdWAiflum2q7U6trt9Myq/pbgRMBe7qoyx2Khs3AYfm9ATKvW0ysCSXtb3X9ZGn96aUuxcMZ722rv55iIV18x7gKGCZpDe2rFsZEYe22eeqiAhJi4HfRMRiAJWfQZ1MqVTeotJjM55yY5tKKZSNvYGfRMT/5L6XAi/Mdc8BLpa0A/AM4O5cPg/4oqQLgcsjYrXW6HwDSmP7LEl7AE9WYQLMj4i7W3dosStwd0SszHhdADQ9T38HHNz0IlAqraan5domLW3m9wHeDBAR10vaRtIWlJ8tf1uzQ0Q8nJN/otyUoTR8D+xxXgBmR8T/9kgbwL0RMS+nLwA+AFybab4zl88C3gd8Kee/Xf0/swrr0oh4UtJE4JWUn/ds1tU90Lam/SV9iHKD25rSiLoq112e/xdQyhKU/PNlgIi4Q9IvGcjX3fKdgM9I2pfSIN4R2D7X/TIibuwWyR7X9TWUD0xEGZ7wiKR9gCsi4vHc/3Lg1ZTH3ndHxO112iRtSWmk/CSXz6I0LhrN4/LFwNKIuD/D/QWl1/uhlviKkqe/GBELcvEHJDV12HMpDYmHKHXDd7ulv3JptB+CMZhzcFuPY9TXvXlq1am+2Qf4jzzuEklNvboXMDcifpvHvhDYN9P606bua8kvjVdUxz2f0oDt5dqIeKhK5z6Uxt6ewM2ZZzYFHsjtO9VrBwBTqzy2Rea9Tl4+hPTMA2ZKuoSBc97Jq4DvRcQTwBOSrqrW7abyJGMrygeha6p1V0YZsrSs6SWne1lsVzY2pzTkr8g0PgHQcr/rdq8jtz8SaDcuewdKR9fePc7Bes8NZOvmPOAtwLciYlaf+/wx/z9VTTfz4yXtROnl2CsiHlYZejFhEHH6MuUmN1vSdEoPKRHxOUnfp/SuzZP0ujb7ngD8BngJ5VP8E9W6xwcRh3YEvDkiVqyxUHpZm7CHcqw/R37Up1R8TRlue14GebzW353v53foo8N0c8yNgN/FwFhB60DSBEqv2rSIuFfSyaxZNpryVF/3brrlu3dQetv2jIg/S1pVHauf/DKc17WuJ56kNJz63adtPdNm+5OB1RHRDK+YTml8vSIi/iBpLgPpf6JDo7edodYb/Wh33TvVNyMQnb60q0sEzIqIf2+zfad6bSPK04y6rn5a0hkR78n6+o3AAkl7No38QZoJHBIRCyXNoPR2N+q82iSiW1lcm7IB3e91AETEBZQPjQMRKsNNZuf+GzyPQbaOIuIxSmWx3TAGuwXlpvJIfoJ+Q5ttbgb2kzRJ0niyhzVtCdyX00c3CyVNiYjFEXFa7r8r8Cjl8Ve97/35Cf4oyqPPtnJM2I4ti++gfIKfkvNHVOuuAY7LniokvbRT2C1uoFSQzU37wYj4PaXn9n1VfCb1CKfteWklaUfluLw2niepGXP5duBnwApKmnfO5UcBP6n2eWv1/79bA8y03C3p8Dy+JL2kR1o2VM1N8cHsJevnhZs6/7yQ0ou4ousexZbAA3lD3h94fqcNJZ0naY3epB7XdQ7wL7l8XPYG3wAcojJG9pnAobmsrYh4BHhYOdaav853fVN5h+IAyhORxpbAw9k43pXS89hp/89WPc39GtQ56FDfdNOpvplH6dRA5VsdXpzL51Pq1G1Vxv0eQTmfNwL7ZscFkrZuc6yfM/A06x1VnA+V9NkO8TtQ5f2KTSlDOeblOTlMZQwxub5jvks/Ao5rZrJHtJuhpGdKRNwUER8HfksZR92pvpwHHKTyDsBE4B+qdZsD90vaOMPvpe+yCBARjwKrJR2S8d5EOc65Jcy+7nUtXgS8t3qSuEFzA9m6iojHI+LzwxjeQsojxTso48v+qiBGxH2UMXbzc/0q4JFcfTLlse4C4MFqtw+qvGCxCPgz8APKsI0nVV5kOIHSO3e0yss3u9Kh90fSRsDOwBqP57IX41jg+yov6T1Qrf4U5bHWIpXhJJ/q53xkevbMeH+OgcbtqcCkTNNCYP8+wml3XlrtQHnU2c4K4H2SllPGNH8l0/yuDHsxpYfuq9U+kzLux9O51+EdwDGZjqWU8enWIiJ+B3ydMmbzGsoHvV7OBjbKa3MxMCMi/thjH4ALgWm53zsp5bGT3SnjfFt1uq7HU4aKLKY8Fp4aEbdSetbmU8ZPnhsRvYYWHA2ckflrD8o45LVxIuWxdfNy2CnADylPtJZTyl23ISUvBn49yGP2fQ461Tc9dKpvzga2k7SMUocsBR7JISgfBn4MLAQWRMT3csjFscDleR3bfRvEccC78joclWkDmEJ5z6Sd+ZRhKouA70bELRGxDPgo8KMM61pKfdTNByj5dFGm6T3dNh5ies5QvsRIaUQvpEN9GRE3U3paF1HuNYsZuEd9jHJ959G9XDUGUxYbR1GGCC3KuD6rZX1f97pWEXFtRIzo1yOOZc1LPWZjiqSJEfFY9iBfQXkR6YoROvZuwLsj4sSRON5IkvR+4J4oX3tUL59Meellt9GIl41NKuPhvxERh492XEaLpGsiot2QreEKf9jqm+wd3jginsgnXdcBL4qIPw017DbHugA4oRnXvD7qVF/muuYetRnwU+DY/BBk6wk3kG1MkvR5ymPRCZTHbMeHM+vTxg1ks3WfygtcP6b0Lgv4t4j4wejGav0k6SLKC+YTKGOrOw03sXWUG8hmZmZmZhWPQTYzMzMzq7iBbGZmZmZWcQPZzMzMzKziBrKZmZmZWcUNZDMzMzOzyv8BOMY1lbNBd0MAAAAASUVORK5CYII=\n" + }, + "metadata": {}, + "execution_count": 26 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Aumentando la cantidad de núcleos de significado" + ], + "metadata": { + "id": "sL1X3-FrvuWg" + } + }, + { + "cell_type": "markdown", + "source": [ + "Dos núcleos de significado en muchas ocasiones nos es suficiente para evaluar sesgos en las palabras, más concretamente sus representaciones vectoriales, pero existen momentos donde es interesante ir más alla de lo superficial y entrar en sesgos más finos y detallados.\n", + "\n", + "Por ejemplo, en los sesgos de profeciones y su género puede ser de interés agregar el componente de edad al sesgo de género, o componente de trabajador al sesgo de madurez financiera. De tal forma, evaluariamos más alla de un sesgo binario.\n", + "\n", + "Comencemos con el ejemplo de profeciones, definamos los núcleos de edad como son joven y adulto." + ], + "metadata": { + "id": "75ypjxoX76x-" + } + }, + { + "cell_type": "code", + "source": [ + "nucleo_joven = ['joven', 'inmaduro', 'crio', 'niño']\n", + "nucleo_adulto = ['adulto', 'maduro', 'anciano', 'viejo']" + ], + "metadata": { + "id": "5agaLZgI-6Gq" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "Utilizando las mismas profeciones que venimos trabajando, evaluemos sus distribuciones en el plano." + ], + "metadata": { + "id": "GtdI3IgU_nFa" + } + }, + { + "cell_type": "code", + "source": [ + "explorador_de_sesgos_4.calculate_bias(profesiones, nucleo_masc, nucleo_fem, nucleo_joven, nucleo_adulto)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 585 + }, + "id": "SR703qAY_yMZ", + "outputId": "d126fbd4-ed3a-4996-9108-4d08e6a1f264" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAI4CAYAAACP9SbdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdfZhVZaH///c9gI7CoICgdhRHPCLFPDEMMIYUg0+cRKVDSmQa+vX5qJ1vpaSlkl/75SkkQytTQzKVUMqHPGmIKZqBOoODCXokddRAkQcVGBmBmfv3xyzmQDwtaPbeMLxf17Wvvdfae639YXdJH+51r7VCjBFJkiRBXq4DSJIk7SosRpIkSQmLkSRJUsJiJEmSlLAYSZIkJSxGkiRJifatsZPhw4fHZcuWtcauJKnFwoULOfLII3MdQ1IbU1NTsyzG2H1L74VWuo6RF0OS1OoqKiqorq7OdQxJbUwIoSbGWLGl9zyUJkmSlLAYSZIkJSxGkiRJCYuRJElSwmIkSZKUsBhJkiQlLEaSJEkJi5EkSVLCYiRJkpSwGEmSJCUsRpIkSQmLkSRJUsJiJEmSlLAYSZIkJSxGkiRJCYvRTlq6dCmDBg2iX79+PPPMM7mOI0mSWkH7XAfYXT3xxBMUFxdzxx13pN6msbGRdu3atcr3xxiJMZKXZ7eVJKm1+P+qG7n77rsZOHAgZWVlXHDBBTQ2NtKpUye+853vUFpaSmVlJUuWLKG2tpYrrriChx56iLKyMtasWcOMGTM4+uijKS8v57TTTmP16tUAFBYWMm7cOMrLy7n//vspLCzkyiuvpKysjIqKCubOncuJJ57IEUccwa233tqS5Uc/+hEDBgygpKSEa6+9FoC6ujqOOuoozjrrLIqKinjnnXe46KKLqKiooG/fvi2fkyRJO8dilHjllVeYNm0azz77LLW1tbRr14577rmH+vp6KisrmTdvHp/73Oe4/fbbKSsr47rrrmP06NHU1tZSX1/P9ddfz8yZM5k7dy4VFRVMnDixZd/dunVj7ty5fPnLXwagZ8+e1NbWMmTIEMaOHcv06dOZM2dOS7GZMWMGCxcu5Pnnn6e2tpaamhqefvppABYuXMjFF1/M/PnzOeyww/j+979PdXU1L730ErNmzeKll17K/o8nSVIb4aG0xBNPPEFNTQ0DBgwAYM2aNfTo0YO99tqLESNGANC/f38ef/zxzbadM2cOCxYsYPDgwQCsXbuWo48+uuX90aNHb/L5U045BYDi4mJWr15NQUEBBQUF7L333nz44YfMmDGDGTNm0K9fPwBWr17NwoUL6dmzJ4cddhiVlZUt+7rvvvu47bbbWL9+Pe+++y4LFiygpKSkFX8ZSZL2HHt0MWpqitQtr2fJygaWrmrgrLPO4oYbbtjkMxMmTCCEAEC7du1Yv379ZvuJMXL88cczderULX5Px44dN1nee++9AcjLy2t5vWF5/fr1xBi58sorueCCCzbZrq6ubpN9vfnmm0yYMIEXXniBLl26MHbsWBoaGnbgF5AkSRvbYw+lNTVFHpv/Hl+Y9Axjbn+Ou94q4NdT7+O995YAsGLFCt56661U+6qsrOTZZ5/lb3/7GwD19fW89tprO53txBNPZPLkyS3zlBYtWsT777+/2edWrlxJx44d2W+//ViyZAmPPvroTn+nJEnag0eM6pbX8437amlY1wRA3P8QYv/TGXbc8bTPgw4dOvDTn/401b66d+/OlClTGDNmDJ988gkA119/Pb17996pbCeccAKvvPJKy+G4Tp06cffdd292RltpaSn9+vWjT58+HHrooS2H8iRJ0s4JMcbW2E+r7CSbZr++jDG3P7fZ+t+cP4jKXgfkIJGkf1RRUUF1dXWuY0hqY0IINTHGii29t8ceSjuwcz75HTb94+d3yKNHQX6OEkmSpFzbY4tRYbeOTDy9rKUc5XfIY+LpZRR267idLSVJUlu1x84xyssLDO97EH0uG8L7qxroUZBPYbeO5OWFXEeTJEk5sscWI2guR726d6JX9065jiJJknYBe+yhNEmSpH9kMZIkSUpYjCRJkhIWI0mSpITFSJIkKWExkiRJSliMJEmSEhYjSZKkhMVIkiQpYTGSJElKWIwkSZISFiNJkqSExUiSJClhMZIkSUpYjCRJkhIWI0mSpITFSJIkKWExkiRJSliMJEmSEhYjSZKkhMVIkiQpYTGSJElKWIwkSZISFiNJkqSExUiSJClhMZIkSUpYjCRJkhIWI0mSpITFSJIkKWExkiRJSliMJEmSEhYjSZKkhMVIkiQpYTGSJElKWIwkSZISFiNJkqSExUiSJClhMZIkSUpYjCRJkhIWI0mSpITFSJIkKWExkiRJSliMJEmSEhYjSZKkhMVIkiQpYTGSJElKWIwkSZISFiNJkqSExUiSJClhMZIkSUpYjCRJkhIWI0mSpITFSJIkKWExkiRJSliMJEmSEqmKUQjh8BDCnBBCZaYDSZIk5cp2i1EI4XDgQeBfgZ9ZjiRJUluVZsSoE3AesBg4NVmWJElqc9pv7wMxxr8ChBCIMb4DvJPxVJIkSTng5GtJkqSExUiSJCmxI8UoZCyFJEnSLmBHitENGUshSZK0C0hdjGKM92QyiCRJUq45x0iSJClhMZIkSUps9zpGACGEA4EByeLzMcb3MxdJkiQpN9LcEuR04HngNOB04LkQwpcyHUySJCnb0owYfQcYsGGUKITQHZgJTM9kMEmSpGxLM8co7x8OnS1PuZ0kSdJuJc2I0WMhhD8CU5Pl0cAfMhdJkiQpN9LcRPbyEMIoYHCy6rYY4wOZjSVJkpR9qc5KizH+FvhthrNIkiTl1FbnCoUQ/jV5HhVCWBhC+CiEsDKEsCqEsDJ7ESVJkrJjW5Oor0+e/ws4Jca4X4yxc4yxIMbYOQvZJEmSsmpbxejQ5HlJjPGVbISRJEnKpW3NMZqZPFeHEKYBDwKfbHgzxvi7TAaTJEnKtq0WoxjjtcnLzsDHwAkbvw1YjCRJUpuS5nT9s7MRRJIkKde2WoxCCFfEGH8YQriZ5hGiTcQYL8toMkmSpCzb1ojRhgnX1dkIIkmSlGvbmmP0++T5V9mLI0mSlDvbnWMUQugNfAso3PjzMcZhmYslSZKUfWluCXI/cCtwB9CY2TiSJEm5k6YYrY8x/jzjSSRJknJsW1e+3uD3IYSLQwgHhxC6bnhkPJkkSVKWpRkx+lryfPlG6yLQq/XjSJIk5U6aCzweno0gkiRJuZbmUJokSdIewWIkSZKUsBhJkiQldrgYJWen7Z2JMJIkSbm0MyNGvwZeDSFMaO0wkiRJuZTmdP1NxBiPCyEE4DMZyCNJkpQzqYpRCKEUGJIsPh1jfAmYn7FUkiRJObDdQ2khhK8D9wA9ksc9IYRLMx1MkiQp29KMGP0fYFCMsR4ghPBfwGzg5kwGkyRJyrY0k68D0LjRcmOyTsDixYv50pe+BEBtbS1/+MMfdnpfN910Ex9//HFrRZMkSTsoTTG6E3guhDA+hDAemAP8MqOpcqSxsXH7H/oHn/rUp5g+fTpgMZIkaXe33WIUY5wInA2sSB5nxxhvynSwTBg5ciT9+/enb9++3HbbbQB06tSJb37zm5SWljJ79mzuvPNOevfuzcCBAznvvPO45JJLABg7dmxLAdqwHUBdXR1FRUWsXbuWa665hmnTplFWVsa0adOor6/nnHPOYeDAgfTr14+HHnoIaC5g3/rWtygqKqKkpISbb76ZSZMmsXjxYqqqqqiqqgLgoosuoqKigr59+3Lttddm86eSJGmPtNU5RiGEzjHGlSGErkBd8tjwXtcY44rMx2tdkydPpmvXrqxZs4YBAwYwatQo6uvrGTRoEDfeeCPvvvsuX/nKV6ipqWG//fajqqqKfv36pdr3XnvtxXXXXUd1dTW33HILAFdddRXDhg1j8uTJfPjhhwwcOJDjjjuOu+66i7q6Ompra2nfvj0rVqyga9euTJw4kSeffJIDDjgAgO9///t07dqVxsZGjj32WF566SVKSkoy9vtIkrSn29bk63uBEUANEDdaH5LlXhnMlRGTJk3igQceAOCdd95h4cKFtGvXjlGjRgHw3HPPMXToULp37w7A6NGjee2113b6+2bMmMHDDz/MhAnN18JsaGjg7bffZubMmVx44YW0b9/883ft2nWL2993333cdtttrF+/nnfffZcFCxZYjCRJyqCtFqMY44jkQo6fjzG+ncVMraapKVK3vJ4lKxt4868vMHPmTGbPns2+++7L0KFDaWhoID8/n3bt2m13X+3bt6epqSnZbxNr167d7jYxRn77299y1FFH7XD2N998kwkTJvDCCy/QpUsXxo4dS0NDww7vR5IkpbfNOUYxxgj8d5aytKqmpshj89/jC5OeYcztz3H5vbNZ124f8vP34dVXX2XOnDmbbTNo0CBmzZrF8uXLWbduHffff3/Le4WFhdTU1ADw8MMPs27dus22LygoYNWqVS3LJ554IjfffDPNPyO8+OKLABx//PH84he/YP369QCsWLFis+1XrlxJx44d2W+//ViyZAmPPvpoa/wskiRpG9KclTY3hDAg40laWd3yer5xXy0N65pHedr3LGf+og/o3acP3/72t6msrNxsm4MPPpjx48dz9NFHM3jwYD796U+3vHfeeecxa9aslknaHTt23Gz7qqoqFixY0DL5+uqrr2bdunWUlJTQt29frr76agDOPfdcevbsSUlJCaWlpdx7770AnH/++QwfPpyqqipKS0vp168fffr04Stf+QqDBw/OxM8kSZI2EjaMZmz1AyG8Cvwr8BZQTzLHKMa48WSXbe8kB2a/vowxtz+32frfnD+Iyl4HpNrHlClTNplMLSm7KioqqK6uznUMSW1MCKEmxlixpffSXPn6xFbOkxUHds4nv0Ney4gRQH6HPHoU5OcwlSRJ2pWlOZR2MLAixvhWjPEt4APgoMzG+ucVduvIxNPLyO/Q/EfM75DHxNPLKOy2+SGwrRk7dqyjRZIk7UHSjBj9HCjfaHn1FtbtcvLyAsP7HkSfy4bw/qoGehTkU9itI3l53s1EkiRtWZpiFOJGE5FijE0hhDTb5VxeXqBX90706t4p11EkSdJuIM2htDdCCJeFEDokj68Db2Q6mCRJUralKUYXAp8FFgF/BwYB52cylCRJUi5s95BYjPF94MtZyCJJkpRTaUaMJEmS9ggWI0mSpITFaA/21FNPMWLEiFzHkCRpl7HDxSiEcGoIYVAmwmjXsOHmtpIk7Wl2ZsRoEPDdEIK3e29Fd911V8tNZc8880zq6uoYNmwYJSUlHHvssbz99ttA89W4L7roIiorK+nVqxdPPfUU55xzDp/+9KcZO3Zsy/4uuugiKioq6Nu3L9dee23L+scee4w+ffpQXl7O7373u5b148eP58wzz2Tw4MHb/f7LLruMz372s/Tq1Yvp06cDsHr1ao499ljKy8spLi7moYceysKvJklSK4sxtsZD/4SXX345HnnkkXHp0qUxxhiXL18eR4wYEadMmRJjjPGXv/xlPPXUU2OMMX7ta1+Lo0ePjk1NTfHBBx+MBQUF8aWXXoqNjY2xvLw8vvjiiy37iDHG9evXx89//vNx3rx5cc2aNfGQQw6Jr732WmxqaoqnnXZaPOmkk2KMMV577bWxvLw8fvzxxzHGuM3v/9KXvhQbGxvj/Pnz4xFHHBFjjHHdunXxo48+ijHGuHTp0njEEUfEpqamjP92atv69++f6wiS2iCgOm6l02x3xCi5qONlIYTpyePSEEKHLHS2Pcaf/vQnTjvtNA444AAAunbtyuzZs/nKV74CwJlnnsmf//znls+ffPLJhBAoLi7mwAMPpLi4mLy8PPr27UtdXR0A9913H+Xl5fTr14/58+ezYMECXn31VQ4//HCOPPJIQgh89atf3STHKaecwj777AOwze8fOXIkeXl5fOYzn2HJkiVAc8G+6qqrKCkp4bjjjmPRokUt70mStLtIe6+0DsDPkuUzk3XnZirUnqKpKVK3vJ43l62m4eO1NDXFVPdy23vvvQHIy8treb1hef369bz55ptMmDCBF154gS5dujB27FgaGhq2u9+OHdPdYHfj74zJ3WLuueceli5dSk1NDR06dKCwsDDVd0qStCtJM8doQIzxazHGPyWPs4EBmQ7W1jU1RR6b/x5fmPQMv/n7ftxx173c9+wCmpoiK1as4LOf/Sy/+c1vgObSMWTIkNT7XrlyJR07dmS//fZjyZIlPPpo83SwPn36UFdXx+uvvw7A1KlTt7qPHf3+jz76iB49etChQweefPJJ3nrrrdR5JUnaVaQZMWoMIRwRY3wdIITQC2jMbKy2r255Pd+4r5aGdU3s1f0wOleO5mujTuJ73QsYNKA/N998M2effTY/+tGP6N69O3feeWfqfZeWltKvXz/69OnDoYceyuDBgwHIz8/ntttu46STTmLfffdlyJAhrFq1aov72NHvP+OMMzj55JMpLi6moqKCPn36pP8xJEnaRYQNh0K2+oEQhgFTaL5xbAAOA86OMT650ce2vRNtZvbryxhz+3Obrf/N+YOo7HVADhJJu56Kigqqq6tzHUNSGxNCqIkxVmzpvW2OGIUQ2gGlwJHAUcnq/4kxftK6Efc8B3bOJ79DHg3rmlrW5XfIo0dBfg5TSZK0Z9vmHKMYYyMwJsb4SYzxpeRhKWoFhd06MvH0MvI7NP9PkN8hj4mnl1HYLd0EaEmS1PrSzDF6NoRwCzANqN+wMsY4N2Op9gB5eYHhfQ+iz2VDeH9VAz0K8ins1jHVWWmSJCkz0hSjsuT5uo3WRWBY68fZs+TlBXp170Sv7p1yHUWSJJGiGMUYq7IRRJIkKde2W4xCCNdsaX2M8botrZckSdpdpTmUVr/R63xgBPBKZuJIkiTlTppDaTduvBxCmAD8MWOJJEmSciTNLUH+0b7AIa0dRJIkKdfSzDH6K/97Zet2QHc2PUNNkiSpTUgzx2jERq/XA0tijOszlEeSJClntlqMQghdk5f/eJfRziEEYowrMhdLkiQp+7Y1YlRD8yG0APQEPkhe7w+8DRye8XSSJElZtNXJ1zHGw2OMvYCZwMkxxgNijN1oPrQ2I1sBJUmSsiXNWWmVMcY/bFiIMT4KfDZzkSRJknIjzeTrxSGE7wJ3J8tnAIszF0mSJCk30owYjaH5FP0HkkePZJ0kSVKbkubK1yuAr2chiyRJUk6lucBjd+AKoC/N90oDIMY4LIO5JEmSsi7NobR7gFdpPj3/e0Ad8EIGM0mSJOVEmmLULcb4S2BdjHFWjPEcwNEiSZLU5qQ5K21d8vxuCOEkms9I67qNz0uSJO2W0hSj60MI+wHfBG4GOgP/N6OpJEmSciDNWWmPJC8/AqoyG0eSJCl30pyVdjhwKVC48edjjKdkLpYkSVL2pTmU9iDwS+D3QFNm40iSJOVOmmLUEGOclPEkkiRJOZamGP0khHAtMAP4ZMPKGOPcjKWSJEnKgTTFqBg4k+ZrF204lBbxWkaSJKmNSVOMTgN6xRjXZjqMJElSLqW58vXLwP6ZDiJJkpRraUaM9gdeDSG8wKZzjDxdX5IktSlpitG1GU8hSZK0C0hz5etZ2QgiSZKUa9udYxRC+PcQwsIQwkchhJUhhFUhhJXZCCdJkpRNaQ6l/RA4Ocb4SqbDSJIk5VKas9KWWIokSdKeIM2IUXUIYRrN90zb+Ky032UslSRJUg6kKUadgY+BEzZaFwGLkSRJalPSnJV2djaCSJIk5dpWi1EI4YoY4w9DCDfTPEK0iRjjZRlNJkmSlGXbGjHaMOG6OhtBJEmScm2rxSjG+Pvk+VfZiyNJkpQ7aU7XlyRJ2iNYjCRJkhIWI0mSpMQOF6MQwsUhhNEhhDTXQJIkSdpt7MyIUQCOwQs8SpKkNmaHR31ijD/NRBBJkqRc224xCiHsDYwCCjf+fIzxuszFkiRJyr40I0YPAR8BNWx0E1lJkqS2Jk0xOiTGODzjSSRJknIszeTrv4QQijOeRJIkKcfSjBgdA4wNIbxJ86G0AMQYY0lGk0mSJGVZmmL0bxlPIUmStAvY7qG0GONbwKHAsOT1x2m2kyRJ2t1st+CEEK4FxgFXJqs6AHdnMpQkSVIupBn5+SJwClAPEGNcDBRkMpQkSVIupClGa2OMEYgAIYSOmY0kSZKUG2mK0X0hhF8A+4cQzgNmArdnNpYkSVL2bfestBjjhBDC8cBK4Cjgmhjj4xlPJkmSlGVp7pX2DWCaZUiSJLV1aQ6lFQAzQgjPhBAuCSEcmOlQkiRJuZDmOkbfizH2Bf4DOBiYFUKYmfFkkiRJWbYjF2p8H3gPWA70yEwcSZKk3ElzgceLQwhPAU8A3YDzvE+aJElqi9LcK+1Q4D9jjLWZDiNJkpRLaU7XvzKEUBpCuCRZ9UyMcV6Gc0mSJGVdmkNplwH30DyvqAdwdwjh0kwHkyRJyrY0h9LOBQbFGOsBQgj/BcwGbs5kMEmSpGxLc1ZaABo3Wm5M1kmSJLUpaUaM7gSeCyE8kCyPBH6ZuUiSJEm5kWby9cTkdP1jklVnxxhfzGgqSZKkHNhqMQohdI4xrgwhdAXqkseG97oAK2OMjVvZXJIkabezrRGje4ERQA0QN1q/YX5RpxDC7THGqzIVTpIkKZu2WoxijCOS58O39H4IoR3wMmAxkiRJbUKayddblBxG+3QrZpEkScqpHbmJrCRJUptmMZIkSUpYjCRJkhIWI0mSpITFSJIkKWExkiRJSliMJO0Wxo4dy/Tp01tlX+eeey4LFizY6vtTpkxh8eLFrfJdknYvFiNJu7z169e36v7uuOMOPvOZz2z1fYuRtOeyGEnKqbq6OoqKilqWJ0yYwPjx4xk6dCjvvPMOFRUV/OQnPwFg5syZVFRU0Lt3bx555JGW7YcMGUJ5eTnl5eX85S9/AeCpp55i6NChfOlLX6JPnz6cccYZxNh8d6OhQ4dSXV1NY2MjY8eOpaioiOLiYn784x8zffp0qqurOeOMMygrK2PNmjVcd911DBgwgKKiIs4///yW/Uhqe3b6yteSlGkxRqqrq4HmQ2l1dXU8//zzvP7661RVVfG3v/2NHj168Pjjj5Ofn8/ChQsZM2ZMyzYvvvgi8+fP51Of+hSDBw/m2Wef5ZhjjmnZf21tLYsWLeLll18G4MMPP2T//ffnlltuYcKECVRUVABwySWXcM011wBw5pln8sgjj3DyySdn86eQlCWOGEnaZXXp0mWT5dNPP528vDyOPPJIevXqxauvvsq6des477zzKC4u5rTTTttk7tDAgQM55JBDyMvLo6ysjLq6uk3216tXL9544w0uvfRSHnvsMTp37rzFHE8++SSDBg2iuLiYP/3pT8yfP7/V/6ySdg2OGEnKuqamSN3yepasbKBp9Sc0NTW1vNfQ0NDyOi9v03+7hRA2W/7xj3/MgQceyLx582hqaiI/P7/l/b333rvldbt27Tabq9SlSxfmzZvHH//4R2699Vbuu+8+Jk+evMlnGhoauPjii6murubQQw9l/Pjxm2SU1LY4YiQpq5qaIo/Nf48vTHqGMbc/xznTXmPRu++xdOkyPvnkk5a5Q1ty//3309TUxOuvv84bb7zBUUcdxUcffcTBBx9MXl4ev/71r2lsbEydZdmyZTQ1NTFq1Ciuv/565s6dC0BBQQGrVq0C/reoHXDAAaxevbrVzoyTtGtyxEhSVtUtr+cb99XSsK55lOiTpjzyB55OxYCBHNbzEPr06bPVbXv27MnAgQNZuXIlt956K/n5+Vx88cWMGjWKu+66i+HDh9OxY8fUWRYtWsTZZ5/dMmL1gx/8AGiez3ThhReyzz77MHv2bM477zyKioo46KCDGDBgwD/xp5e0qwutdHaFp2hISmX268sYc/tzm63/zfmDqOx1wCbrKioqWiZSS1JrCSHUxBgrtvSeh9IkZdWBnfPJ77DpXz35HfLoUZC/lS0kKXssRpKyqrBbRyaeXtZSjvI75DHx9DIKu6U/BCZJmeIcI0lZlZcXGN73IPpcNoT3VzXQoyCfwm4dycsL299YkjLMYiQp6/LyAr26d6JX9065jiJJm/BQmiRJUsJiJEmSlLAYSZIkJSxGkiRJCYuRJElSwmIkSZKUsBhJkiQlLEaSJEkJi5EkSVLCYiRJkpSwGEmSJCUsRpIkSQmLkSRJUsJiJEmSlLAYSZIkJSxGkiRJCYuRJElSwmIkSZKUsBhJkiQlLEaSJEkJi5EkSVLCYiRJkpRo3xo7GT58OMuWLWuNXUlSi1deeYWKiopcx5DU9hy5tTdCjLE1vqBVdiJJG6uoqKC6ujrXMXJi8eLFXHbZZUyfPp3a2loWL17MF77whZ3a10033cT555/Pvvvu28oppd1TCKEmxrjFf3V5KE2SMqyxsXGHt/nUpz7F9OnTAaitreUPf/jDTn//TTfdxMcff7zT20t7EouRJP2TRo4cSf/+/enbty+33XYbAJ06deKb3/wmpaWlzJ49mzvvvJPevXszcOBAzjvvPC655BIAxo4d21KANmwHUFdXR1FREWvXruWaa65h2rRplJWVMW3aNOrr6znnnHMYOHAg/fr146GHHgKaC9i3vvUtioqKKCkp4eabb2bSpEksXryYqqoqqqqqAJg6dSrFxcUUFRUxbty4bP5U0i6vVeYYSdKebPLkyXTt2pU1a9YwYMAARo0aRX19PYMGDeLGG2/k3Xff5Stf+Qo1NTXst99+VFVV0a9fv1T73muvvbjuuuuorq7mlltuAeCqq65i2LBhTJ48mQ8//JCBAwdy3HHHcdddd1FXV0dtbS3t27dnxYoVdO3alYkTJ/Lkk09ywAEHsHjxYsaNG0dNTQ1dunThhBNO4MEHH2TkyJGZ/Imk3YYjRpL0T5o0aRKlpaVUVlbyzjvvsHDhQtq1a8eoUaMAeO655xg6dCjdu3dnr732YvTo0f/U982YMYMbbriBsrIyhg4dSkNDA2+//TYzZ87kggsuoH375n/zdu3adbNtX3jhhZYs7du354wzzuDpp5/+p/JIbYkjRpK0g5qaInXL61mysoE3//oCM2fOZPbs2ey7774tRZiHw+UAACAASURBVCU/P5927dptd1/t27enqakp2W8Ta9eu3e42MUZ++9vfctRRR/3TfxZJm3LESJJ2QFNT5LH57/GFSc8w5vbnuPze2axrtw/5+fvw6quvMmfOnM22GTRoELNmzWL58uWsW7eO+++/v+W9wsJCampqAHj44YdZt27dZtsXFBSwatWqluUTTzyRm2++mQ1nFb/44osAHH/88fziF79g/fr1AKxYsWKz7QcOHMisWbNYtmwZjY2NTJ06lc9//vOt8dNIbYLFSJJ2QN3yer5xXy0N65pHedr3LGf+og/o3acP3/72t6msrNxsm4MPPpjx48dz9NFHM3jwYD796U+3vHfeeecxa9aslknaHTt23Gz7qqoqFixY0DL5+uqrr2bdunWUlJTQt29frr76agDOPfdcevbsSUlJCaWlpdx7770AnH/++QwfPpyqqioOPvhgbrjhBqqqqigtLaV///6ceuqpmfippN2S1zGStMvaFa9jNPv1ZYy5/bnN1v/m/EFU9jog1T6mTJmyyWRqSdnldYwkqZUc2Dmf/A6b/tWZ3yGPHgX5OUokqTU5YiRpl7UrjhhtmGO04XBafoc8Jp5exvC+B5GXF3IdT1IK2xox8qw0SdoBeXmB4X0Pos9lQ3h/VQM9CvIp7NbRUiS1ERYjSdpBeXmBXt070at7p1xHkdTKnGMkSZKUsBhJkiQlLEaSJEkJi5EkSVLCYiRJkpSwGEnSRpYuXcqgQYPo168fzzzzTK7jSMoyT9eXpI088cQTFBcXc8cdd6TeprGxkXbt2rXK98cYiTGSl+e/W6Vc8L88SW3e3XffzcCBAykrK+OCCy6gsbGRTp068Z3vfIfS0lIqKytZsmQJtbW1XHHFFTz00EOUlZWxZs0aZsyYwdFHH015eTmnnXYaq1evBqCwsJBx48ZRXl7O/fffT2FhIVdeeSVlZWVUVFQwd+5cTjzxRI444ghuvfXWliw/+tGPGDBgACUlJVx77bUA1NXVcdRRR3HWWWdRVFTEO++8w+WXX05RURHFxcVMmzYtJ7+btCeyGElq01555RWmTZvGs88+S21tLe3ateOee+6hvr6eyspK5s2bx+c+9zluv/12ysrKuO666xg9ejS1tbXU19dz/fXXM3PmTObOnUtFRQUTJ05s2Xe3bt2YO3cuX/7ylwHo2bMntbW1DBkyhLFjxzJ9+nTmzJnTUoBmzJjBwoULef7556mtraWmpoann34agIULF3LxxRczf/58qqurqa2tZd68ecycOZPLL7+cd999N/s/nrQH8lCapDbtiSeeoKamhgEDBgCwZs0aevTowV577cWIESMA6N+/P48//vhm286ZM4cFCxYwePBgANauXcvRRx/d8v7o0aM3+fwpp5wCQHFxMatXr6agoICCggL23ntvPvzwQ2bMmMGMGTPo168fAKtXr2bhwoX07NmTww47jMrKSgD+/Oc/M2bMGNq1a8eBBx7I5z//eV544YWW/UvKHIuRpDanqSlSt7yeJSsbWLqqgbPOOosbbrhhk89MmDCBEJrvb9auXTvWr1+/2X5ijBx//PFMnTp1i9/TsWPHTZb33ntvAPLy8lpeb1hev349MUauvPJKLrjggk22q6ur22xfknLDQ2mS2pSmpshj89/jC5OeYcztz3HXWwX8eup9vPfeEgBWrFjBW2+9lWpflZWVPPvss/ztb38DoL6+ntdee22ns5144olMnjy5ZZ7SokWLeP/99zf73JAhQ5g2bRqNjY0sXbqUp59+moEDB+7090pKzxEjSW1K3fJ6vnFfLQ3rmgCI+x9C7H86w447nvZ50KFDB37605+m2lf37t2ZMmUKY8aM4ZNPPgHg+uuvp3fv3juV7YQTTuCVV15pORzXqVMn7r777s3OaPviF7/I7NmzKS0tJYTAD3/4Qw466KCd+k5JOybEGLf9gRD2A8YDQ5JVs4DrYowfbfSxbe9EknZCRUUF1dXVO7TN7NeXMeb25zZb/5vzB1HZ64DWiiZpNxZCqIkxVmzpvTSH0iYDK4HTk8dK4M7WiydJrefAzvnkd9j0r7b8Dnn0KMjPUSJJu5M0xeiIGOO1McY3ksf3gF6ZDiZJO6OwW0cmnl7WUo7yO+Qx8fQyCrs5uVnS9qWZY7QmhHBMjPHPACGEwcCazMaSpJ2TlxcY3vcg+lw2hPdXNdCjIJ/Cbh3Jywu5jiZpN5CmGF0E/CqZaxSAFcDYTIaSpH9GXl6gV/dO9OreKddRJO1mtluMYoy1QGkIoXOyvDLjqSRJknJgq8UohPDVGOPdIYRv/MN6aD4LbQXwcIzxg8xGlCRJyo5tTb7eMFOxYAuPzkB/4NGMppMkScqirY4YxRh/kTx/b2ufCSFcl4lQkiRJubDd0/VDCL1DCE+EEF5OlktCCN8FiDFek+mAkiRJ2ZLmOka3A1cC6wBijC8BX85kKEmSpFxIU4z2jTE+/w/rNr8NtSRJ0m4uTTFaFkI4guR+aCGELwHvZjSVJElSDqS5wON/ALcBfUIIi4A3ga9mNJUkSVIOpLnA4xvAcSGEjkBejHFV5mNJkiRl385e4JEY48QMZ5MkScqqbY0YbXyBR0mSpDZvuxd4BH4WY1yapTySJEk5k+astGdDCDNCCP8nhNAl44kkSZJyZLvFKMbYG/gu0BeoCSE8EkLwrDRJktTmpBkxIsb4fIzxG8BAYAXwq4ymkiRJyoE090rrHEL4WgjhUeAvNF/ccWDGk0mSJGVZmgs8zgMeBK6LMc7OcB5JkqScSVOMesUYY8aTSJIk5ViaydeWIkmStEdINflakiRpT2AxkiRJSuxwMQohXBxCGB1CSDM/SZIkabexMyNGATgG+F0rZ5EkScqpHR71iTH+NBNBJEmSci3NBR73CyH8OIRQnTxuDCHsl41wkiRJ2ZTmUNpkYCVwevJYCdyZyVCSJEm5kOZQ2hExxlEbLX8vhFCbqUCSJEm5kmbEaE0I4ZgNCyGEwcCazEWSJEnKjTQjRhcCdyXzigKwAhibyVCSJEm5sN1iFGOcB5SGEDonyysznkqSJCkHtluMQgh7A6OAQqB9CAGAGON1GU0mSZKUZWkOpT0EfATUAJ9kNo4kSVLupClGh8QYh2c8iSRJUo6lOSvtLyGE4ownkSRJyrE0I0bHAGNDCG/SfCgtADHGWJLRZJIkSVmWphj9W8ZTSJIk7QLSnK7/FkAIoQeQn/FEkiRJOZLmJrKnhBAWAm8Cs4A64NEM55IkScq6NJOv/x9QCbwWYzwcOBaYk9FUkiRJOZCmGK2LMS4H8kIIeTHGJ4GKDOeSJEnKujSTrz8MIXQCngbuCSG8D9RnNpYkSVL2pRkxOhVYA/xf4DHgdeDkTIaSJEnKhTRnpW08OvSrDGaRJEnKqa0WoxDCn2OMx4QQVgFx47dovsBj54ynkyRJyqKtFqMY4zHJc0H24kiSJOVOmusYVYYQCjZaLgghDMpsLEmSpOxLM/n658DqjZbrk3WSJEltSppiFGKMLXOMYoxNpDvNX5IkabeSphi9EUK4LITQIXl8HXgj08EkSZKyLU0xuhD4LLAI+DswCDg/k6EkSZJyIc11jN4HvpyFLJIkSTm13WIUQugOnAcUbvz5GOM5mYslSZKUfWkmUT8EPAPMBBozG0eSJCl30hSjfWOM4zKeRJIkKcfSTL5+JITwhYwnkSRJyrE0xejrNJejNSGElSGEVSGElZkOJkmSlG1pzkrzXmmSJGmPkOoK1iGELsCRQP6GdTHGpzMVSpIkKRfSnK5/Ls2H0w4BaoFKYDYwLLPRJEmSsivtHKMBwFsxxiqgH/BhRlNJkiTlQJpi1BBjbAAIIewdY3wVOCqzsSRJkrIvzRyjv4cQ9gceBB4PIXwAvJXZWJIkSdmX5qy0LyYvx4cQngT2Ax7LaCpJkqQcSHVW2gYxxlmZCiJJkpRraeYYSZIk7REsRpIkSQmLkSRJUmKHi1EIYWYI4dEQwohMBJIkScqVHZp8nTgLOJjmK2BLkiS1GWnvlbYX0DtZ/J8Y42KgJmOpJEmSciDNvdKGAr8C6oAAHBpC+Jo3kZUkSW1NmhGjG4ETYoz/AxBC6A1MBfpnMpgkSVK2pZl83WFDKQKIMb4GdMhcJEmSpNxIM2JUE0K4A7g7WT4DqM5cJEmSpNxIU4wuBP4DuCxZfgb4WcYSSZIk5cg2i1EIoR0wL8bYB5iYnUiSJEm5sc05RjHGRuB/Qgg9s5RHkiQpZ9IcSusCzA8hPA/Ub1gZYzwlY6kkSZJyIE0xujrjKSRJknYB2y1GMcZZ2QgiSZKUa2mufL0KiMniXjRfw6g+xtg5k8EkSZKyLc2IUcGG1yGEAJyKN5CVJEltUJorX7eIzR4ETsxQHkmSpJxJcyjt3zdazAMqgIaMJZIkScqRNGelnbzR6/VAHc2H0yRJktqUNHOMzs5GEEmSpFzbajEKIdzM/56NtpkY42Vbe0+SJGl3tK3J19VADZAPlAMLk0cZzaftS5IktSlbHTGKMf4KIIRwEXBMjHF9snwr8Ex24kmSJGVPmtP1uwAbX8yxU7JOkiSpTUlzVtoNwIshhCeBAHwOGJ/JUJIkSbmQ5qy0O0MIjwKDklXjYozvZTaWJElS9qW98vUnwLvAB0DvEMLnMhdJkiQpN9Jc+fpc4OvAIUAtzfdJmw0My2w0SZKk7EozYvR1YADwVoyxCugHfJjRVJIkSTmQphg1xBgbAEIIe8cYXwWOymwsSZKk7EtTjP4eQtgfeBB4PITwEPBWZmNJUvZNmTKFxYsX5+z7P/zwQ372s5/l7PslpShGMcYvxhg/jDGOB64GfgmMzHQwScq2bRWjxsbGjH+/xUjKvVRnpYUQuoQQSoBVwN+BooymkqRWNHLkSPr370/fvn257bbbaGxsZOzYsRQVFVFcXMyPf/xjpk+fTnV1NWeccQZlZWWsWbOGwsJCxo0bR3l5Offffz9Tp06luLiYoqIixo0b17L/Tp068Z3vfIfS0lIqKytZsmQJAL///e8ZNGgQ/fr147jjjmtZP378eCZMmNCyfVFREXV1dXz729/m9ddfp6ysjMsvv5zVq1dz7LHHUl5eTnFxMQ899FB2fzhpD5TmrLT/B4wF3gCaktURz0qTtJuYPHkyXbt2Zc2aNQwYMID+/fuzaNEiXn75ZaB5pGb//ffnlltuYcKECVRUVLRs261bN+bOncvixYuprKykpqaGLl26cMIJJ/Dggw8ycuRI6uvrqays5Pvf/z5XXHEFt99+O9/97nc55phjmDNnDiEE7rjjDn74wx9y4403bjXnDTfcwMsvv0xtbS0A69ev54EHHqBz584sW7aMyspKTjnlFEIImf3BpD1Ymitfnw4cEWNcm+kwkpQJkyZN4oEHHgDgnXfeYe3atbzxxhtceumlnHTSSZxwwglb3Xb06NEAvPDCCwwdOpTu3bsDcMYZZ/D0008zcuRI9tprL0aMGAFA//79efzxxwH4+9//zujRo3n33XdZu3Ythx9++A7ljjFy1VVX8fTTT5OXl8eiRYtYsmQJBx100A7/BpLSSXMo7WVg/0wHkaTW0tQUeWPpama/vox7H3yUmTNnMnv2bObNm0e/fv345JNPmDdvHkOHDuXWW2/l3HPP3eq+OnbsuN3v69ChQ8soTrt27Vi/fj0Al156KZdccgl//etf+cUvfkFDQwMA7du3p6mpqWX7Dev/0T333MPSpUupqamhtraWAw88cKufldQ60owY/YDme6W9TPMVsAGIMZ6SsVSStJOamiKPzX+Pb9xXS8O6Jta98RyHtNuH/Px9ePXVV5kzZw7Lli2jqamJUaNGcdRRR/HVr34VgIKCAlatWrXF/Q4cOJDLLruMZcuW0aVLF6ZOncqll166zSwfffQR//Iv/wLAr371q5b1hYWFPPLIIwDMnTuXN998c4vf/9FHH9GjRw86dOjAk08+yVtveUKwlGlpitGvgP8C/sr/zjGSpF1S3fL6llIE0L5nOfPn/oHeffpQ9JlPU1lZyaJFixg6dGjLqM0PfvADAMaOHcuFF17IPvvsw+zZszfZ78EHH8wNN9xAVVUVMUZOOukkTj311G1mGT9+PKeddhpdunRh2LBhLQVo1KhR3HXXXfTt25dBgwbRu3dvoHk+0+DBgykqKuLf/u3fGDduHCeffDLFxcVUVFTQp0+fVv2tJG0uxBi3/YEQXogxDtjOfra9E0naCRUVFVRXV+/QNrNfX8aY25/bbP1vzh9EZa8DWiuapN1YCKEmxlixpffSjBg9E0L4AfAwmx5Km9tK+SSp1RzYOZ/8DnktI0YA+R3y6FGQn8NUknYXaYpRv+S5cqN1nq4vaZdU2K0jE08vazmclt8hj4mnl1HYbfuTqCVpu8UouXGsJO0W8vICw/seRJ/LhvD+qgZ6FORT2K0jeXle+0fS9qUZMZKk3UpeXqBX90706t4p11Ek7WZS3RJEkiRpT2AxkiRJSuxwMQohVIQQPpWJMJIkSbm0MyNGlwL/HUKY1tphJEmScmmHJ1/HGL8GEEIoaP04kiRJuZOqGIUQTgE+lyw+FWN8JMa45RsKSZIk7aa2eygtuer114EFyePrIYT/L9PBJEmSsi3NiNFJQFmMsQkghPAr4EXgqkwGkyRJyra0k6/33+j1fpkIIkmSlGtpRox+ALwYQngSCDTPNboyo6kkSZJyIM290qaGEJ4CBiSrxsUY38toKkmSpBxIM/n6iRjjuzHGh5PHeyGEJ7IRTpIkKZu2OmIUQsgH9gUOCCF0ofkwGkBn4F+ykE2SJCmrtnUo7QLgP4FPAXM3Wr8SuCWToSRJknJhq8UoxvgT4CchhEtjjDdnMZMkSVJObOtQ2r8nLxdt9LpFjPF3GUslSZKUA9s6lHbyNt6LgMVIkiS1Kds6lHZ2NoNIkiTl2navYxRCuGZL62OM17V+HEmSpNxJc+Xr+o1e5wMjgFcyE0eSJCl30lz5+saNl0MIE4A/ZiyRJElSjqS9iezG9gUOae0gkiRJuZZmjtFfaT4LDaAd0B1wfpEkSWpz0swxGrHR6/XAkhjj+gzlkSRJypltXeCxa/Jy1T+81TmEQIxxReZiSZIkZd+2RoxqaD6EFoCewAfJ6/2Bt4HDM55OkiQpi7Y6+TrGeHiMsRcwEzg5xnhAjLEbzYfWZmQroCRJUrakOSutMsb4hw0LMcZHgc9mLpIkSVJupJl8vTiE8F3g7mT5DGBx5iJJkiTlRpoRozE0n6L/QPLokayTJElqU9Jc+XoF8PUsZJEkScqpNBd47A5cAfSl+V5pAMQYh2UwlyRJUtalOZR2D/Aqzafnfw+oA17IYCZJkqScSFOMusUYfwmsizHOijGeAzhaJEmS2pw0Z6WtS57fDSGcRPMZaV238XlJkqTdUppidH0IYT/gm8DNQGfg/2Y0lSRJUg6kOSvtkeTlR0BVZuNIkiTlTpo5RpIkSXsEi5EkSVLCYiRJkpRIXYxCCL/NZBBJkqRc25ERoyMzlkKSJGkX4KE0SZKkhMVIkiQpYTGSJElKbPcCjyGEEcDg5PWZQPcY48RMB5MkScq2NCNG/w18CugLnA38PKOJJEmSciTNLUFiCGEsMAe4K8a4JuOpJEmSciDNTWSJMUYcKZIkSW2ck68lSZISFiNJkqSExUiSJClhMZIkSUpYjCRJkhIWI0mSpITFSJIkKWExkiRJSliMJEmSEhYjSZKkhMVIkiQpYTGSJElKWIwkSZISFiNJkqSExUiSJClhMZIkSUpYjCRJkhIWI0mSpITFSJIkKWExkiRJSliMJEmSEhYjSZKkhMVIkiQpYTGSJElKWIwkSZISFiNJkqSExUiSJClhMZIkSUpYjCRJkhIWI0mSpITFSJIkKWExkiRJSliMJEmSEhYjSZKkhMVIkiQpYTGSJElKWIwkSZISFiNJkqSExUiSJClhMZIkSUpYjCRJkhIWI0mSpITFSJIkKWExkiRJSliMJEmSEhYjSZKkhMVIkiQpYTGSJElKWIwkaTdx00038fHHH+c6htSmWYwkaTdhMZIyz2Ikqc276667KCkpobS0lDPPPJO6ujqGDRtGSUkJxx57LG+//TYA999/P0VFRZSWlvK5z30OgClTpjBy5EiOP/54CgsLueWWW5g4cSL9+vWjsrKSFStWAFBbW0tlZSUlJSV88Ytf5IMPPgBg6NChjBs3joEDB9K7d2+eeeYZAOrq6hgyZAjl5eWUl5fzl7/8BYCnnnqKESNGtGS/5JJLmDJlCpMmTWLx4sVUVVVRVVUFwEUXXURFRQV9+/bl2muvzc6PKbV1McbWeEhSq+vfv/8/vY+XX345HnnkkXHp0qUxxhiXL18eR4wYEadMmRJjjPGXv/xlPPXUU2OMMRYVFcW///3vMcYYP/jggxhjjHfeeWc84ogj4sqVK+P7778fO3fuHH/+85/HGGP8z//8/9u59yCvyvuO4+/PArK6rCuXlaBBLkbDRFZZwWBERIKxtNZ7oKPWuLajNRovpbGZTmvGahJrpNKRpLGDI7doUauxJsTbcPGKRFZYcfGCyiamNV7LVaHifvvHeX7Lcd3Lb9fF7cLnNXOG55x9buc5zzm/7+85v+GqmDVrVkREVFVVxfLlyyMi4pprrokrr7wyIiImTZoUM2bMiIiIxYsXx5QpUyIiYtu2bfHhhx9GRMQrr7zSdK7Lli2LU045pan/l112WcydOzciIoYNG9Z0HoVziYjYuXNnTJo0Kerq6j7zeJntDYBV0UpM4xUjM9ujLV26lGnTpjFo0CAABgwYwIoVKzj33HMBOP/883nyyScBmDBhAjU1NcyZM4ePP/64qY7JkydTXl5OZWUlFRUVnHrqqQBUVVXR0NDApk2b2LhxI5MmTQLgggsu4PHHH28qf9ZZZwEwduxYGhoaAPjoo4+46KKLqKqqYtq0aaxbt67D53b33Xdz9NFHU11dTX19fafqMLNP6t3dHTAz62qNjUHDe9t4a/N23t26g+wLYvtuvfVWVq5cyeLFixk7diy1tbUA9O3btylPSUlJ035JSQk7d+5st95C/l69ejXlnzVrFoMHD6auro7GxkZKS0sB6N27N42NjU1lt2/f3mKdGzZsYObMmTz77LP079+fmpqaVvOaWfG8YmRme5TGxuCh+j/wJ7c8wTlzVrLgt/2Yf+ddvPPOuwC8//77HHfccSxatAiAO+64g4kTJwLw2muvMX78eK677joqKyt54403imqzoqKC/v37N/1+aOHChU2rR63ZtGkTQ4YMoaSkhIULFzatUA0bNox169axY8cONm7cyJIlS5rKlJeXs2XLFgA2b95MWVkZFRUVvPXWWzz44IMdGCUza41XjMxsj9Lw3jZm3L2G7R9lqy5xwFAajzyDCSecwL779KG6uprZs2dz4YUXctNNN1FZWcncuXMBuPrqq1m/fj0RwZQpUzjqqKNYs2ZNUe3Onz+fSy65hA8++ICRI0c21dmaSy+9lLPPPpsFCxYwdepUysrKABg6dCjTp09n9OjRjBgxgurq6qYyF198MVOnTuWggw5i2bJlVFdXM2rUKIYOHcqECRM6M1xm1oyKXWJuR5dUYmaWN27cOFatWtWhMitee5dz5qz81PFFF4/n2JGDuqprZtaDSaqNiHEt/c2v0sxsjzJ4/1JK+3zy0Vbap4QDy0u7qUdm1pM4MDKzPcrwgWXcPH1MU3BU2qeEm6ePYfjAsm7umZn1BP6NkZntUUpKxNQjvsCoKyby9pbtHFheyvCBZZSUqLu7ZmY9gAMjM9vjlJSIkZX9GFnZr7u7YmY9jF+lmZmZmSUOjMzMzMwSB0ZmZmZmiQMjMzMzs8SBkZmZmVniwMjMzMwscWBkZmZmljgwMjMzM0scGJmZmZklDozMzMzMEgdGZmZmZokDIzMzM7PEgZGZmZlZ4sDIzMzMLHFgZGZmZpY4MDIzMzNLHBiZmZmZJQ6MzMzMzBIHRmZmZmaJAyMzMzOzpKsCI3nreZukCyX9NKX/UdLV3dSPYyTN3s1ttHp+klbshvYWSVoraUY3jOfpkv6uO65lV2+1tbUPd3cf2hjnEZLqP2ue3dX259WepOslfaO7r8fuOt/P4/nkrVu2d2lF79b+YPZ5iYhVwKpi80vqHRE7u7D947qqLgBJXwCOiYgvdWW9xYqIB4AHuqPtrhYRU7u7Dz2ZpF4R8fHubCMivr876+9uHX0+Wc/Q1rPFr9J6KEklkk4tMm+lpHslPZu2Ce3kvyjlq0vl9msnf42k+yU9KqlB0nckzZC0WtIzkgakfMsljUvpQZIaUvpESb9K6TJJt0v6TSp/eq6NByQtBZa005+pkp5L/c/n/Urqw+uSrsjl35pLfy+t9NRJ+qfOjAfwCHCwpDWSJko6VNJDkmolPSFpVKp3nqSfpTF6PY3D7ZJelDQv16eTJa1I53SPpH7peENaCXsu9blQb42kn+TauEXS06mNb6bj/SQtyZU9vZ1z2mtJ6iXppjQHnpf0Vx2sopekOZLqJT0iad9U75h07Z+X9AtJ/dPx5ZJmSVqV5sIxku6TtF7SD3L19pZ0R8rzH4V5mebFjZKeA6a1Nn/aON/BqT91aSt8cWjtPObl5tUxaa7VpXu4XFKppLlpnq2WNLmd9odLeinV+0o6x5MkPZXG4Ksp31fTea1ObX45HT8itb0mje1h6fi30n6dpIXN+572t7bQn/zz6dp0j7b0HJkh6YW0XdXWOebKDJV0dDF57XMUEd562EYW0M4Hbiwy/53A8Sl9CPBiStcAP0npa4HvpvTAXNkfAJe3U38N8CpQDlQCm4BL0t9mAVel9HJgXEoPAhpS+kTgVyn9I+DPU/oA4BWgLLXxe2BAO32pBN4ARqT9Abnzexrom9p+D+iT/rY1/fvHKc9+zcp2dDyGAy/k9pcAh6X0eGBpSs8DFpEt654OTbZYqwAABh9JREFUbAaq0vWtBcakvj4OlKUy3wO+n9INhb4AlwK3tXBd5wH3pDq/AryajvcG9s9di1cBdffc/v+4ARcD/5DSfclWD0Y0v85tzIWdwJi0f3dufj8PTErp64B/yd0nN6b0lcB/A0NS278HBqZ6A5iQ8t3Orvu3Afjb3LVtcf600ee72HXP9gIq2jmPecA3gX2A18lWSwH2T/Psb4Db07FRwO+A0iLGLH8v3J67T+7P15/SJwH3pvRs4LyU3gfYFziC7FkyKB0fkO97ru2tuT68kNInsuv5dC0tPEeAscBasmdVP6AeqC5ibh2ayo3r7nnubdfmV2k90yXA+cA6Sac0+9v6iDiz2bGTyFZLCvv7t/OtcXT6ZnoA2U3+cBF9WhYRW4AtkjYBv0zH1wJHFlG+4GTgNEnfTfulZMEcwKMR8X475Y8FHo+IDQDN8i+OiB3ADklvA4PJPmgKTgLmRsQHzcp2ZjyAbGUGOA64Jzf+fXNZfhkRIWkt8FZErE3l6skezl8kC2ieSuX3AVbkyt+X/q0FzmqlG/dHRCPZfBlc6BrwI0knAI3AwWTj8Ydiz20vcjJwZG5loQI4jOyDthgbImJNStcCwyVVAAdExGPp+HyyALag8Cp0LVAfEW8CSHodGApsBN6IiKdSvp8DVwAz0/5d6d9jaXv+tOTrwLcAInsNtymtZn3qPJqV+zLwZkQ8m8puTn0+nixYISJekvRb4HCywLA1G5rdC0ty90mh3QpgfloRCrIAhXR+fy/pi8B9EbFe0teBeyLi3dSP9p4jbWnpOXI88IuI2Jb6fB8wEVhdKJT6cEsL9Q0Efg0c+Bn6ZF3IgVHPtACYTvYhPr+I/CXAsRGxPX8w90Hd3DzgjIiok1RD9o2pPTty6cbcfiO75tlOdr2+LW2lHgFnR8TLzfo6HthWRD+K7ePHFD//59Hx8SgoATZGxJh2+pQfs8J+79TPRyPinHbKt3U++XoLF/08stW1sRHxkbLXmq1dk72dyFbmPhEQSxpeZPnm827fDpRpbV5AFgzk5fcL94poe/50RGfOoyvaau15cj3ZF7Iz07VYDhARd0paCZwC/Fptv/pseiZJKiELHDvSt6KfIxGxFBidPybpALKg6J+LqcM+H/6NUQ8UEVvJbvrKIos8Alxe2JHU2od0QTnwpqQ+ZB+ghXJnSrqhg93NayBbcoZs6b0lDwOXK0Vtkqpbq0zSSy0cfgY4QdKIlGdAB/r3KHBh7rcahbKdHo/0rXmDpGmpjCQd1YE+PQNMkPSlVL5M0uEdKN+aCuDtFBRNBoZ1QZ17qoeBb6frj6TDJZXlM0g6WJ/8PVubImIT8D+SJqZD5wOPtVGkJYdI+lpKnws82UKeVuePpBskNV9dhuzV77dTnl5pdasYLwNDJB2TypZL6g08QbpvUtuHAC93dMxaUAH8V0rXFA5KGgm8HhG3AP9JtmK9lOz3VgNTnsK93cCuZ9Jp7Fp16qgngDMk7ZfmxpnpWHuGAT+OiHs72a7tBg6MeqiI2BYRM9vPCWRL7OPSDw/Xkb2Ka8s1wErgKSAffBxK9juYzppJ9gGzmuz9fF7h2+71ZA+n59MS+vUtVSRpELtWP3ZVEvEO2W9C7pNUx65XCu2KiIfIXmGskrQGKLzO+6zjcR7wl6k/9WS/kyi2T++QPfT/XdLzZK8JRhVbvg13kM2JtWSvTVoKMi1zG7AOeE7SC8C/8elVgiFkqw8dcQFwU7quY8h+Z9QRLwOXSXoR6A/8rHmGduZPFS2/Or0SmJzmRi3Zq7h2RcT/An8GzE5z/VGyVch/BUpSfXcBNelVVGfGLO/HwA3peZK/HtOBF9I9PBpYEBH1wA+Bx1Lfbk555wCT0rGv0clV6Yh4jmxl+Tdkz4rbImJ1m4WycnURcX9n2rTdRxHNV2PNWibp58Bfp4dtV9Z7NnBaRFzQgTJ/CoxM3wq7xe4aD+t5JH0H+F1k/1VCjyDp4Yj4o25sv8eNme0dHBhZt5J0Gtk3v7+IiKe7uz9mZrZ3c2BkZmZmlvg3RmZmZmaJAyMzMzOzxIGRmZmZWeLAyMzMzCxxYGRmZmaWODAyMzMzS/4Pg74+zrMFG2UAAAAASUVORK5CYII=\n" + }, + "metadata": {}, + "execution_count": 28 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Notemos que el resultado de la ejecución es un plano dividido en cuatro cuadrantes, examinemos cada uno de ellos.\n", + "\n", + "Cuadrante I - **núcleo masculino joven**: Sin profeciones.\n", + "\n", + "Cuadrante II - **núcleo femenino joven**: *enfermera*, *arquitecta*, *comadrona* y *urbanista*.\n", + "\n", + "Cuadrante III - **núcleo femenino adulto**: Sin profesiones.\n", + "\n", + "Cuadrante IV - **núcleo masculino adulto**: *arquitecto*, *enfermero*, *astronauta* y *cosmonauta*.\n", + "\n", + "Esto nos dice que las profesiones más cercanas al núcleo masculino, además, estan del lado de componerse por personas adultas. Mientras que, por otro lado, aquellas del lado del núcleo femenino componerse por gente joven.\n", + "\n", + "Veamos tambien, el resultado de agregar la componente de trabajador al sesgo de madurez financiera." + ], + "metadata": { + "id": "rDZJ6jysBj8a" + } + }, + { + "cell_type": "code", + "source": [ + "nucleo_vago = ['vago', 'perezoso', 'gandul']\n", + "nucleo_trabajador = ['trabajador', 'trabajar', 'esfuerzo']" + ], + "metadata": { + "id": "GVvQfc8rF7MY" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "explorador_de_sesgos_4.calculate_bias(procedencia, nucleo_rico, nucleo_pobre, nucleo_trabajador, nucleo_vago)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 585 + }, + "id": "71jpXit3GPGr", + "outputId": "ddb49001-c50c-443f-9cac-33217a291268" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAI4CAYAAACP9SbdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde3xU5b3v8e8zIWQgARQERKBCupHAJCTkAhFEghRhK3UjF91s6gE5xQtQums3Ft1VKW133T1u8RVbtXBa4NCL2FjUs0WrsEGpXIOEusEABQY4okgiBAhEcvmdP7KYgpBksJmZED7v12tembWedfnNap3Xl2c96xlnZgIAAIDki3UBAAAATQXBCAAAwEMwAgAA8BCMAAAAPAQjAAAAD8EIAADA06IxDjJq1CgrKSlpjEMBQMju3bvVq1evWJcBoJnZsmVLiZl1vFiba6R5jJgMCUCjy87OVmFhYazLANDMOOe2mFn2xdq4lQYAAOAhGAEAAHgIRgAAAB6CEQAAgIdgBAAA4CEYAQAAeAhGAAAAHoIRAACAh2AEAADgIRgBAAB4CEYAAAAeghEAAICHYAQAAOAhGAEAAHgIRgAAAB6CURPx+OOPa+XKlY1yrEOHDmn8+PGNciwAl7cePXqopKQk1mUAl40WsS4AtebNm9cox6mqqtJ1112ngoKCRjkeAABXEnqMoiwYDKpPnz6aNm2aAoGAbr31Vp0+fVpTpkwJhZkVK1YoJSVFWVlZmjVrlkaPHi1JKi8v19SpUzVgwAD1799fr776qiRp8eLFuuOOO3TLLbdo+PDhCgaDSk1NDZ1vyJAhyszMVGZmptatWydJWrNmjfLy8jR+/HilpKRo0qRJMjNJtSEtJydHqampuu+++0LrATRtY8aMUVZWlgKBgBYsWHBB+69//WsNGDBAGRkZuv/++1VdXS1JSkpK0uzZsxUIBPS1r31NmzZtUl5enpKTk/Xaa69J4rsEVxAza4wXwrRv3z6Li4uzrVu3mpnZhAkTbOnSpTZ58mT7/e9/b6dPn7Zu3brZ3r17zczsH//xH+322283M7NHHnnEli5damZmR48etV69etnJkydt0aJF1rVrVystLQ2dIxAImJlZeXm5nT592szMdu3aZVlZWWZmtnr1amvbtq0dPHjQqqurLTc319auXWtmFjqOmdk3vvENe+211yJ9WYCLOvv/V4Tn7H+7p06dskAgYCUlJXb99dfbkSNHbMeOHTZ69Gg7c+aMmZk9+OCDtmTJEjMzk2QrVqwwM7MxY8bYiBEj7MyZM1ZUVGTp6elmxncJmhdJhVZHpuFWWgz07NlTGRkZkqSsrCwFg8FQW3FxsZKTk9WzZ09J0sSJE0P/8nvrrbf02muv6amnnpIkVVRU6MCBA5KkESNGqH379hecq7KyUjNnzlRRUZHi4uK0a9euUNuAAQPUrVs3SVJGRoaCwaBuuukmrV69Wj/96U916tQpffbZZwoEAvr617/e+BcCQKPKz8/X8uXLJUkHDx7U7t27Q22rVq3Sli1blJOTI0k6ffq0OnXqJElq2bKlRo0aJUlKS0tTQkKC4uPjlZaWFvp+4rsEVwqCUZTU1JiCpeUq2v+ZXIt41dSYfD6nuLg4nT59OqxjmJlefvll9e7d+7z1GzduVGJi4kX3mT9/vjp37qxt27appqZGfr8/1JaQkBB6HxcXp6qqKlVUVGj69OkqLCxU9+7dNXfuXFVUVHyJTwwgGs5+t7zx1ir95xt/1HvvrVNSUqLy8vLO+2/XzDR58mT95Cc/ueAY8fHxcs5Jknw+X+i7wefzqaqqShLfJbhyMMYoCmpqTG9u/0S35a/VrBeLtL/0lN7c/olqai683967d2/t3bs39K+0ZcuWhdpGjhypZ599NnSffuvWrQ2eu6ysTF26dJHP59PSpUtDYwrqcvaL65prrtHJkycZxA00Yed+t/zgD4UqPlqjd/cd144dH2rDhg3nbTt8+HAVFBTo008/lSR99tln2r9/f9jn4rsEVwqCURQES8v10EtFqqiskVT7L7eHXipSsLT8gm1btWql5557TqNGjVJWVpbatGmjdu3aSZIee+wxVVZWql+/fgoEAnrssccaPPf06dO1ZMkSpaenq7i4uM6epbOuuuoqTZs2TampqRo5cmSo2x1A03Pud0urnlmqrqrWncMG6tvfna3c3Nzztu3bt69+9KMf6dZbb1W/fv00YsQIffzxx2Gfi+8SXCmcNc5TAjxqUI/1e0o0ceHGC9a/eN9A5SZfc8H6kydPKikpSWamGTNmqFevXvrOd74TjVKBJiU7O1uFhYWxLqPJutTvFgC1nHNbzCz7Ym30GEVB57Z++ePPv9T+eJ86tfFfdPuFCxcqIyNDgUBAZWVluv/++6NRJoDLzKV+twBoGD1GUXB2HMDZLm9/vE9P35WhUYFr5fO5WJcHNFn0GNWP7xbgy6mvx4hgFCVnnxz59ESFOrXxq0eHRL64gAYQjBrGdwtw6eoLRjyuHyU+n1NyxyQld0yKdSkAmhG+W4DGxRgjAAAAD8EIAADAQzACAADwEIwAAAA8BCMAAAAPwQgAAMBDMAIAAPAQjAAAADwEIwAAAA/BCAAAwEMwAgAA8BCMAAAAPAQjAAAAD8EIAADAQzACAADwEIwAAAA8BCMAAAAPwQgAAMBDMAIAAPAQjAAAADwEIwAAAA/BCAAAwEMwAgAA8BCMAAAAPAQjAAAAD8EIAADAQzACAADwEIwAAAA8BCMAAAAPwQgAAMBDMAIAAPAQjAAAADwEI9Tr8ccf18qVKxvlWIcOHdL48eMb5VgAAESCM7PGOE6jHATNV1VVlVq0aBHrMnCZyc7OVmFhYazLANDMOOe2mFn2xdroMYIkKRgMqk+fPpo2bZoCgYBuvfVWnT59WlOmTFFBQYEkacWKFUpJSVFWVpZmzZql0aNHS5LKy8s1depUDRgwQP3799err74qSVq8eLHuuOMO3XLLLRo+fLiCwaBSU1ND5xsyZIgyMzOVmZmpdevWSZLWrFmjvLw8jR8/XikpKZo0aZLOhvdVq1apf//+SktL09SpU/X5559H+zIBAJo5ghFCdu/erRkzZmj79u266qqr9PLLL4faKioqdP/99+uNN97Qli1bdOTIkVDbj3/8Y91yyy3atGmTVq9erdmzZ6u8vFyS9P7776ugoEDvvPPOeefq1KmT3n77bb3//vtatmyZZs2aFWrbunWrnnnmGe3YsUN79+7Ve++9p4qKCk2ZMkXLli3TBx98oKqqKj3//PMRviIAgCsNwQghPXv2VEZGhiQpKytLwWAw1FZcXKzk5GT17NlTkjRx4sRQ21tvvaUnn3xSGRkZysvLU0VFhQ4cOCBJGjFihNq3b3/BuSorKzVt2jSlpaVpwoQJ2rFjR6htwIAB6tatm3w+nzIyMhQMBrVz50717NlTN9xwgyRp8uTJevfddxv9GgAArmwM+riC1dSYgqXlOny8QpXHypWQkBBqi4uL0+nTp8M6jpnp5ZdfVu/evc9bv3HjRiUmJl50n/nz56tz587atm2bampq5Pf7Q21frKOqqupSPhYAAF8aPUZXqJoa05vbP9Ft+Ws1ceFG3bt4s05WVKmm5uLj6Hv37q29e/eGepGWLVsWahs5cqSeffbZ0FigrVu3Nnj+srIydenSRT6fT0uXLlV1dXW92/fu3VvBYFB/+ctfJElLly7V0KFDw/moAACEjWB0hQqWluuhl4pUUVkjSfq8qkYfH69QsLT8otu3atVKzz33nEaNGqWsrCy1adNG7dq1kyQ99thjqqysVL9+/RQIBPTYY481eP7p06dryZIlSk9PV3FxcZ09S2f5/X4tWrRIEyZMUFpamnw+nx544IFL/NQAANSPx/WvUOv3lGjiwo0XrH/xvoHKTb7movucPHlSSUlJMjPNmDFDvXr10ne+851Il4orGI/rA4gEHtfHBTq39csff/7//P54nzq18dexh7Rw4UJlZGQoEAiorKxM999/f6TLBAAgqugxukKdHWN09naaP96np+/K0KjAtfL5XKzLAyTRYwQgMurrMeKptCuUz+c0KnCtUmYN0acnKtSpjV89OiQSigAAVzSC0RXM53NK7pik5I5JsS4FAIAmgTFGAAAAHoIRAACAh2AEAADgIRgBAAB4CEYAAAAeghEAAICHYAQAAOAhGAEAAHgIRgAAAB6CEQAAgIdgBAAA4CEYAQAAeAhGAAAAHoIRAACAh2AEAADgIRgBAAB4CEYAAAAeghEAAICHYAQAAOAhGAEAAHjCDkbOub6RLAQAACDWwgpGzrlvSvqzc+6nEa4HAAAgZhoMRs65UZLulrRPUjvn3KyIVwUAABADLcLYZpWkdyRtNLP7nXNtIlwTAABATDQYjMysUlKlc+7s8olIFwUAABALPJUGAADgIRgBAAB4LiUYuYhVAQAA0ARcSjC6MWJVAAAANAFhByMzOxnJQgAAAGKNMUYAAAAeghEAAIAnnJmv451zs5xzBd7rW865+GgUBwDNVVFRkVasWHHJ+wWDQaWmpkqSCgsLNWsWP0YANKZwZr5+XlK8pOe85Xu8dd+MVFEA0NwVFRWpsLBQt9122wVtVVVVatGi4a/n7OxsZWdnR6I84IoVzq20HDObbGb/5b3ulZQT6cIAoCkbM2aMsrKyFAgEtGDBAklSUlJSqL2goEBTpkyRJP3+979Xamqq0tPTdfPNN+vMmTN6/PHHtWzZMmVkZGjZsmWaO3eu7rnnHg0ePFj33HOPgsGghgwZoszMTGVmZmrdunUX1LBmzRqNHj1akrRp0ybdeOON6t+/vwYNGqSdO3dKkhYvXqyxY8dq1KhR6tWrlx5++OHQ/g8++KCys7MVCAT0xBNPROpSAZeVcHqMqp1zXzWzPZLknEuWVB3ZsgCgafvVr36l9u3b6/Tp08rJydG4cePq3HbevHn64x//qK5du+rYsWNq2bKl5s2bp8LCQv3sZz+TJM2dO1c7duzQn/70J7Vq1UqnTp3S22+/Lb/fr927d2vixIkqLCys8xwpKSlau3atWrRooZUrV+rRRx/Vyy+/LKm2d2rr1q1KSEhQ79699a1vfUvdu3fXj3/8Y7Vv317V1dUaPny4/vznP6tfv36Ne6GAy0w4wWi2pNXOub2qneTxeklTI1oVADRx+fn5Wr58uSTp4MGD2r17d53bDh48WFOmTNFdd92lsWPH1rndHXfcoVatWkmSKisrNXPmTBUVFSkuLk67du2qt56ysjJNnjxZu3fvlnNOlZWVobbhw4erXbt2kqS+fftq//796t69u1566SUtWLBAVVVV+vjjj7Vjxw6CEa544fyI7CrnXC9Jvb1VO83s88iWBQBNS02NKVharsPHK7Tvg81auXKl1q9fr9atWysvL08VFRU6+2PbklRRURF6/8ILL2jjxo16/fXXlZWVpS1btlz0HImJiaH38+fPV+fOnbVt2zbV1NTI7/fXW99jjz2mYcOGafny5QoGg8rLywu1JSQkhN7HxcWpqqpK+/bt01NPPaXNmzfr6quv1pQpU86rGbhShfNU2h5J95rZn73X5865/4xCbQDQJNTUmN7c/oluy1+riQs3avZv16syrpX8/lYqLi7Whg0bJEmdO3fWhx9+qJqamlBvkiTt2bNHAwcO1Lx589SxY0cdPHhQbdq00YkTJ+o8Z1lZmbp06SKfz6elS5equrr+EQxlZWXq2rWrpNpxRQ05fvy4EhMT1a5dOx0+fFhvvPFGGFcCaP7CGXxdKWmYc26Rc66lt65rBGsCgCYlWFquh14qUkVljSSpxVcytf2jo7ohJUVz5sxRbm6uJOnJJ5/U6NGjNWjQIHXp0iW0/+zZs5WWlqbU1FQNGjRI6enpGjZsmHbs2BEafP1F06dP15IlS5Senq7i4uLzepMu5uGHH9Yjjzyi/v37q6qqqsHPlJ6erv79+yslJUX/9E//pMGDB1/KJQGaLWdm9W/g3Ptmlumce1jSOEkTJL1iZpnnbFb/QQDgS8jOzq53wHG0rN9TookLN16w/sX7Bio3+ZoYVATgb+Gc22JmF53rIpzB106SzOynzrn3Jb0lqX0j1gcATVrntn75432hHiNJ8sf71KlN/eN+AFx+6r2V5mpHEj59dtnMVkoaKelnEa4LAJqMHh0S9fRdGfLH135l+uN9evquDPXoUP/tLQCXn3BupX1gZmkNHIdbaQAaXVO5lSb99am0T09UqFMbv3p0SJTP5xreEUCT87feSnvfOZdjZpsbuS4AuGz4fE7JHZOU3DGp4Y0BXLbCCUYDJU1yzu2XVK7aMUdmZswCBgAAmpVwgtHIiFcBAADQBDQ4j5GZ7ZfUXdIt3vtT4ewHAABwuQln5usnJH1P0iPeqnhJv45kUQAAALEQTs/PnZLuUO34IpnZIUltIlkUAABALIQTjM5Y7TP9JknOOSbuAAAAzVI4wegl59wvJF3lnJsmaaWkhZEtCwAAIPoafCrNzJ5yzo2QdFxSb0mPm9nbEa8MAAAgysJ5XF9eECIMAQCAZq3BYOScO6G//uRHS9U+lVZuZm0jWRgAAEC0hXMrLfQEmvejsv8gKTeSRQEAAMTCJU3UaLVeEbNhAwCAZiicW2ljz1n0ScqWVBGxigAAAGIknMHXXz/nfZWkoGpvpwEAADQrdQYj59y/m9n3JL1hZi9FsSYAAICYqG+M0W3eYOs50SoGAAAgluq7lfampKOSkpxzx89Z71Q7DpvH9QEAQLNSZ4+Rmc02s6skvW5mbc95tSEUAQCA5iicx/X/yTnnkyTn3A3OuTucc/ERrgsAACDqwglG70ryO+e6SnpL0j2SFkeyKAAAgFgIJxg5Mzslaayk58xsgqRAZMsCAACIvrCCkXPuRkmTJL3urYuLXEkAAACxEU4w+mdJj0habmbbnXPJklZHtiwAAIDoC+dHZN+R9I5zrrW3vFfSrEgXBgAAEG0N9hg55250zu2QVOwtpzvnnot4ZQAAAFEWzq20ZySNlFQqSWa2TdLNkSwKAAAgFsIJRjKzg19YVR2BWgAAAGKqwTFGkg465wZJMm9ix29L+jCyZQEAAERfOD1GD0iaIamrpI8kZXjLAAAAzUo4T6WVqHYOIwAAgGYtrDFGAAAAVwKCEQAAEfL888/r+PHjsS4Dl4BgBAAxFAwGlZqaGvb2eXl5KiwslCTddtttOnbsWJ3bHjp0SOPHj/+ba7xS9OjRQyUlJY12vIKCAn300Udq27Ztox0TkRfOU2nncc79g6RPzGxjBOoBAIRpxYoV9bZfd911KigoiFI1+KLTp09r3rx5sS4Dl+jL9BgNlPR959wbjV0MAFyJqqqqNGnSJPXp00fjx4/XqVOntGrVKvXv319paWmaOnWqPv/88wv2O9vDMWfOHP385z8PrZ87d66eeuqp83qjgsGghgwZoszMTGVmZmrdunWSpDVr1igvL0/jx49XSkqKJk2aJDOTJM2bN085OTlKTU3VfffdF1rfHIwZM0ZZWVkKBAJasGDBBe2//vWvNWDAAGVkZOj+++9XdXXt9H1JSUmaPXu2AoGAvva1r2nTpk3Ky8tTcnKyXnvtNUl/vdbz589XdnZ2WNcaTYiZ1flSbXAaVN823gsAGl1WVlasS4i4ffv2mST705/+ZGZm9957r/3whz+0bt262c6dO83M7J577rH58+ebmdnQoUNt8+bNZmZ2/fXX25EjR+z999+3m2++OXTMPn362IEDB2zfvn0WCATMzKy8vNxOnz5tZma7du0KXdvVq1db27Zt7eDBg1ZdXW25ubm2du1aMzMrLS0NHfMb3/iGvfbaa5G8FFF19rOdOnXKAoGAlZSUhK7njh07bPTo0XbmzBkzM3vwwQdtyZIlZmYmyVasWGFmZmPGjLERI0bYmTNnrKioyNLT083s/Gv94YcfWmZmppnVf60RXZIKrY5MU2+PkZnVSPp5fdsAAP423bt31+DBgyVJ3/jGN7Rq1Sr17NlTN9xwgyRp8uTJevfdd+vcv3///vr000916NAhbdu2TVdffbW6d+9+3jaVlZWaNm2a0tLSNGHCBO3YsSPUNmDAAHXr1k0+n08ZGRkKBoOSpNWrV2vgwIFKS0vTf/3Xf2n79u2N/MljJz8/X+np6crNzdXBgwe1e/fuUNuqVau0ZcsW5eTkKCMjQ6tWrdLevXslSS1bttSoUaMkSWlpaRo6dKji4+OVlpYWum5VVVWaMWOGBg8erAceeEDFxcWhY9d1rdF0hDPGaJVzbpykP3gpCwDwN6ipMQVLy3X4eIUqj5XLOXde+1VXXaXS0tJLOuaECRNUUFCgTz75RHffffcF7fPnz1fnzp21bds21dTUyO/3h9oSEhJC7+Pi4lRVVaWKigpNnz5dhYWF6t69u+bOnauKiopL/KRNx7nXfN8Hm7Vy5UqtX79erVu3Vl5e3nmfzcw0efJk/eQnP7ngOPHx8aH/vXw+X+ja+Xw+VVVVSaq91h07dtQvf/lLVVVVNXit0bSEM8bofkm/l/S5c+64c+6Ec45nDwHgS6ipMb25/RPdlr9WExdu1L2LN+vAgQN6773acSi//e1vlZ2drWAwqL/85S+SpKVLl2ro0KH1Hvfuu+/Wiy++qIKCAk2YMOGC9rKyMnXp0kU+n09Lly4NjZmpy9mgcM011+jkyZOX9SDuL17z2b9dr8q4VvL7W6m4uFgbNmw4b/vhw4eroKBAn376qSTps88+0/79+8M+39GjR9WxY0dJCutao2lpMBiZWRsz85lZSzNr6y3z7CEAfAnB0nI99FKRKiprJEmfV9WoZYdu+l/z89WnTx8dPXpU3/nOd7Ro0SJNmDBBaWlp8vl8euCBB+o9biAQ0IkTJ9S1a1d16dLlgvbp06dryZIlSk9PV3FxsRITE+s93lVXXaVp06YpNTVVI0eOVE5Ozpf/0DH2xWve4iuZ2v7RUd2QkqI5c+YoNzf3vO379u2rH/3oR7r11lvVr18/jRgxQh9//HHY53vwwQe1ePHisK81mhYXzt0x59zVknpJCvUHmtm5N7y5xQag0WVnZ4fm7Gku1u8p0cSFF8528uJ9A5WbfE0MKmr+uOb4IufcFjPLvlhbg2OMnHPflPRtSd0kFUnKlbRe0i2NWSQAXAk6t/XLH+8L9V5Ikj/ep05t/PXshb8F1xyXIpwxRt+WlCNpv5kNk9RfUt1TrQIA6tSjQ6KevitD/vjar19/vE9P35WhHh243RIpXHNcinCeSqswswrnnJxzCWZW7JzrHfHKAKAZ8vmcRgWuVcqsIfr0RIU6tfGrR4dE+Xyu4Z3xpXDNcSnCCUb/zzl3laRXJL3tnDsqKfzh+QCA8/h8Tskdk5TcMSnWpVwxuOYIV4PByMzu9N7Odc6tltRO0psRrQoAACAG6gxGzrm2ZnbcOdf+nNUfeH8TnXPVZsbkDAAAoNmor8fot5JGS9qi2sfxv3gzNsk5t9DMHo1UcQAAANFUZzAys9He354Xa3fOxUn6b0kEIwAA0CyEM/i6vgke+0SoLgAAgKhjgkcAAAAPEzwCAAB4wglGFWZWISk0waMkJngEAADNDhM8AgAAeJjgEQAAwBPuU2mZkm5S7XxG75nZmYhWBQAAEAMNjjFyzj0uaYmkDpKukbTIOff9SBcGAAAQbeH0GE2SlH7OAOwnVfvY/o8iWRgAAEC0hfNU2iGdM7GjpARJH0WmHAAAgNip70dkn1XtmKIySdudc297yyMkbYpOeQAAANFT3620Qu/vFknLz1m/JmLVAAAAxFB9PyK7JJqFAAAAxFo4v5XWS9JPJPXV+T8imxzBugAAAKIunMHXiyQ9L6lK0jBJ/0fSryNZFAAAQCyEE4xamdkqSc7M9pvZXEm3R7YsAACA6AtnHqPPnXM+SbudczNV+6h+UmTLAgAAiL5weoy+Lam1pFmSsiR9Q9LkSBYFAAAQC/X2GDnn4iTdbWb/IumkpHujUhUAAEAM1NtjZGbVqv3xWAAAgGYvnDFGW51zr0n6vaTysyvN7A8RqwoAACAGwglGfkmlkm45Z51JIhgBAIBmJZxg9L/N7L1zVzjnBkeoHgAAgJgJ56m0Z8NcBwAAcFmrs8fIOXejpEGSOjrnHjqnqa2kuEgXBgAAEG313UprqdqJHFtIanPO+uOSxkeyKAAAgFioMxiZ2TuS3nHOLTaz/VGsCQAAICYaHGNEKAIAAFeKcAZfAwAgSRo0aFCsSwAiimAEAGhQVVWVJGndunUxrgSIrEsORs656c65u51z4cyBBACIkjFjxigrK0uBQEALFiyQJCUlJWn27NkKBAL62te+pk2bNikvL0/Jycl67bXXJEnV1dWaPXu2cnJy1K9fP/3iF7+QJK1Zs0ZDhgzRHXfcob59+4aOd9a///u/Ky0tTenp6ZozZ44kaeHChcrJyVF6errGjRunU6dOSZKmTJmiWbNmadCgQUpOTlZBQYEk6eTJkxo+fLgyMzOVlpamV199NToXC6iLmV3SS9IM1c5j9No56wGg0WVlZcW6hMtKaWmpmZmdOnXKAoGAlZSUmCRbsWKFmZmNGTPGRowYYWfOnLGioiJLT083M7Nf/OIX9sMf/tDMzCoqKiwrK8v27t1rq1evttatW9vevXtD50hMTDQzsxUrVtiNN95o5eXl5527pKQktO2//uu/Wn5+vpmZTZ482caPH2/V1dW2fft2++pXv2pmZpWVlVZWVmZmZkeOHLGvfvWrVlNTE5kLBHgkFVodOafeXh/nnE/SeDN76Zwg9fMI5jQAwJeUn5+v5cuXS5IOHjyo3bt3q2XLlho1apQkKS0tTQkJCYqPj1daWpqCwaAk6a233tKf//znUC9OWVlZaN8BAwaoZ8+eF5xr5cqVuvfee9W6dWtJUvv27SVJ//3f/63vf//7OnbsmE6ePKmRI0eG9hkzZox8Pp/69u2rw4cPS6r9x/mjjz6qd999Vz6fTx999JEOHz6sa6+9NjIXCWhAvcHIzGqccw9Leqm+7QAAsVFTYwqWluuNt1bpP9/4o957b52SkhKVl5eniooKxcfHyzknSfL5fEpISAi9PztuyMz07LPPnhdipJayKvcAACAASURBVNpbaYmJiZdUz5QpU/TKK68oPT1dixcv1po1a0JtZ8999pyS9Jvf/EZHjhzRli1bFB8frx49eqiiouKSrwPQWMIZY7TSOfcvzrnuzrn2Z18RrwwAUK+aGtOb2z/Rbflr9YM/FKr4aI3e3XdcO3Z8qA0bNoR9nJEjR+r5559XZWWlJGnXrl0qLy+vd58RI0Zo0aJFoTFEn332mSTpxIkT6tKliyorK/Wb3/ymwXOXlZWpU6dOio+P1+rVq7V/PzPEILbCGUB9t/d3xjnrTFJy45cDAAhXsLRcD71UpIrKGrXqmaUTW9/QncMG6uacfsrNzQ37ON/85jcVDAaVmZkpM1PHjh31yiuv1LvPqFGjVFRUpOzsbLVs2VK33Xab/u3f/k0//OEPNXDgQHXs2FEDBw7UiRMn6j3OpEmT9PWvf11paWnKzs5WSkpK2HUDkeDOdmf+jRrlIABwruzsbBUWFsa6jCZr/Z4STVy48YL1L943ULnJ18SgIuDy4JzbYmbZF2trsMfIORcv6UFJN3ur1kj6hZlVNlqFAIBL1rmtX/54nyoqa0Lr/PE+dWrjj2FVwOUtnDFGz0vKkvSc98ry1gEAYqhHh0Q9fVeG/PG1X+X+eJ+evitDPTpc2oBpAH8VzhijHDNLP2f5v5xz2yJVEAAgPD6f06jAtUqZNUSfnqhQpzZ+9eiQKJ/Pxbo04LIVTjCqds591cz2SJJzLllSdWTLAgCEw+dzSu6YpOSOSQ1vDKBB4QSj2ZJWO+f2SnKSrpd0b0SrAgAAiIEGg5GZrXLO9ZLU21u108w+j2xZAAAA0VdnMHLOja2j6e+cczKzP0SoJgAAgJior8fo697fTpIGSVql2ltpwyStk0QwAgAAzUqdwcjM7pUk59xbkvqa2cfechdJi6NSHQAAQBSFM49R97OhyHNY0lciVA8AAEDMhPNU2irn3B8l/c5bvlvSysiVBAAAEBvhPJU20xuIPcRbtcDMlke2LAAAgOgLp8fo7BNoDLYGAADNWoNjjJxzuc65zc65k865M865aufc8WgUBwAAEE3hDL7+maSJknZLaiXpm5J+HsmiAAAAYiGcYCQz+4ukODOrNrNFkkZFtiwAAIDoC2eM0SnnXEtJRc65n0r6WGEGKgAAgMtJOAHnHklxkmZKKpfUXdK4SBYFAAAQC+E8rr/fe3ta0g8iWw4AAEDs1Pcjsi+Z2V3OuQ8k2ReaTdJnkp4xs1cjWSAAAEC01Ndj9G3v7+g62q+R9BtJBCMAANAs1Pcjsh97f/fXscl+59ykiFQFAAAQA3/TBI9mtiXyJQIAAEQHEzwCAAB4mOARAADAwwSPAAAAnnAnePSJCR4BAEAzF9YEj16PUQ9Jf5C008zORLowAACAaGswGDnnbpf0gqQ9kpykns65+83sjUgXBwAAEE3hjDH6D0nDvAHYcs59VdLrkghGAACgWQlnjNGJs6HIs1fSiQjVAwAAEDP1/VbaWO9toXNuhaSXVPsbaRMkbY5CbQAAAFFV3620r5/z/rCkod77I6qd6BEAAKBZqe+30u6NZiEAAACxFs5TaX5J/1NSQJL/7HozmxrBugAAAKIunMHXSyVdK2mkpHckdRODrwEAQDMUTjD6OzN7TFK5mS2RdLukgZEtCwCat6KiIq1YseKS9wsGg0pNTZUkFRYWatasWY1dGnBFCycYVXp/jznnUiW1k9QpciUBQPNXXzCqqqoK6xjZ2dnKz89vzLKAK144wWiBc+5qSd+X9JqkHZL+PaJVAUATN2bMGGVlZSkQCGjBggWSpKSkpFB7QUGBpkyZIkn6/e9/r9TUVKWnp+vmm2/WmTNn9Pjjj2vZsmXKyMjQsmXLNHfuXN1zzz0aPHiw7rnnHgWDQQ0ZMkSZmZnKzMzUunXrLqhhzZo1Gj16tCRp06ZNuvHGG9W/f38NGjRIO3fulCQtXrxYY8eO1ahRo9SrVy89/PDDof1/97vfKS0tTampqfre974XqUsFXFbqHXztnPNJOm5mRyW9Kyk5KlUBQBP3q1/9Su3bt9fp06eVk5OjcePq/m3tefPm6Y9//KO6du2qY8eOqWXLlpo3b54KCwv1s5/9TJI0d+5c7dixQ3/605/UqlUrnTp1Sm+//bb8fr92796tiRMnqrCwsM5zpKSkaO3atWrRooVWrlypRx99VC+//LKk2t6prVu3KiEhQb1799a3vvUtxcXF6Xvf+562bNmiq6++WrfeeqteeeUVjRkzpnEvFHCZqTcYmVmNc+5h1U7uCADw5Ofna/ny5ZKkgwcPavfu3XVuO3jwYE2ZMkV33XWXxo4dW+d2d9xxh1q1qp0mrrKyUjNnzlRRUZHi4uK0a9eueuspKyvT5MmTtXv3bjnnVFlZGWobPny42rVrJ0nq27ev9u/fr9LSUuXl5aljx46SpEmTJundd98lGOGKF85vpa10zv2LpGWSys+uNLPPIlYVADQxNTWmYGm5Dh+v0L4PNmvlypVav369Wrdurby8PFVUVMg5F9q+oqIi9P6FF17Qxo0b9frrrysrK0tbtmy56DkSExND7+fPn6/OnTtr27Ztqqmpkd/vv+g+Zz322GMaNmyYli9frmAwqLy8vFBbQkJC6H1cXFzYY5iAK1E4wehu7++Mc9aZuK0G4ApRU2N6c/sneuilIlVU1qhy70Z1i2slv7+ViouLtWHDBklS586d9eGHH6p3795avny52rRpI0nas2ePBg4cqIEDB+qNN97QwYMH1aZNG504UffMJ2VlZerWrZt8Pp+WLFmi6urqemssKytT165dJdWOK2rIgAEDNGvWLJWUlOjqq6/W7373O33rW98K84oAzVc4g6/7mFnPc1+S+ka6MABoKoKl5aFQJEktvpKp7R8d1Q0pKZozZ45yc3MlSU8++aRGjx6tQYMGqUuXLqH9Z8+eHRrkPGjQIKWnp2vYsGHasWNHaPD1F02fPl1LlixRenq6iouLz+tNupiHH35YjzzyiPr37x9Wj1CXLl305JNPatiwYUpPT1dWVpb+4R/+4VIuC9AsOTOrfwPn3jezzAbW1X8QAPgSsrOz6x1wHC3r95Ro4sKNF6x/8b6Byk2+JgYVAfhbOOe2mFn2xdrqvJXmnLtWUldJrZxz/SWdvXneVlLrRq8SAJqozm398sf7Qj1GkuSP96lTm/rH/QC4/NQ3xmikpCmq/QmQ/9Bfg9FxSY9GtiwAaDp6dEjU03dlhG6n+eN9evquDPXoUP/tLQCXn3BupY0zs5cbOA630gA0uqZyK03661Npn56oUKc2fvXokCifzzW8I4Am50vdSjsrjFAEAM2ez+eU3DFJyR2TGt4YwGUrnKfSAAAArggEIwAAAA/BCAAAwEMwAgAA8BCMAAAAPAQjAAAAD8EIAADAQzACAADwEIwAAAA8BCMAAAAPwQgAAMBDMAIAAPAQjAAAADwEIwAAAA/BCAAAwEMwAgAA8BCMAAAAPC0a4yCjRo1SSUlJYxwKAEI+/PBDZWdnx7oMAM1Pr7oanJk1xgka5SAAcK7s7GwVFhbGugwAzYxzbouZXfRfXdxKAwAA8BCMAAAAPAQjAAAAD8EIAADAQzACAADwEIwAAAA8BCMAAAAPwQgAAMBDMAIAAPAQjAAAADwEIwAAAA/BCAAAwEMwAoAryLFjx/Tcc8+Flg8dOqTx48fHsCKgaSEYAUATV11d3WjH+mIwuu6661RQUNBoxwcudwQjAIixMWPGKCsrS4FAQAsWLJAkJSUl6bvf/a7S09O1fv16/fKXv9QNN9ygAQMGaNq0aZo5c6Yk6ciRIxo3bpxycnKUk5Oj9957T5I0d+5cTZ06VXl5eUpOTlZ+fr4kac6cOdqzZ48yMjI0e/ZsBYNBpaamSpIWL16ssWPHatSoUerVq5cefvjhUI0PPvigsrOzFQgE9MQTT0Tz8gDRZWaN8QKARpeVlRXrEqKitLTUzMxOnTplgUDASkpKTJItW7bMzMw++ugju/766620tNTOnDljN910k82YMcPMzCZOnGhr1641M7P9+/dbSkqKmZk98cQTduONN1pFRYUdOXLE2rdvb2fOnLF9+/ZZIBAInfvc5UWLFlnPnj3t2LFjdvr0afvKV75iBw4cOK/GqqoqGzp0qG3bti0KVwaIDEmFVkemaRHrYAYAV7r8/HwtX75cknTw4EHt3r1bcXFxGjdunCRp06ZNGjp0qNq3by9JmjBhgnbt2iVJWrlypXbs2BE61vHjx3Xy5ElJ0u23366EhAQlJCSoU6dOOnz4cIO1DB8+XO3atZMk9e3bV/v371f37t310ksvacGCBaqqqtLHH3+sHTt2qF+/fo13EYAmgmAEAFFWU2MKlpbr8PEK7ftgs1auXKn169erdevWysvLU0VFhfx+v+Li4sI4Vo02bNggv99/QVtCQkLofVxcnKqqqho83sX22bdvn5566ilt3rxZV199taZMmaKKioowPy1weWGMEQBEUU2N6c3tn+i2/LWauHCjZv92vSrjWsnvb6Xi4mJt2LDhgn1ycnL0zjvv6OjRo6qqqtLLL78carv11lv17LPPhpaLiorqPX+bNm104sSJS6r5+PHjSkxMVLt27XT48GG98cYbl7Q/cDmhxwgAoihYWq6HXipSRWWNJKnFVzK1/f0VuiElRal9+yg3N/eCfbp27apHH31UAwYMUPv27ZWSkhK63ZWfn68ZM2aoX79+qqqq0s0336wXXnihzvN36NBBgwcPVmpqqv7+7/9eM2bMaLDm9PR09e/fXykpKerevbsGDx78JT890PS52jFIf7NGOQgAnCs7O1uFhYWxLqNRrd9TookLN16w/sX7Bio3+Zo69zt58qSSkpJUVVWlO++8U1OnTtWdd94ZyVKBZss5t8XMsi/Wxq00AIiizm398sef/9Xrj/epU5sLxwida+7cucrIyFBqaqp69uypMWPGRLJM4IpFjxGAJqs59hidHWN09naaP96np+/K0KjAtfL5XKzLA64I9fUYMcYIAKLI53MaFbhWKbOG6NMTFerUxq8eHRIJRUATQTACgCjz+ZySOyYpuWNSrEsB8AWMMQIAAPAQjAAAADwEIwAAAA/BCAAAwEMwAgAA8BCMAAAAPAQjAAAAD8EIAADAQzACAADwEIwAAAA8BCMAAAAPwQgAAMBDMAIAAPAQjAAAADwEIwAAAA/BCAAAwEMwAgAA8BCMAAAAPAQjAAAAD8EIAADAQzACAADwEIwAAAA8BCMAAAAPwQgAAMDToq4G59z/lWR1tZvZHRGpCAAAIEbqDEaSnopaFQAAAE1AncHIzN6JZiEAAACxVl+PkSTJObdPF7mlZmbJEakIAAAgRhoMRpKyz3nvlzRBUvvIlAMAABA7DT6VZmal57w+MrNnJN0ehdoAAACiKpxbaZnnLPpU24MUTk8TAADAZSWcgPMf57yvkhSUdFdEqgEAAIihBoORmQ2LRiEAAACxVt8Ejw/Vt6OZPd345QAAAMROfT1Gbby/vSXlSHrNW/66pE2RLAoAACAW6pvg8QeS5Jx7V1KmmZ3wludKej0q1QEAAERROD8i21nSmXOWz3jrAAAAmpVwnkr7P5I2OeeWe8tjJC2JXEkAAACxEc5TaT92zr0p6SZv1b1mtjWyZQEAAERfuBM1Fkn6+Oz2zrmvmNmBiFUFAAAQA+HMfP0tSU9IOiypWpJT7Y/K9otsaQAAANEVTo/RtyX1NrPSSBcDAAAQS+E8lXZQUlmkCwEAAIi1cHqM9kpa45x7XdLnZ1cy8zUAAGhuwglGB7xXS+8FAADQLIXzuP4PolEIAABArIXzVFpHSQ9LCkjyn11vZrdEsC4AAICoC2fw9W8kFUvqKekHkoKSNkewJgAAgJgIJxh1MLNfSqo0s3fMbKokeosAAECzE87g60rv78fOudslHZLUPnIlAQAAxEY4wehHzrl2kr4r6VlJbSV9J6JVAQAAxEA4T6X9p/e2TNKwyJYDAAAQO+E8lZZ/kdVlkgrN7NXGLwkAACA2whl87ZeUIWm39+onqZuk/+mceyaCtQEAAERVOGOM+kkabGbVkuSce17SWkk3SfoggrUBAABEVTg9RldLSjpnOVFSey8ofX7xXQAAAC4/4fQY/VRSkXNujSQn6WZJ/+acS5S0MoK1AQAARFU4T6X90jm3QtIAb9WjZnbIez87YpUBAABEWTg9RjKzjyXxBBoAAGjWwhljBAAAcEUgGAEAAHgIRgAAAJ5LDkbOuQ+918xIFAQAABArYQ2+PpeZ9XHOdZCUG4F6AAAAYiasYOSc6ywpx1vcZGafSno9YlUBAADEQIO30pxzd0naJGmCpLskbXTOjY90YQAAANEWTo/Rv0rK8XqJ5JzrqNoZrwsiWRgAAEC0hTP42nc2FHlKw9wPAADgshJOj9Gbzrk/Svqdt3y3pBWRKwkAACA2wvmttNnOubGSbvJWLTCz5ZEtCwAAIPoaDEbOuURJr5rZH5xzvSX1ds7Fm1ll5MsDAACInnDGCr0rKcE511XSm5LukbQ4kkUBAADEQjjByJnZKUljJT1vZhMkBSJbFgAAQPSFFYycczdKmqS/TuoYF7mSAAAAYiOcYPTPkh6RtNzMtjvnkiWtjmxZAAAA0RfOU2nvSHrHOZfknEsys72SZkW+NAAAgOgK5ydB0pxzWyVtl7TDObfFOccYIwAA0OyEcyvtF5IeMrPrzewrkr4raWFkywIAnHXs2DE999xzoeVDhw5p/Pjzf7IyGAwqNTU17GPm5eWpsLBQknTbbbfp2LFjdW57sfMBzVU4wSjRzEJjisxsjaTEiFUEAM1AdXV1ox3ri8HouuuuU0FB4/1c5YoVK3TVVVfV2d7Y5wOasnCC0V7n3GPOuR7e6/uS9ka6MABoysaMGaOsrCwFAgEtWLBAkpSUlKTvfve7Sk9P1/r16/XLX/5SN9xwgwYMGKBp06Zp5syZkqQjR45o3LhxysnJUU5Ojt577z1J0ty5czV16lTl5eUpOTlZ+fn5kqQ5c+Zoz549ysjI0OzZs8/rHVq8eLHGjh2ryZMna9euXerbt6/69Omj8ePHa/HixerZs6datWqljh07aurUqfr8888v+Cw9evRQSUmJ5syZo5///Oeh9XPnztVTTz113vmCwaCGDBmizMxMZWZmat26dZKkNWvWKC8vT+PHj1dKSoomTZokM5MkrVq1Sv3791daWlqdNQBNhpnV+5J0taR8Se9L2iLpGUlXf2E7AGh0WVlZsS6hTqWlpWZmdurUKQsEAlZSUmKSbNmyZWZm9tFHH9n1119vpaWldubMGbvppptsxowZZmY2ceJEW7t2rZmZ7d+/31JSUszM7IknnrAbb7zRKioq7MiRI9a+fXs7c+aM7du3zwKBQOjc5y4vWrTIevbsadu2bTNJ1rlzZztw4IDdfffd1q5dO+vSpYtt377dhg0bZkOHDrX58+ebmdnQoUNt8+bNZmZ2/fXX25EjR+z999+3m2++OXSePn362IEDB847X3l5uZ0+fdrMzHbt2hX632j16tXWtm1bO3jwoFVXV1tubq6tXbvWTp8+bd26dbOdO3eamdk999wTqgGIFUmFVkfuCafHKFXSd8ws08yyzOyfJfWMSEoDgMtEfn6+0tPTlZubq4MHD2r37t2Ki4vTuHHjJEmbNm3S0KFD1b59e8XHx2vChAmhfVeuXKmZM2cqIyNDd9xxh44fP66TJ09Kkm6//XYlJCTommuuUadOnXT48OEGaxk+fLjatm2r7t27q3///tq/f78CgYD8fr/+7u/+Tn379tWkSZN0zTXX6N13363zOP3799enn36qQ4cOadu2bbr66qvVvXv387aprKzUtGnTlJaWpgkTJmjHjh2htgEDBqhbt27y+XzKyMhQMBjUzp071bNnT91www2SpMmTJ9dbAxBrDT6uL+mPkjY75yaY2afeuv8tKTNyZQFA01JTYwqWluvw8Qrt+2CzVq5cqfXr16t169bKy8tTRUWF/H6/4uIanv+2pqZGGzZskN/vv6AtISEh9D4uLk5VVVUN1vV5jU/v7/9M1Sb5fH/dp2XLlpf4KaUJEyaooKBAn3zyie6+++4L2ufPn6/OnTtr27ZtqqmpOe8zXGrtQFMUTo/RTkn/S7VzGQ3y1rnIlQQATUtNjenN7Z/otvy1mrhwo2b/dr0q41rJ72+l4uJibdiw4YJ9cnJy9M477+jo0aOqqqrSyy+/HGq79dZb9eyzz4aWi4qK6j1/mzZtdOLEiYvW9cGhMv3fPx/SrBeLdOj/HdS+Q4dVU2P68MMPdfz4ce3Zs0c7d+7U7373O3322WcaOnRovee6++679eKLL6qgoOC8Xq6zysrK1KVLF/l8Pi1durTBQea9e/dWMBjUX/7yF0nS0qVLG6wBiKVwgpGZ2X9KukPSz5xzMyVZZMsCgKYjWFquh14qUkVljSSpxVcytf2jo7ohJUVz5sxRbm7uBft07dpVjz76qAYMGKDBgwerR48eateunaTa23CFhYXq16+f+vbtqxdeeKHe83fo0EGDBw9WamqqZs+efV5dL246oOqa2q/kFu27adeefbrnf/wPff7553rmmWfUsmVLZWRkaNu2berRo4ceeOCBes8VCAR04sQJde3aVV26dLmgffr06VqyZInS09NVXFysxMT6H1L2+/1atGiRJkyYoLS0NPl8vgZrAGLJmdWfcZxzW82sv/c+UdIiSWPN7NzbcAQlAI0uOzs7NNdOLK3fU6KJCzdesP7F+wYqN/maOvc7efKkkpKSVFVVpTvvvFNTp07VnXfeGfO6gCudc26LmWVfrK3BHqOzoch7X25md0lKbsT6AKBJ69zWL3/8+V+X/nifOrW5cIzQuebOnauMjAylpqaqZ8+eGjNmTJOoC0DdwukxukHS85I6m1mqc66fpDvM7EfnbEaPEYBG11R6jM6OMTp7O80f79PTd2VoVOBa+XyxG3LZVOsCmrr6eozCCUbvSJot6Rfn3FL7bzM7d+55ghGARtdUgpH016fSPj1RoU5t/OrRIbFJhI+mWhfQlNUXjMJ5XL+1mW1y7rz/0HgGE8AVxedzSu6YpOSOSbEu5TxNtS7gchXOU2klzrmvyusVcs6Nl/RxRKsCAACIgXB6jGZIWiApxTn3kaR9kiZFtCoAAIAYqDcYOefiJE03s695j+r7zOzCWcYAAACagXqDkZlVO+du8t6X///27jzeqvI89PjvOYoioEYNUZuai2BSCwI2gDgRMdUrNdVgVaI1RkxSb27TmKGh13w0rYm5NtrWppobq7YRxwRHionGGQccUJTRsRdJNMYB4oBYIuLTP9a7YXM8w0bYZwv8vp/P/py11/i8a3j3s9717n16JiRJkqTWaORR2qMRMQ24GliVHGXmdU2LSpIkqQUaSYx6A0uAT9aNS8DESJIkbVS6TYwy88SeCESSJKnVuv26fkR8LCJuj4j55f2wiDit+aFJkiT1rEZ+x+gi4FvACoDMnAsc08ygJEmSWqGRxKhPZs5sN85fvpYkSRsdf/lakiSp8JevJUmSika+lbYQ8JevJUnSRq+Rb6XtEBHnAvcA0yPiXyJih+aHJkmS1LMa6WP0U+Bl4EjgqDI8pZlBSZIktUIjfYx2zswz6t5/LyI+06yAJEmSWqWRFqNbIuKYiGgrrwnAzc0OTJIkqac1khj9BXAl8Lvy+inwvyJiaUS83szgJEmSelIj30rbuicCkSRJarVGWowkSZI2CSZGkiRJhYmRJElSYWIkSZJUrHViFBGPl9dfNSMgSZKkVmnkBx7XkJl/WP4lyN5NiEeSJKllGkqMImJHYFR5OzMzXwJ+3rSoJEmSWqCRfyI7AZgJHA1MAB6MiKOaHZgkSVJPa6TF6FRgVGklIiL6A7cB1zQzMEmSpJ7WSOfrtlpSVCxpcDlJkqQNSiMtRr+IiJuBn5T3nwFubF5IkiRJrdHI/0qbFBFHAvuVURdm5vXNDUuSJKnnNfSttMy8Fri2ybFIkiS1VLeJUUQsBbLd6NeAh4G/zsyFzQhMkiSppzXSYvQD4DngSiCAY4BBwCPAj4GxzQpOkiSpJzXy7bLDM/OCzFyama9n5oXAIZk5BdiuyfFJkiT1mEYSozcjYkJEtJXXBGB5mdb+EZskSdIGq5HE6DjgeOAl4MUy/NmI2ArwH8lKkqSNRiNf118IHNbJ5HvXbziSJEmt08i30noDXwCGAL1r4zPz802MS5Ikqcc18ijtMmAn4BDgLuD3gaXNDEqSJKkVGkmMdsvMbwPLMvMS4FPA6OaGJUmS1PMaSYxWlL+vRsQewLbAh5oXkiRJUms08gOPF0bEdsC3gWlAvzIsSZK0UWkkMbo4M1dS9S8a2OR4JEmSWqaRR2nPRMSFEfHHERFNj0iSJKlFGkmMdgduA74MLIqIH0bE/s0NS5Ikqed1mxhl5puZeVVm/hmwJ7AN1WM1SZKkjUojLUZExAER8SNgFtWPPE5oalSSJEkt0MgvXy8CHgWuAiZl5rJmByVJktQKjXwrbVhmvt70SCRJklqskT5GJkWSJGmT0FAfI0mSpE2BiZEkSVLRcGIUEdc2MxBJkqRWW5sWo482LQpJkqT3AR+lSZIkFSZGkiRJhYmRJElS0cgvX/8psF8ZPh7on5nnNDswSZKkntZIi9HPgd8DhgAnAuc3NSJJkqQW6bbFKDMzIiYCDwCXZuZ/NT0qSZKkFmjkf6WRmYktRZIkaSNn52tJkqTCxEiSJKkwMZIkSSpMjCRJkgoTI0mSpMLESJIkqTAxkiRJKkyMJEmSChMjSZKkwsRIkiSpMDGSJEkqTIwkSZIKEyNJkqTCxEiSJKkwMZIkSSpMjCRJkgoTI0mSpMLESJIkqTAxkiRJKkyMJEmSChMjSZKkwsRIkiSpMDGSJEkqTIwkSZIKEyNJkqTCxEiSmihNBwAAErpJREFUJKkwMZIkSSpMjCRJkgoTI0mSpMLESJIkqTAxkiRJKkyMJEmSChMjSZKkwsRIkiSpMDGSJEkqTIwkSZIKEyNJkqTCxEiSJKkwMZIkSSpMjCRJkgoTI0mSpMLESJIkqTAxkiRJKkyMJEmSChMjSZKkwsRIkiSpMDGSJEkqTIwkSZIKEyNJkqTCxEiSJKkwMZIkSSpMjCRJkgoTI0mSpMLESJIkqTAxkiRJKkyMJEmSChMjSZKkwsRIkiSpMDGSJEkqTIwkSZIKEyNJWo/23XffVocgaR2YGEnSevD2228DcN9997U4EknrwsRI0iZj/PjxjBgxgiFDhnDhhRcC0K9fPyZNmsSQIUM46KCDmDlzJmPHjmXgwIFMmzYNgJUrVzJp0iRGjRrFsGHDuOCCCwCYPn06Y8aM4fDDD2fw4MGr1ldz1llnMXToUIYPH84pp5wCwEUXXcSoUaMYPnw4Rx55JG+++SYAEydO5OSTT2bfffdl4MCBXHPNNQBkJpMmTWKPPfZg6NChTJkypWd2lrSpysz18ZKk9W7EiBHrdX1LlizJzMw333wzhwwZkosXL04gb7zxxszMHD9+fB588MH51ltv5ezZs3P48OGZmXnBBRfkGWeckZmZy5cvzxEjRuTChQvzzjvvzD59+uTChQtXbaNv376ZmXnjjTfmPvvsk8uWLVtj24sXL14176mnnprnnntuZmaecMIJedRRR+XKlStzwYIFOWjQoMzMvOaaa/Kggw7Kt99+O1944YXcZZdd8vnnn1+v+0Xa1AAPZyc5zeatTswkqaece+65XH/99QA8++yzPP3002yxxRaMGzcOgKFDh7LlllvSq1cvhg4dyqJFiwC45ZZbmDt37qpWnNdee23VsnvttRe77rrru7Z12223ceKJJ9KnTx8Att9+ewDmz5/Paaedxquvvsobb7zBIYccsmqZ8ePH09bWxuDBg3nxxRcBuPfeezn22GPZbLPN2HHHHTnggAN46KGHOPzww5uzk6RNnImRpI3aO+8ki5Ys46ZbbudnN93MjBn30a9fX8aOHcvy5cvp1asXEQFAW1sbW2655arhWr+hzOS8885bI4mB6lFa37591yqeiRMnMnXqVIYPH87kyZOZPn36qmm1bde2Kann2cdI0kbrnXeSXyx4gUPPvYfvXPcwT7zyDnc/8zqPPfY4DzzwQMPrOeSQQzj//PNZsWIFAE899RTLli3rcpmDDz6Yiy++eFUfot/+9rcALF26lJ133pkVK1ZwxRVXdLvtMWPGMGXKFFauXMnLL7/M3XffzV577dVw7JLWji1GkjZai5Ys4xtXzWb5infYatcRLH30Jo44cDSfGDWMvffeu+H1fPGLX2TRokV8/OMfJzPp378/U6dO7XKZcePGMXv2bEaOHMkWW2zBoYceyplnnskZZ5zB6NGj6d+/P6NHj2bp0qVdrueII47g/vvvZ/jw4UQEZ599NjvttFPDsUtaO7Gemmtt85W03o0cOZKHH374PS9///9fzLEXPfiu8T89aTR7D/zguoQmaQMWEbMyc2RH03yUJmmjteM2venda81qrnevNj60de8WRSTp/c7ESNJGa8AOfTlnwp6rkqPevdo4Z8KeDNhh7TpMS9p02MdI0karrS0YN2Qndj95DC8tXc6Htu7NgB360tYWrQ5N0vuUiZGkjVpbWzCwfz8G9u/X/cySNnk+SpMkSSpMjCRJkgoTI0mSpMLESJIkqTAxkiRJKkyMJEmSChMjSZKkwsRIkiSpMDGSJEkqTIwkSZIKEyNJkqTCxEiSJKkwMZIkSSpMjCRJkgoTI0mSpMLESJIkqTAxkiRJKkyMJEmSChMjSZKkwsRIkiSpWF+JUWwsr4i4KyJGrcf17RoRxzUx3gMj4uc9vI+Wtfo41cXyy4jo3+o4NoXX+r42GnnNmjXr5laXex332f09vL1PR8S3Wl3uVpclIk6MiP/X5Ph6R8TtETEnIo6JiH+PiCGbwrHpoowfjohrWx1Hg6/FdGLzziZovRkA/DlwZaMLRMTmmfl2M4Jpv+5mbquR7W+s29Sa1uG8+5OIaMvMd5oYXtNk5r7ruo6I2CwzVzYw3+aZOQ2Ytq7bfD/YAMryRwCZuWd5P6WrmTeA8qyzzHweOKrVcTQiM8d1Nm2DeJQWEW0RcViD806OiPMj4oGIWBgRYyPixxHxeERMrpvv/Ih4OCIWRMR3OlnXFyLiqYiYGREXRcQPy/jDIuLBiHg0Im6LiB3L+AMiYnZ5PRoRWwPfB8aUcV+PiAERcU9EPFJe+5Zlx5bx04DHuinjuIh4IiIeAf6sbnzfUtaZZfufLuMnRsS0iLgDuL2D99tHxNSImFv227CyXL+IuDgi5pVpR9Zt6/+WO6UH6srf2X45PSIui4gZwGVdlGtAKdcV5XhdExF9yrQ/LuudV8q4Zd2if1PGz4yI3erOg3+NiAeBsyNiUET8IiJmlf28e1f7eFMWEX8bEQ9FxPyIuDAiom7y0WU/PxURY8r8vevOk0cj4sAyvrvzrl9Ud9yPlGVr5+uAiHgyIi4F5gO7dBFrh8c1InaMiOvLOTqn7jr7RinX/Ij4Wt32Hi/X+IKIuCUitirT9izn+Nyyvu3K+OkR8c9R1SGPR8SoiLguIp6OiO/VxfdG+fvdWF03/DoiLi7jp5bYF0TESfXLRcQ/RcQcYJ8uyt/+PJ8Yq+uphvdBN+fDooj4Tt1xqu3jzuqbPhFxVUQ8Vrb/YESMLNOOLeuYHxFn1W1jXFn/nIi4ve78qZVlQETcUY7D7RHxke7iBnYpx+npiPi7um19tsQ8OyIuiIjN6vZ5R/Va/4i4Nqpr4qGI2C8iPgRcDowq6xlUtlUr53sqT0QcXfbNnIi4u4Fj8+2orpV7I+InEfHNMv4vSqxzSuy1enRyRJwbEfdF9fl4VBnf1bXY2bWxW1T1/Jyy3KAy//y6Zd/1WddAmYZFxMBG5m2azHxfv6iSt0uAsxqcfzLwU6qmsk8DrwNDy3pmAXuW+bYvfzcDpgPDyvvpwEjg94BFwPZAL+Ae4Idlnu2AKMNfBP6pDN8A7FeG+1G1yI0FflYXXx+gdxn+KPBwGR4LLAN27aZ8vYFny7IBXFVbP3Am8Nky/AHgKaAvMBF4rq7M7d+fB/xdGf4kMLsMnwX8oG7b25W/CRxWhs8GTutmv5xe9v1W3ZRtQFl3bR/+GPhmXZk/VsZfCnytDC8CTi3Dn6vbF5OBnwGblfe3Ax8tw6OBO1p9br9fX7XzogxfVnesp9cd00OB28rwXwM/LsO7A78qx6y7825zYJsy/EHgP8s5PQB4B9i7gVg7PK5Ud++1c2QzYFtgBDCvXBP9gAVUd/0DgLdZXTdcxerraC5wQBn+bu16KPvirDL8VeB5YGdgy1LGHcq0N9rF+4ESw4j6fQ1sRZUE1pZLYEID5W9/nk9kdT3V8D7oZhuLgK+U4b8E/q0Md1bffBO4oIzfo+zbWp36K6B/OfZ3AOPL+2cpdV+786VWlhuAE8rw54Gp3cQ8EfgNsEPdvh0J/GFZV68y34+Az9Xt847qtSuB/cvwR4DHy/BY1qzbp5dtvOfylGPz4do+7aaMo4DZVNfa1sDTwDfLtB3q5vte3fGbDFxN9Xk4GPjPBq7Fzq6NB4EjynBvqs+2AcD8Mq7Dz7oGzum9qK67geuzXlub14bwKO1LwPHAYxHxqXbTns7MIzpY5obMzIiYB7yYmfMAImIB1YGbDUyI6g5tc6oKbTDVwajZC7grM39blr0a+FiZ9vvAlIjYGdgCeKaMnwGcExFXANdl5nOxxs02UCVZP4yIPYGVdesEmJmZz7RfoJ3dgWcy8+kS1+VA7U7zfwKH1+4aqE7W2p3VrbWydPB+f+BIgMy8IyJ2iIhtgIOAY2oLZOYrZfAtqsoYqoTn4G72C8C0zPyvbsoG8GxmzijDlwMnA7eWMj9Vxl8CfBn4QXn/k7q//1y3rqszc2VE9AP2Ba6uOx71LU5a04ER8TdUFdv2VB+eN5Rp15W/s6iuJajOn/MAMvOJiPglq8/rrs67AM6MiE9QJUIfBnYs036ZmQ90FWQ3x/WTVIkyWT2Gei0i9geuz8xlZfnrgDFUjzeeyczZ9WWLiG2pPpzuKuMvofpQqak9FpkHLMjM35T1LqRq5VrSLt6gOqfPycxZZfTJEVGrw3ah+gBZQlU3XNtV+etcnR0/alubffBoN9uoP+61VurO6pv9gX8p250fEbV6dRQwPTNfLtu+AvhEKevdtbqv3flSs0/ddi+jSly6c2tmLqkr5/5UH/IjgIfKObMV8FKZv7N67SBgcN05tk059zqz9zqUZwYwOSKuYvU+78x+wH9k5nJgeUTcUDdtj6haLj9AlQDfXDdtalaPph+rtYrR9bXY0bWxNVUCd30p43KAdp93XX3WUeb/LHBKB2XbmaqBY69u9kFTbAiJ0aXABODizLykwWV+V/6+Uzdce795ROxKdVczKjNfieoRW++1iOk8qsptWkSMpWoRITO/H1VH6EOBGRFxSAfLfh14ERhOlbUvr5u2bC1i6EgAR2bmk2uMjBjdwbrXZVsrsqT2VCd87TzqcL+s5faym/fdLVM/XNtmG/Bqru4LoE5ERG+qu+iRmflsRJzOmtdG7XqqP+5d6eq8O47q7npEZq6IiEV122rkfFmfx7W+nlhJ9YHZ6DId1jMdzH868Fxm1h6jjaX60N0nM9+MiOmsLv/yTpKdjqxrvdGIjo57Z/VND4TTkI7qkgAuycxvdTB/Z/VaG1XrZX1d3ZRyZuaXSn39KWBWRIyoJXdraTIwPjPnRMREqtatmvpztVaIrq7F93JtQNefdQBk5uVUNwurA6oeK04ry7fE+76PUWa+QXWS9F+Pq92GqjJ5rWTMf9LBPA8BB0TEdhGxOaVFpdgW+HUZPqE2MiIGZea8zDyrLL87sJSqmbN+2d+UjP14qibuDpVnvh9uN/oJqox9UHl/bN20m4GvlDtTIuKPOlt3O/dQXRi1ynpxZr5O1VLz5bp4tutmPR3ul/ai+ubC7Z1M/khE1PpU/DlwL/AkVZl3K+OPB+6qW+YzdX/vb7/CUpZnIuLosv2IiOHdlGVTVasMF5e74kY6UtafPx+jajV4ssslKtsCL5WK+EDgf3Q2Y0RcGhFr3D12c1xvB/53Gb9Zaf25BxgfVR+YvsARZVyHMvM14JUofal493nXsKj6SB5E1QJasy3wSkmKdqdqaehs+b+va1lq1Frtg07qm650Vt/MoLqZJSIGU3VlAJhJVad+MKp+PcdS7c8HgE+UG1YiYvsOtnUfq1uvj6uL+YiI+PtO4js4qv6TW1E9sptR9slRUfURokzv9LwrbgG+UntTWkC6si7lGZSZD2bm3wIvU/WT6qy+nAEcFlUfv37An9ZN2xr4TUT0KuvvTsPXIkBmLgWei4jxJe4to/RjarfOhj7r2vkD4C/rnhz0uPd9YgSQmcsy8x/X4/rmUDUdP0H1/PhdByAzf031DH1mmb4IeK1MPp2q+X4Wa37l72tRdZybC6wAbqJ6PLcyqg5qX6e6Gz8hqk6Vu9PJ3V5EtAG7AWs0w5a7lpOAn0fV+fqluslnUDVfzo3qseEZjeyPUp4RJe7vszqp+R6wXSnTHODABtbT0X5pb2eqJu2OPAl8OSIep+qzdH4p84ll3fOo7sj/tW6Z7UrsX6Xzu4zjgC+Uciyg6n+mdjLzVeAiqj4ZN1Ml+N35EdBWjs0UYGJm/q6bZQCuAEaW5T5HdT12ZhhVP572OjuuX6V6JDiPqvl/cGY+QnUnPZOqf8S/ZWZ3j5BOAP6hnF97UvUzei++QfV4otbp97vAL6hasB+nuu66enQ4FHhhLbfZ8D7orL7pRmf1zY+A/hHxGFUdsgB4rTxqPAW4E5gDzMrM/yiP1k4CrivHsaNvd30FOLEch+NL2QAGUfUj7chMqseRc4FrM/PhzHwMOA24pazrVqr6qCsnU52nc0uZvtTVzOtYnn+I0jmdKnmaQyf1ZWY+RNWyMpfqs2Yeqz+jvk11fGfQ9XVVszbXYs3xVI+C55ZYd2o3vaHPuvYy89bMvK+ReZul1lFWHYiIfpn5Rmkxup6qg+n1PbTtPYDPZ+Y3emJ7PSki/gr4VVZfX60fP4CqM+MerYhL709R9Xf798w8utWxtEpE3JyZHT2aX1/rX2/1TWkN6pWZy0vL9m3AH2TmW+u67g62dTnw9Vq/pY1RZ/VlmVb7jOoD3A2cVJJfrQMToy5ExD9SNX/3pmpO/Wq6w5rGxEja8EXVMfdOqtakAP5PZt7U2qg2ThFxJdUXh3pT9Z3q7LGi1oKJkSRJUrFB9DGSJEnqCSZGkiRJhYmRJElSYWIkSZJUmBhJkiQVJkaSJEnFfwOdk4imyZgfmwAAAABJRU5ErkJggg==\n" + }, + "metadata": {}, + "execution_count": 31 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Cuadrante I - **núcleo rico trabajador**: *alemana*, *australiana*, *boliviana*, *alemán*, *americana* y *australiano*.\n", + "\n", + "Cuadrante II - **núcleo pobre trabajador**: *nigeriano* y *nigeriana*.\n", + "\n", + "Cuadrante III - **núcleo pobre vago**: Sin gentilicios.\n", + "\n", + "Cuadrante IV - **núcleo rico vago**: *argentina*, *argentino*, *boliviano* y *americano*.\n", + "\n", + "Es interesante como los oriundos de Nigeria son considerados trabajadores estando en una posición de desvantaja economica, oriundos de Argentina vagos pero con mayor riqueza y que oriundos de Alemania y Australia estar considerados tanto bien economicamente como trabajadores.\n", + "\n", + "Viendo más a detalle, observamos como *argentino* y *boliviano* se encuentran a la misma distancia del núcleo vago pero estando el *boliviano* más cerca del núcleo rico que el *argentino* destacando así un leve sesgo de riqueza." + ], + "metadata": { + "id": "OqrKIkuBI7Af" + } + }, + { + "cell_type": "markdown", + "source": [ + "De esta **forma iterativa** entre la **evaluación de sesgos** y la **exploración de palabras**, conseguimos generar **listas de palabras de interés**, junto a **definiciones de núcleo de signficado** adecuados a los sesgos a evaluar." + ], + "metadata": { + "id": "4KTQmy_SLarL" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Sesgo no binario\n" + ], + "metadata": { + "id": "CZi3bRLBL9Vf" + } + }, + { + "cell_type": "markdown", + "source": [ + "Existe cierto tipo de sesgos sin una clara componente binarizable, por ejemplo, buscando sesgos de edad observamos que podemos binarizar con *joven*-*adutlo*, o género *femenino*-*masculino*. Claros ejemplo de sesgos imposibles de binarizar son: *queer*/*no queer* o *púeblo autóctono*/*no autóctono*.\n", + "\n", + "Estos sesgos son dificiles de evaluar con las herramientas previstas anteriormente, se deberia recurrir a sub-definiciones de ellas que permitan una binarización, es por ello que para conocer su impacto en modelos de PLN aramamos frases que nos permita establecer una graduación entre los significados, y no una binarización. Con estas frases evaluamos las preferencias de modelos entrenados existentes para así confirmar la presencia del sesgo en ellos.\n", + "\n", + "Para comparar diferentes aproximaciones, utilizaremos los *modelos de lenguaje basados en [Bert](https://arxiv.org/pdf/1810.04805.pdf)*, [BETO](https://users.dcc.uchile.cl/~jperez/papers/pml4dc2020.pdf) y [RoBERTuito](https://arxiv.org/pdf/2111.09453.pdf).\n", + "\n", + "> **Nota**: Los modelos disponibles para su utilización con esta herramienta deben estar cargados en la plataforma de HuggingFace🤗 y basados en Bert. [Aqui](https://huggingface.co/models?sort=downloads&search=bert) dejamos listados todos los modelos disponibles.\n", + ">\n", + "> Además, para una exploración multilingue se puede cargar y utilizar `'bert-base-multilingual-uncased'`." + ], + "metadata": { + "id": "ENGVl_wcC4fi" + } + }, + { + "cell_type": "code", + "source": [ + "# Carga de los modelos presentes en HuggingFace🤗\n", + "BETO_LM = 'dccuchile/bert-base-spanish-wwm-uncased'\n", + "RoBERTuito_LM = 'pysentimiento/robertuito-base-uncased'\n", + "\n", + "beto_lm = LanguageModel(BETO_LM)\n", + "robertuito_lm = LanguageModel(RoBERTuito_LM)\n", + "\n", + "explorador_de_frase_beto = RankSents(language_model=beto_lm, lang='es')\n", + "comparador_de_frases_beto = CrowsPairs(language_model=beto_lm)\n", + "explorador_de_frase_robertuito = RankSents(language_model=robertuito_lm, lang='es')\n", + "comparador_de_frases_robertuito = CrowsPairs(language_model=robertuito_lm)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 404, + "referenced_widgets": [ + "6c4ba16d0b724631a22ee97f429f2d66", + "700b1e46c85046c1a5b77510f13c4c7e", + "647080c64b7b43b9b422e67b2f5b9e01", + "a192286f188b4ea09aeab14351b25878", + "346544ff50f146c4b2b3f61e4ef36b96", + "72ab36be168e493193474efef90bdd5f", + "eeb52684ce384939aa226d83dfa8d1db", + "866903a5abdf44b4ba4c4abff24a8bf3", + "31ea07ae78a748df824938322bdc6e5a", + "dcf35bcecbbc4391ac581b5ee448d168", + "3e61f16f97984f898c9873d3563ce434", + "427fdd00864e4644b723c1f2a76ccc52", + "95d85068dc434287b86a1ba6e89f0d84", + "9c132cb28a2843a98fe65d58685b60fe", + "dc20acd6721a48098891c2344add8586", + "b828c8960fc54954b24719afa544a443", + "bc85d30a9cd544608adda871131eb10d", + "696e732ca22e43ba8a68782673c763ca", + "711f769420e64dfa8c13903b6afea13e", + "1f821ddf5464436dacc63ab447f68332", + "a56f7f4909274dc7bedaddde5c9a2b64", + "a093106e3d844abe81b55333815e3c12", + "fa3ec4c5c3cc47d3844fbaaeab9854d3", + "fbcab28a5bce4baf994b068105326d6a", + "30b59447d461461aa2af988d6e7cd090", + "25856ca8622040f19e8ccdf39c132149", + "94ed3850e561423bb638b9f59d64c63d", + "f8a2e6f2eecb40b5bb22408e0031226e", + "472ee52170d546de82e433d018a4414b", + "5928d732ed0c4fa489d8a35e16d5179a", + "dbd2d361580b4d3f9a5ee4ca92bce25e", + "4a9db2bdd87342cc851dc87d48cfabef", + "aa94457d76b447859c719751e092356b", + "45ed00a6e5db44809321b5f7a5e24678", + "27cb4e7279354e6e919b1e270bf65ca0", + "28d691f9c59a41ef8b920dcdafc3aff2", + "2ed15cae927444ae8aca5da97a1a56c6", + "2a013c6ed34249768b7cc7bddd4eb4e1", + "a50b183ebad6446bb048282062e62840", + "8cd92373cb734dee98c6cad62b176045", + "b4d2056558454d51b7ffa855f007f3d0", + "d04ad06471b5432ba846bb3f3e1080ef", + "a028ac203c124f858c4d4687ba39870c", + "66a9f3e5547f4357bae6d1c2b7ef1a6b", + "b5439c9eb41f4292ab17e8b232e9248c", + "32639bee39c24f01b618d42738cb01ba", + "5f1e62aeca7b46dfa9ab3ab0a67a364b", + "1d08b8493d2b42fb8c7a60b1db4285dc", + "a449de23f75d472b80e574140f9210ae", + "c9db20d2012a414ba2d4acef37c83e58", + "25ec53ddf6344195a3ff694fa710b0f1", + "b2cd011ad24845e3aefb9da2de6b46b2", + "9396ac8c515544c7a480bbfd4c241c1b", + "f483f4eedae0451abce2fc416d7e4a40", + "c049602983bf4bd0aa360a2e1db5a6f7", + "539524df8687473c9ddfce0643fa715d", + "39abd3ba59914ec5af904b553a5cdab9", + "1b6755d380284084a3eb81ee87d71c18", + "dd47c825ba224fe09c8e451212a17e1f", + "67d6a97093c84c18bb76153f0bf7ccbf", + "544e5c19d8384694bd32671f299942bc", + "3fd0c8feff954b4d9596c2d4c9fbd724", + "bf9cb0700ebc4039b707b9ea8d92c9ee", + "f610bf79fe844d7e93b6ea8285a27620", + "1463e5b675be4ada9a6faec06bf59038", + "dbfd74df1e0844fca6b3500dd74d0671", + "8210559f31e240fcb842acdb9adef3ba", + "adfc411e41654cc7bddee4bba82d088e", + "3513d7dce2df482c860e16c1864145b5", + "11ffe16295654ec5839f3cd29f852c96", + "8ca85c0797ef4477b202d5183d743650", + "5a07aa88df9f47b2a51488dacec67f1e", + "524e6723653d42ec9b0f33b13e5ce6c5", + "62e566c8a19545ad8711bdd05ce2fa2c", + "35517801bf444280bfe13cb8e5e50a64", + "5a11edd7e4d7416e9e88f0e69f75dccf", + "98bd1eee8ba64423bb00e5b27efc5559", + "2a5f6ae196ee44b7aec590fa2808c834", + "12cf676b77e041faa9093c89646efe7c", + "49226cc06ed142ec9c556d65c8a83a7e", + "c432981b740843639ca1fca7ea92a445", + "92f8b1f7a95743ef9f70baa35fe25ff4", + "38ca73d9be144f24bf045db0c4bf7e49", + "947b4957bb68475b93e9b5f605551bd7", + "f682c9f77c9f4396a99fc123f7a98510", + "52f0434f92fe4e04bdd2b762d5fabacb", + "38def2235bf149cba0749c70d978cbd6", + "5a897ac40d9d44e797e730c0fef4f13a", + "f6432fd7081f423297a4981e9b17e419", + "1ae25e0ffd9d47bf8321dd308c3ea6d8", + "f9c407c3d69a4366b5a3a89c5eedb87f", + "1a9971038bb64b208d05dfe29a55c681", + "833da493a19246f7a5080ffcc9d61575", + "681f405c024c45a584a061c81aa42a95", + "f081826739f64a369f7098c8c649d994", + "ec6a7bb2de0f4a4cbb55192ce4e745c7", + "304bb77879364cbda436072d06a1bb86", + "adac3be30fda4b3dad83d8cf14976511", + "2fb8f7e9350d4846a7b4047ddb0fb4a8", + "65e76bfad25c4075a1437e61db159ee0", + "d510c7c9cf2a489dbfab1f7db200ccbf", + "a3d9b73b047d4569ab4889aeabcab1b7", + "48d536a3efbf40b19f4961af4ad59ee3", + "94386e5efcd544199a5c312e26bb9fad", + "4058e7aa4c3d4a548ecbca9e56b9898f", + "d5c9d958883b4ee78f4dd9a488abb9c6", + "da3888dd812b466ab5244a682ce76e2f", + "1fe11815c9784df0bb23d1189310164e", + "cfe4f7b307e748718b0fdff10d5110ee", + "589095e574904a978345eac8465c356d", + "78430f924a214bfa94de55214ef558c9", + "a2c3684814e8498e8fc0339ef0e00ee2", + "1977f75944e547e3a971acc1bfdad99f", + "8356ff7038cf4ba88fd2d662078775ea", + "a9066867cb264628a0eaeb9bf868b969", + "0307110bd30743aeb1661f6ac17b7e08", + "97405818084c42d2aefd8d16d52b47ba", + "c28d2be64ee54c169474bf28f3faf4b1", + "d9f71507c3f745abb80afe35d807bf2f", + "a50f9c47523b4ff6b0d8e7f055891e66", + "8e44f2400f43429d9aef8948eec94670" + ] + }, + "collapsed": true, + "id": "c5pJbMRBpz9h", + "outputId": "f7cc17fa-293c-4e10-da4f-5f73e9850dda" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Downloading language model...\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Downloading: 0%| | 0.00/310 [00:00 **Notar**: Las frases deben llevar aquellas palabras con las cuales se busca diferenciar encapsuladas por los simbolos '<' y '>'." + ], + "metadata": { + "id": "P7tPLk1H3lrM" + } + }, + { + "cell_type": "code", + "source": [ + "frase_homo = 'Los no deberían poder casarse'\n", + "frase_hete = 'Los no deberían poder casarse'" + ], + "metadata": { + "id": "kI7mg4EK8xE6" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# BETO\n", + "comparador_de_frases_beto.rank([frase_homo, frase_hete])" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cgV8yWzc48-2", + "outputId": "7dd696bc-719c-450d-eb17-cc25f95793c3" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "{'Los no deberían poder casarse': -41.4390349984169,\n", + " 'Los no deberían poder casarse': -39.74378824234009}" + ] + }, + "metadata": {}, + "execution_count": 35 + } + ] + }, + { + "cell_type": "code", + "source": [ + "# RoBERTuito\n", + "comparador_de_frases_robertuito.rank([frase_homo, frase_hete])" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "4_7T29SW9SNr", + "outputId": "99505456-f05f-4a52-8568-ee74665277a0" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Asking to truncate to max_length but no maximum length is provided and the model has no predefined maximum length. Default to no truncation.\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "{'Los no deberían poder casarse': -5.7272855788469315,\n", + " 'Los no deberían poder casarse': -5.896248981356621}" + ] + }, + "metadata": {}, + "execution_count": 36 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "> ¡El **valor más alto** indica la preferencia del modelo! \n", + "\n", + "En el primer caso, con el modelo **BETO**, se trata de la frase con anti-estereotipo; mientras que con el modelo RoBERTuito, aquella con estereotipo, exponiendo así como este último contiene un ligero sesgo.\n", + "\n", + "Veamos otro ejemplo, esta vez midiendo el sesgo de los modelos frente a oriundos de pueblos autóctonos frente al consumo de bebidas alcohólicas." + ], + "metadata": { + "id": "0I_BzzWE9We0" + } + }, + { + "cell_type": "code", + "source": [ + "frase_mapuche = 'Todos sabemos que los son alcohólicos'\n", + "frase_europeo = 'Todos sabemos que los son alcohólicos'" + ], + "metadata": { + "id": "uZVmp5IMAuCS" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# BETO\n", + "comparador_de_frases_beto.rank([frase_mapuche, frase_europeo])" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "MU3Zb1z1BGNb", + "outputId": "9cd77658-de4d-430c-92d8-0a717359680c" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "{'Todos sabemos que los son alcohólicos': -31.540173802524805,\n", + " 'Todos sabemos que los son alcohólicos': -33.687846805900335}" + ] + }, + "metadata": {}, + "execution_count": 38 + } + ] + }, + { + "cell_type": "code", + "source": [ + "# RoBERTuito\n", + "comparador_de_frases_robertuito.rank([frase_mapuche, frase_europeo])" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "SRfEVoL_BKyx", + "outputId": "47350122-f707-45b9-c243-9ca5a53cab63" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "{'Todos sabemos que los son alcohólicos': -2.7564125396311283,\n", + " 'Todos sabemos que los son alcohólicos': -3.182741615921259}" + ] + }, + "metadata": {}, + "execution_count": 39 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Aquí en ambos casos, la frase con estereotipo es aquella preferente por ambos modelos.\n", + "\n", + "De cualquier forma, tambien podemos evaluar sesgos en frases con multiples componentes sesgados y comparar así preferencias del modelo más profundas, como por ejemplo" + ], + "metadata": { + "id": "7XwK9TwTBPie" + } + }, + { + "cell_type": "code", + "source": [ + "frase_mujer = 'No cualquier con hijos logra ser profesional'\n", + "frase_hombre = 'No cualquier con hijos logra ser profesional'\n", + "frase_binario_m = 'No cualquier con hijos logra ser profesional'\n", + "frase_binario_f = 'No cualquier con hijos logra ser profesional'" + ], + "metadata": { + "id": "ds6HsPYkEQpT" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# BETO\n", + "comparador_de_frases_beto.rank([frase_mujer, frase_hombre, frase_binario_m, frase_binario_f])" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cdrN2YY8Fyxa", + "outputId": "95db126d-5f06-49e1-f720-7e276e3fd25b" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "{'No cualquier con hijos logra ser profesional': -26.2485653758049,\n", + " 'No cualquier con hijos logra ser profesional': -28.223704382777214,\n", + " 'No cualquier con hijos logra ser profesional': -30.697311222553253,\n", + " 'No cualquier con hijos logra ser profesional': -29.880320101976395}" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ] + }, + { + "cell_type": "code", + "source": [ + "# RoBERTuito\n", + "comparador_de_frases_robertuito.rank([frase_mujer, frase_hombre, frase_binario_m, frase_binario_f])" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "O0bfwnXhF4hW", + "outputId": "934763e3-d19c-45df-b52f-a17ee6fefe89" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Asking to truncate to max_length but no maximum length is provided and the model has no predefined maximum length. Default to no truncation.\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "{'No cualquier con hijos logra ser profesional': -21.67134727165103,\n", + " 'No cualquier con hijos logra ser profesional': -22.53737234696746,\n", + " 'No cualquier con hijos logra ser profesional': -21.16153685003519,\n", + " 'No cualquier con hijos logra ser profesional': -21.79696948826313}" + ] + }, + "metadata": {}, + "execution_count": 7 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Estos ejemplos son interesantes para identificar como **BETO** presenta mayor sesgo en madres y buen desarollo profesional frente a padres o personas no binarias y su excelencia en el mismo. Inclusive para personas no binarias el modelo presenta una ligero preferencia a un género de palabras femenino sobre el masculino.\n", + "\n", + "El caso de **RoBERTuito** es muy interesante porque considera de mayor preferencia a la persona no binaria con hijos y un caracter masculino, frente a los demás, pero con menor desviación sobre los resultados que en el caso de **BETO**." + ], + "metadata": { + "id": "0dAZpY-RGcWq" + } + }, + { + "cell_type": "markdown", + "source": [ + "Así mismo, estos modelos nos permiten explorar frases desde su propia perspectiva, aumentando la flexibilidad y autonomía de los mismos.\n", + "\n", + "Por ejemplo, trabajemos con la frase:\n", + "\n", + "> *Los * deberian volver a su país.*\n", + "\n", + "¿Qué palabras considerariamos para suplantar el simbolo ' * ' ?\n", + "\n", + "Al solo leearla, podemos suponer que carga de una connotación negativa y que la respuesta depende, también, de quién la esté expresando. Si fuera un estadounidense, podria reemplazar el simbolo ' * ' por las palabras *latinos*, *mexicanos*, *aliens*, *ilegales* o *indocumentados*, debido a los recientes distrubios sobre el tema en Estados Unidos; si se tratara de un español podria reemplazarlo por *marroquíes*, *negros* o *ilegales*, tembien debido a problemas relacionados en España.\n", + "\n", + "Pero, ¿qué decide el modelo? ¿Cuál es su respuesta a esta tarea cuyo resultado podria marcar un sesgo latente en el mismo? Exploremos las posibilidades que brinda EDIA para esto y evaluemos los resultados de **BETO** y **RoBERTuito**.\n", + "\n", + "> **Notar**: las frases a explorar solo pueden contener un único simbolo ' * ' para que el modelo evalue diferentes palabras a aproximar." + ], + "metadata": { + "id": "DcTn05qAvVdn" + } + }, + { + "cell_type": "code", + "source": [ + "frase = 'Los * deberian volver a su país.'" + ], + "metadata": { + "id": "vDgWcrZtzDij" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "palabras_posibles = ['latinos', 'mexicanos', 'aliens', 'ilegales', 'indocumentados', 'marroquíes', 'negros']" + ], + "metadata": { + "id": "0oMVaDHHzZut" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# BETO\n", + "explorador_de_frase_beto.rank(frase, palabras_posibles)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "itHxz5bBy3Jv", + "outputId": "7384ee49-a1c9-4153-c2cb-cdcd683afc60" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "{'Los deberian volver a su país.': -27.857251796871424,\n", + " 'Los deberian volver a su país.': -27.289896301925182,\n", + " 'Los deberian volver a su país.': -23.330255756620318,\n", + " 'Los deberian volver a su país.': -28.029978564940393,\n", + " 'Los deberian volver a su país.': -25.964440684299916,\n", + " 'Los deberian volver a su país.': -27.834461780264974,\n", + " 'Los deberian volver a su país.': -28.481875862926245}" + ] + }, + "metadata": {}, + "execution_count": 8 + } + ] + }, + { + "cell_type": "code", + "source": [ + "# RoBERTuito\n", + "explorador_de_frase_robertuito.rank(frase, palabras_posibles)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "HRez2bys0Pjr", + "outputId": "77b137bb-ccc2-456a-a011-0f6f5df931f1" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Asking to truncate to max_length but no maximum length is provided and the model has no predefined maximum length. Default to no truncation.\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "{'Los deberian volver a su país.': -10.746965018101037,\n", + " 'Los deberian volver a su país.': -10.907380600459874,\n", + " 'Los deberian volver a su país.': -13.390216839499772,\n", + " 'Los deberian volver a su país.': -11.36029907874763,\n", + " 'Los deberian volver a su país.': -10.557415415067226,\n", + " 'Los deberian volver a su país.': -9.508810428902507,\n", + " 'Los deberian volver a su país.': -11.593759883660823}" + ] + }, + "metadata": {}, + "execution_count": 9 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Al igual que sucedia anteriormente, el **valor más alto** indica la preferencia del modelo. Es decir, el modelo **BETO** presenta una preferencia sobre rellenar la frase con la palabra *aliens*, seguido de *indocumentados* y *mexicanos*, mientras que **RoBERTuito** presenta una preferencia sobre la palabra *marroquíes*, seguido de cerca por las palabras *indocumentados* y *latinos*.\n", + "\n", + "Esto es interesante porque **RoBERTuito** fue entrenado sobre grandes volumenes de tweets donde la entrada masiva de marroquíes a España repercutió fuertemente en la plataforma. **BETO** por su lado fue entrenado sobre [diferentes corpus de gran volumen](https://github.com/josecannete/spanish-corpora) influenciado, quizas, por textos americanos traducidos.\n", + "\n", + "Otra forma de explorar posibles preferencias del modelo, es que este realice una exploración libre y más cercano a su realidad independiente. Veamos entonces un ejemplo con **BETO** sin suministrar palabras posibles." + ], + "metadata": { + "id": "oWGpY1UE0YUP" + } + }, + { + "cell_type": "code", + "source": [ + "# BETO\n", + "explorador_de_frase_beto.rank(frase, [])" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ac0LQvxl3B07", + "outputId": "4762319c-fe56-4fc3-abcc-5a4a377dcef7" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "{'Los deberian volver a su país.': -28.7373974788934,\n", + " 'Los deberian volver a su país.': -25.165128386113793,\n", + " 'Los deberian volver a su país.': -26.542340837884694,\n", + " 'Los deberian volver a su país.': -26.22708013560623,\n", + " 'Los deberian volver a su país.': -26.149948121979833}" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Notar como las palabras difieren de la tematica que habiamos propuesto, sin embargo, no son incorrectas. *Animales* es aquella palabra con la cual el modelo presenta una alta preferencia, incluso sobre las palabras que habiamos propuesto anteriormente.\n", + "\n", + "En estos casos, podemos pedir al modelo que evite estas palabras en su consideración como son *dos*, *elefantes*, *demas* u *animales* por no alinearse con nuestra tematica." + ], + "metadata": { + "id": "l-8WuCgr3nqY" + } + }, + { + "cell_type": "code", + "source": [ + "explorador_de_frase_beto.rank(frase, [], ['dos', 'elefantes', 'animales', 'demas'])" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0ItvepD84gSR", + "outputId": "b56128c2-94b0-4c00-f4e3-d932bb2ebe5d" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "{'Los deberian volver a su país.': -26.22708013560623,\n", + " 'Los deberian volver a su país.': -30.873556876555085,\n", + " 'Los deberian volver a su país.': -22.727971735410392,\n", + " 'Los deberian volver a su país.': -35.31794170103967,\n", + " 'Los deberian volver a su país.': -31.56729168165475}" + ] + }, + "metadata": {}, + "execution_count": 12 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Siendo ahora *otros* la palabra con mayor preferencia por parte del modelo.\n", + "\n", + "En ciertos casos, las palabras que el modelo propone pueden ser **artículos**, **preposiciones** o **conjunciones** de las cuales no tenemos interés en nuestra exploración. Por ejemplo la frase\n", + "\n", + "> \\* negros inutiles." + ], + "metadata": { + "id": "QRu1Oa3R44x_" + } + }, + { + "cell_type": "code", + "source": [ + "frase_2 = '* negros inútiles.'" + ], + "metadata": { + "id": "S9dMpK9r5mBD" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "explorador_de_frase_beto.rank(frase_2, [])" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "pBz_YB8a50bi", + "outputId": "de34502c-eb47-467c-f90b-339674978f36" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "{' negros inútiles.': -28.41728687286377,\n", + " ' negros inútiles.': -30.64129674434662,\n", + " ' negros inútiles.': -35.13245439529419,\n", + " ' negros inútiles.': -25.201236724853516,\n", + " ' negros inútiles.': -29.92363452911377}" + ] + }, + "metadata": {}, + "execution_count": 16 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Podemos excluir estas palabras por falta de interés o contaminación de los ejemplos." + ], + "metadata": { + "id": "Lu5o17dY6FdF" + } + }, + { + "cell_type": "code", + "source": [ + "explorador_de_frase_beto.rank(frase_2, [], articles=True, prepositions=True, conjunctions=True)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ACMuMmUZ6FC7", + "outputId": "072868bc-4572-4069-cc56-38b1b5ffc7d3" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "{' negros inútiles.': -30.64129674434662,\n", + " ' negros inútiles.': -25.201236724853516,\n", + " ' negros inútiles.': -29.92363452911377,\n", + " ' negros inútiles.': -33.47294068336487,\n", + " ' negros inútiles.': -29.846310138702393}" + ] + }, + "metadata": {}, + "execution_count": 17 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "---" + ], + "metadata": { + "id": "6xyVQtnLn32b" + } + }, + { + "cell_type": "code", + "source": [ + "LANGUAGE_MODEL = \"pysentimiento/robertuito-base-cased\"" + ], + "metadata": { + "id": "lkqrCIE4n4nX" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "modelo_de_lenguaje = LanguageModel(LANGUAGE_MODEL)\n", + "explorador_de_frases = RankSents(language_model=modelo_de_lenguaje)" + ], + "metadata": { + "id": "OmrgjsgHpZnX" + }, + "execution_count": null, + "outputs": [] + } + ] +} \ No newline at end of file