File size: 6,699 Bytes
b546526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44f418e
b546526
 
 
 
 
 
 
 
 
 
 
 
44f418e
 
b546526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from gradio.flagging import FlaggingCallback, _get_dataset_features_info
from gradio.components import IOComponent
from gradio import utils
from typing import Any, List, Optional
from dotenv import load_dotenv
from datetime import datetime
import csv, os, pytz


# --- Load environments vars ---
load_dotenv()


# --- Classes declaration ---
class DateLogs:
    def __init__(
        self, 
        zone: str="America/Argentina/Cordoba"
    ) -> None:

        self.time_zone = pytz.timezone(zone)
        
    def full(
        self
    ) -> str:

        now = datetime.now(self.time_zone)
        return now.strftime("%H:%M:%S %d-%m-%Y")
    
    def day(
        self
    ) -> str:

        now = datetime.now(self.time_zone)
        return now.strftime("%d-%m-%Y")

class HuggingFaceDatasetSaver(FlaggingCallback):
    """
    A callback that saves each flagged sample (both the input and output data)
    to a HuggingFace dataset.
    Example:
        import gradio as gr
        hf_writer = gr.HuggingFaceDatasetSaver(HF_API_TOKEN, "image-classification-mistakes")
        def image_classifier(inp):
            return {'cat': 0.3, 'dog': 0.7}
        demo = gr.Interface(fn=image_classifier, inputs="image", outputs="label",
                            allow_flagging="manual", flagging_callback=hf_writer)
    Guides: using_flagging
    """

    def __init__(
        self,
        dataset_name: str=None,
        hf_token: str=os.getenv('HF_TOKEN'),
        organization: Optional[str]=os.getenv('ORG_NAME'),
        private: bool=True,
        available_logs: bool=False
    ) -> None:
        """
        Parameters:
            hf_token: The HuggingFace token to use to create (and write the flagged sample to) the HuggingFace dataset.
            dataset_name: The name of the dataset to save the data to, e.g. "image-classifier-1"
            organization: The organization to save the dataset under. The hf_token must provide write access to this organization. If not provided, saved under the name of the user corresponding to the hf_token.
            private: Whether the dataset should be private (defaults to False).
        """
        assert(dataset_name is not None), "Error: Parameter 'dataset_name' cannot be empty!."
        
        self.hf_token = hf_token
        self.dataset_name = dataset_name
        self.organization_name = organization
        self.dataset_private = private
        self.datetime = DateLogs()
        self.available_logs = available_logs

        if not available_logs:
            print("Push: logs DISABLED!...")
        

    def setup(
        self, 
        components: List[IOComponent],
        flagging_dir: str
    ) -> None:
        """
        Params:
        flagging_dir (str): local directory where the dataset is cloned,
        updated, and pushed from.
        """
        if self.available_logs:
            
            try:
                import huggingface_hub
            except (ImportError, ModuleNotFoundError):
                raise ImportError(
                    "Package `huggingface_hub` not found is needed "
                    "for HuggingFaceDatasetSaver. Try 'pip install huggingface_hub'."
                )

            path_to_dataset_repo = huggingface_hub.create_repo(
                repo_id=os.path.join(self.organization_name, self.dataset_name),
                token=self.hf_token,
                private=self.dataset_private,
                repo_type="dataset",
                exist_ok=True,
            )

            self.path_to_dataset_repo = path_to_dataset_repo
            self.components = components
            self.flagging_dir = flagging_dir
            self.dataset_dir = self.dataset_name

            self.repo = huggingface_hub.Repository(
                local_dir=self.dataset_dir,
                clone_from=path_to_dataset_repo,
                use_auth_token=self.hf_token,
            )
            
            self.repo.git_pull(lfs=True)

            # Should filename be user-specified?
            # log_file_name = self.datetime.day()+"_"+self.flagging_dir+".csv"
            self.log_file = os.path.join(self.dataset_dir, self.flagging_dir+".csv")

    def flag(
        self,
        flag_data: List[Any],
        flag_option: Optional[str]=None,
        flag_index: Optional[int]=None,
        username: Optional[str]=None,
    ) -> int:

        if self.available_logs:
            self.repo.git_pull(lfs=True)

            is_new = not os.path.exists(self.log_file)

            with open(self.log_file, "a", newline="", encoding="utf-8") as csvfile:
                writer = csv.writer(csvfile)

                # File previews for certain input and output types
                infos, file_preview_types, headers = _get_dataset_features_info(
                    is_new, self.components
                )

                # Generate the headers and dataset_infos
                if is_new:
                    headers = [
                        component.label or f"component {idx}"
                        for idx, component in enumerate(self.components)
                    ] + [
                        "flag",
                        "username",
                        "timestamp",
                    ]
                    writer.writerow(utils.sanitize_list_for_csv(headers))

                # Generate the row corresponding to the flagged sample
                csv_data = []
                for component, sample in zip(self.components, flag_data):
                    save_dir = os.path.join(
                        self.dataset_dir,
                        utils.strip_invalid_filename_characters(component.label),
                    )
                    filepath = component.deserialize(sample, save_dir, None)
                    csv_data.append(filepath)
                    if isinstance(component, tuple(file_preview_types)):
                        csv_data.append(
                            "{}/resolve/main/{}".format(self.path_to_dataset_repo, filepath)
                        )

                csv_data.append(flag_option if flag_option is not None else "")
                csv_data.append(username if username is not None else "")
                csv_data.append(self.datetime.full())
                writer.writerow(utils.sanitize_list_for_csv(csv_data))


            with open(self.log_file, "r", encoding="utf-8") as csvfile:
                line_count = len([None for row in csv.reader(csvfile)]) - 1

            self.repo.push_to_hub(commit_message="Flagged sample #{}".format(line_count))
        
        else:
            line_count = 0
            print("Logs: Virtual push...")
            
        return line_count