Spaces:
Configuration error
Configuration error
import copy | |
import numpy as np | |
import pandas as pd | |
import seaborn as sns | |
import matplotlib.pyplot as plt | |
from sklearn.decomposition import PCA | |
from typing import List, Dict, Tuple, Optional, Any | |
from modules.utils import normalize, cosine_similarity, project_params, take_two_sides_extreme_sorted, axes_labels_format | |
__all__ = ['WordBiasExplorer', 'WEBiasExplorer2Spaces', 'WEBiasExplorer4Spaces'] | |
class WordBiasExplorer: | |
def __init__( | |
self, | |
embedding # Embedding Class instance | |
) -> None: | |
self.embedding = embedding | |
self.direction = None | |
self.positive_end = None | |
self.negative_end = None | |
self.DIRECTION_METHODS = ['single', 'sum', 'pca'] | |
def __copy__( | |
self | |
) -> 'WordBiasExplorer': | |
bias_word_embedding = self.__class__(self.embedding) | |
bias_word_embedding.direction = copy.deepcopy(self.direction) | |
bias_word_embedding.positive_end = copy.deepcopy(self.positive_end) | |
bias_word_embedding.negative_end = copy.deepcopy(self.negative_end) | |
return bias_word_embedding | |
def __deepcopy__( | |
self, | |
memo: Optional[Dict[int, Any]] | |
)-> 'WordBiasExplorer': | |
bias_word_embedding = copy.copy(self) | |
bias_word_embedding.model = copy.deepcopy(bias_word_embedding.model) | |
return bias_word_embedding | |
def __getitem__( | |
self, | |
key: str | |
) -> np.ndarray: | |
return self.embedding.getEmbedding(key) | |
def __contains__( | |
self, | |
item: str | |
) -> bool: | |
return item in self.embedding | |
def _is_direction_identified( | |
self | |
): | |
if self.direction is None: | |
raise RuntimeError('The direction was not identified' | |
' for this {} instance' | |
.format(self.__class__.__name__)) | |
def _identify_subspace_by_pca( | |
self, | |
definitional_pairs: List[Tuple[str, str]], | |
n_components: int | |
) -> PCA: | |
matrix = [] | |
for word1, word2 in definitional_pairs: | |
vector1 = normalize(self[word1]) | |
vector2 = normalize(self[word2]) | |
center = (vector1 + vector2) / 2 | |
matrix.append(vector1 - center) | |
matrix.append(vector2 - center) | |
pca = PCA(n_components=n_components) | |
pca.fit(matrix) | |
return pca | |
def _identify_direction( | |
self, | |
positive_end: str, | |
negative_end: str, | |
definitional: Tuple[str, str], | |
method: str='pca', | |
first_pca_threshold: float=0.5 | |
) -> None: | |
if method not in self.DIRECTION_METHODS: | |
raise ValueError('method should be one of {}, {} was given'.format( | |
self.DIRECTION_METHODS, method)) | |
if positive_end == negative_end: | |
raise ValueError('positive_end and negative_end' | |
'should be different, and not the same "{}"' | |
.format(positive_end)) | |
direction = None | |
if method == 'single': | |
direction = normalize(normalize(self[definitional[0]]) | |
- normalize(self[definitional[1]])) | |
elif method == 'sum': | |
group1_sum_vector = np.sum([self[word] | |
for word in definitional[0]], axis=0) | |
group2_sum_vector = np.sum([self[word] | |
for word in definitional[1]], axis=0) | |
diff_vector = (normalize(group1_sum_vector) | |
- normalize(group2_sum_vector)) | |
direction = normalize(diff_vector) | |
elif method == 'pca': | |
pca = self._identify_subspace_by_pca(definitional, 10) | |
if pca.explained_variance_ratio_[0] < first_pca_threshold: | |
raise RuntimeError('The Explained variance' | |
'of the first principal component should be' | |
'at least {}, but it is {}' | |
.format(first_pca_threshold, | |
pca.explained_variance_ratio_[0])) | |
direction = pca.components_[0] | |
# if direction is opposite (e.g. we cannot control | |
# what the PCA will return) | |
ends_diff_projection = cosine_similarity((self[positive_end] | |
- self[negative_end]), | |
direction) | |
if ends_diff_projection < 0: | |
direction = -direction # pylint: disable=invalid-unary-operand-type | |
self.direction = direction | |
self.positive_end = positive_end | |
self.negative_end = negative_end | |
def project_on_direction( | |
self, | |
word: str | |
) -> float: | |
"""Project the normalized vector of the word on the direction. | |
:param str word: The word tor project | |
:return float: The projection scalar | |
""" | |
self._is_direction_identified() | |
vector = self[word] | |
projection_score = self.embedding.cosineSimilarities(self.direction, | |
[vector])[0] | |
return projection_score | |
def _calc_projection_scores( | |
self, | |
words: List[str] | |
) -> pd.DataFrame: | |
self._is_direction_identified() | |
df = pd.DataFrame({'word': words}) | |
# TODO: maybe using cosine_similarities on all the vectors? | |
# it might be faster | |
df['projection'] = df['word'].apply(self.project_on_direction) | |
df = df.sort_values('projection', ascending=False) | |
return df | |
def calc_projection_data( | |
self, | |
words: List[str] | |
) -> pd.DataFrame: | |
""" | |
Calculate projection, projected and rejected vectors of a words list. | |
:param list words: List of words | |
:return: :class:`pandas.DataFrame` of the projection, | |
projected and rejected vectors of the words list | |
""" | |
projection_data = [] | |
for word in words: | |
vector = self[word] | |
normalized_vector = normalize(vector) | |
(projection, | |
projected_vector, | |
rejected_vector) = project_params(normalized_vector, | |
self.direction) | |
projection_data.append({'word': word, | |
'vector': vector, | |
'projection': projection, | |
'projected_vector': projected_vector, | |
'rejected_vector': rejected_vector}) | |
return pd.DataFrame(projection_data) | |
def plot_dist_projections_on_direction( | |
self, | |
word_groups: Dict[str, List[str]], | |
ax: plt.Axes=None | |
) -> plt.Axes: | |
"""Plot the projection scalars distribution on the direction. | |
:param dict word_groups word: The groups to projects | |
:return float: The ax object of the plot | |
""" | |
if ax is None: | |
_, ax = plt.subplots(1) | |
names = sorted(word_groups.keys()) | |
for name in names: | |
words = word_groups[name] | |
label = '{} (#{})'.format(name, len(words)) | |
vectors = [self[word] for word in words] | |
projections = self.embedding.cosineSimilarities(self.direction, | |
vectors) | |
sns.distplot(projections, hist=False, label=label, ax=ax) | |
plt.axvline(0, color='k', linestyle='--') | |
plt.title('← {} {} {} →'.format(self.negative_end, | |
' ' * 20, | |
self.positive_end)) | |
plt.xlabel('Direction Projection') | |
plt.ylabel('Density') | |
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) | |
return ax | |
def __errorChecking( | |
self, | |
word: str | |
) -> str: | |
out_msj = "" | |
if not word: | |
out_msj = "Error: Primero debe ingresar una palabra!" | |
else: | |
if word not in self.embedding: | |
out_msj = f"Error: La palabra '<b>{word}</b>' no se encuentra en el vocabulario!" | |
return out_msj | |
def check_oov( | |
self, | |
wordlists: List[str] | |
) -> str: | |
for wordlist in wordlists: | |
for word in wordlist: | |
msg = self.__errorChecking(word) | |
if msg: | |
return msg | |
return None | |
class WEBiasExplorer2Spaces(WordBiasExplorer): | |
def __init__( | |
self, | |
embedding # Embedding class instance | |
) -> None: | |
super().__init__(embedding) | |
def calculate_bias( | |
self, | |
wordlist_to_diagnose: List[str], | |
wordlist_right: List[str], | |
wordlist_left: List[str] | |
) -> plt.Figure: | |
wordlists = [wordlist_to_diagnose, wordlist_right, wordlist_left] | |
for wordlist in wordlists: | |
if not wordlist: | |
raise Exception('Debe ingresar al menos 1 palabra en las lista de palabras a diagnosticar, sesgo 1 y sesgo 2') | |
err = self.check_oov(wordlists) | |
if err: | |
raise Exception(err) | |
return self.get_bias_plot( | |
wordlist_to_diagnose, | |
definitional=(wordlist_left, wordlist_right), | |
method='sum', | |
n_extreme=10 | |
) | |
def get_bias_plot( | |
self, | |
wordlist_to_diagnose: List[str], | |
definitional: Tuple[List[str], List[str]], | |
method: str='sum', | |
n_extreme: int=10, | |
figsize: Tuple[int, int]=(10, 10) | |
) -> plt.Figure: | |
fig, ax = plt.subplots(1, figsize=figsize) | |
self.method = method | |
self.plot_projection_scores( | |
definitional, | |
wordlist_to_diagnose, n_extreme, ax=ax,) | |
fig.tight_layout() | |
fig.canvas.draw() | |
return fig | |
def plot_projection_scores( | |
self, | |
definitional: Tuple[List[str], List[str]], | |
words: List[str], | |
n_extreme: int=10, | |
ax: plt.Axes=None, | |
axis_projection_step: float=None | |
) -> plt.Axes: | |
"""Plot the projection scalar of words on the direction. | |
:param list words: The words tor project | |
:param int or None n_extreme: The number of extreme words to show | |
:return: The ax object of the plot | |
""" | |
name_left = ', '.join(definitional[0]) | |
name_right = ', '.join(definitional[1]) | |
self._identify_direction(name_left, name_right, | |
definitional=definitional, | |
method='sum') | |
self._is_direction_identified() | |
projections_df = self._calc_projection_scores(words) | |
projections_df['projection'] = projections_df['projection'].round(2) | |
if n_extreme is not None: | |
projections_df = take_two_sides_extreme_sorted(projections_df, | |
n_extreme=n_extreme) | |
if ax is None: | |
_, ax = plt.subplots(1) | |
if axis_projection_step is None: | |
axis_projection_step = 0.1 | |
cmap = plt.get_cmap('RdBu') | |
projections_df['color'] = ((projections_df['projection'] + 0.5) | |
.apply(cmap)) | |
most_extream_projection = np.round( | |
projections_df['projection'] | |
.abs() | |
.max(), | |
decimals=1) | |
sns.barplot(x='projection', | |
y='word', | |
data=projections_df, | |
palette=projections_df['color'].tolist() | |
) | |
plt.xticks(np.arange(-most_extream_projection, | |
most_extream_projection + axis_projection_step, | |
axis_projection_step)) | |
# xlabel = ('← {} {} {} →'.format(self.negative_end, | |
# ' ' * 20, | |
# self.positive_end)) | |
xlabel = axes_labels_format( | |
left=self.negative_end, | |
right=self.positive_end, | |
sep=' ' * 20, | |
word_wrap=3 | |
) | |
plt.xlabel(xlabel) | |
plt.ylabel('Words') | |
return ax | |
class WEBiasExplorer4Spaces(WordBiasExplorer): | |
def __init__( | |
self, | |
embedding # Embedding Class instance | |
) -> None: | |
super().__init__(embedding) | |
def calculate_bias( | |
self, | |
wordlist_to_diagnose: List[str], | |
wordlist_right: List[str], | |
wordlist_left: List[str], | |
wordlist_top: List[str], | |
wordlist_bottom: List[str], | |
) -> plt.Figure: | |
wordlists = [ | |
wordlist_to_diagnose, | |
wordlist_left, | |
wordlist_right, | |
wordlist_top, | |
wordlist_bottom | |
] | |
for wordlist in wordlists: | |
if not wordlist: | |
raise Exception('¡Para graficar con 4 espacios, debe ingresar al menos 1 palabra en todas las listas!') | |
err = self.check_oov(wordlists) | |
if err: | |
raise Exception(err) | |
return self.get_bias_plot( | |
wordlist_to_diagnose, | |
definitional_1=(wordlist_right, wordlist_left), | |
definitional_2=(wordlist_top, wordlist_bottom), | |
method='sum', | |
n_extreme=10 | |
) | |
def get_bias_plot( | |
self, | |
wordlist_to_diagnose: List[str], | |
definitional_1: Tuple[List[str], List[str]], | |
definitional_2: Tuple[List[str], List[str]], | |
method: str='sum', | |
n_extreme: int=10, | |
figsize: Tuple[int, int]=(10, 10) | |
) -> plt.Figure: | |
fig, ax = plt.subplots(1, figsize=figsize) | |
self.method = method | |
self.plot_projection_scores( | |
definitional_1, | |
definitional_2, | |
wordlist_to_diagnose, n_extreme, ax=ax,) | |
fig.canvas.draw() | |
return fig | |
def plot_projection_scores( | |
self, | |
definitional_1: Tuple[List[str], List[str]], | |
definitional_2: Tuple[List[str], List[str]], | |
words: List[str], | |
n_extreme: int=10, | |
ax: plt.Axes=None, | |
axis_projection_step: float=None | |
) -> plt.Axes: | |
"""Plot the projection scalar of words on the direction. | |
:param list words: The words tor project | |
:param int or None n_extreme: The number of extreme words to show | |
:return: The ax object of the plot | |
""" | |
name_left = ', '.join(definitional_1[1]) | |
name_right = ', '.join(definitional_1[0]) | |
self._identify_direction(name_left, name_right, | |
definitional=definitional_1, | |
method='sum') | |
self._is_direction_identified() | |
projections_df = self._calc_projection_scores(words) | |
projections_df['projection_x'] = projections_df['projection'].round(2) | |
name_top = ', '.join(definitional_2[1]) | |
name_bottom = ', '.join(definitional_2[0]) | |
self._identify_direction(name_top, name_bottom, | |
definitional=definitional_2, | |
method='sum') | |
self._is_direction_identified() | |
projections_df['projection_y'] = self._calc_projection_scores(words)[ | |
'projection'].round(2) | |
if n_extreme is not None: | |
projections_df = take_two_sides_extreme_sorted(projections_df, | |
n_extreme=n_extreme) | |
if ax is None: | |
_, ax = plt.subplots(1) | |
if axis_projection_step is None: | |
axis_projection_step = 0.1 | |
cmap = plt.get_cmap('RdBu') | |
projections_df['color'] = ((projections_df['projection'] + 0.5) | |
.apply(cmap)) | |
most_extream_projection = np.round( | |
projections_df['projection'] | |
.abs() | |
.max(), | |
decimals=1) | |
sns.scatterplot(x='projection_x', y='projection_y', data=projections_df, | |
palette=projections_df['color']) | |
plt.xticks(np.arange(-most_extream_projection, | |
most_extream_projection + axis_projection_step, | |
axis_projection_step)) | |
for _, row in (projections_df.iterrows()): | |
ax.annotate( | |
row['word'], (row['projection_x'], row['projection_y'])) | |
# x_label = '← {} {} {} →'.format(name_left, | |
# ' ' * 20, | |
# name_right) | |
# y_label = '← {} {} {} →'.format(name_top, | |
# ' ' * 20, | |
# name_bottom) | |
x_label = axes_labels_format( | |
left=name_left, | |
right=name_right, | |
sep=' ' * 20, | |
word_wrap=3 | |
) | |
y_label = axes_labels_format( | |
left=name_top, | |
right=name_bottom, | |
sep=' ' * 20, | |
word_wrap=3 | |
) | |
plt.xlabel(x_label) | |
ax.xaxis.set_label_position('bottom') | |
ax.xaxis.set_label_coords(.5, 0) | |
plt.ylabel(y_label) | |
ax.yaxis.set_label_position('left') | |
ax.yaxis.set_label_coords(0, .5) | |
ax.spines['left'].set_position('center') | |
ax.spines['bottom'].set_position('center') | |
ax.set_xticks([]) | |
ax.set_yticks([]) | |
return ax | |