Spaces:
Paused
Paused
File size: 6,970 Bytes
577df10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import logging
import os
import boto3
import json
import shlex
import subprocess
import tempfile
import time
import base64
import gradio as gr
import numpy as np
import rembg
import spaces
import torch
from PIL import Image
from functools import partial
import io
# s3 = boto3.client(
# 's3',
# aws_access_key_id="AKIAZW3QSPMIH4RF42UA",
# aws_secret_access_key="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",
# region_name='us-east-1'
# )
subprocess.run(shlex.split('pip install wheel/torchmcubes-0.1.0-cp310-cp310-linux_x86_64.whl'))
from tsr.system import TSR
from tsr.utils import remove_background, resize_foreground, to_gradio_3d_orientation
HEADER = """FRAME AI"""
if torch.cuda.is_available():
device = "cuda:0"
else:
device = "cpu"
model = TSR.from_pretrained(
"stabilityai/TripoSR",
config_name="config.yaml",
weight_name="model.ckpt",
)
model.renderer.set_chunk_size(131072)
model.to(device)
rembg_session = rembg.new_session()
def generate_image_from_text(pos_prompt):
# bedrock_runtime = boto3.client(region_name = 'us-east-1', service_name='bedrock-runtime')
bedrock_runtime = boto3.client(service_name='bedrock-runtime', aws_access_key_id = "AKIAZW3QSPMIH4RF42UA", aws_secret_access_key = "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", region_name='us-east-1')
parameters = {'text_prompts': [{'text':pos_prompt, 'weight':1},
{'text': """Blurry, unnatural, ugly, pixelated obscure, dull, artifacts, duplicate, bad quality, low resolution, cropped, out of frame, out of focus""", 'weight': -1}],
'cfg_scale': 7, 'seed': 0, 'samples': 1}
request_body = json.dumps(parameters)
response = bedrock_runtime.invoke_model(body=request_body,modelId = 'stability.stable-diffusion-xl-v1')
response_body = json.loads(response.get('body').read())
base64_image_data = base64.b64decode(response_body['artifacts'][0]['base64'])
return Image.open(io.BytesIO(base64_image_data))
def check_input_image(input_image):
if input_image is None:
raise gr.Error("No image uploaded!")
def preprocess(input_image, do_remove_background, foreground_ratio):
def fill_background(image):
image = np.array(image).astype(np.float32) / 255.0
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
image = Image.fromarray((image * 255.0).astype(np.uint8))
return image
if do_remove_background:
image = input_image.convert("RGB")
image = remove_background(image, rembg_session)
image = resize_foreground(image, foreground_ratio)
image = fill_background(image)
else:
image = input_image
if image.mode == "RGBA":
image = fill_background(image)
return image
@spaces.GPU
def generate(image, mc_resolution, formats=["obj", "glb"]):
scene_codes = model(image, device=device)
mesh = model.extract_mesh(scene_codes, resolution=mc_resolution)[0]
mesh = to_gradio_3d_orientation(mesh)
mesh_path_glb = tempfile.NamedTemporaryFile(suffix=f".glb", delete=False)
mesh.export(mesh_path_glb.name)
mesh_path_obj = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False)
mesh.apply_scale([-1, 1, 1]) # Otherwise the visualized .obj will be flipped
mesh.export(mesh_path_obj.name)
return mesh_path_obj.name, mesh_path_glb.name
def run_example(text_prompt, do_remove_background, foreground_ratio, mc_resolution):
# Step 1: Generate the image from text prompt
image_pil = generate_image_from_text(text_prompt)
# Step 2: Preprocess the image
preprocessed = preprocess(image_pil, do_remove_background, foreground_ratio)
# Step 3: Generate the 3D model
mesh_name_obj, mesh_name_glb = generate(preprocessed, mc_resolution, ["obj", "glb"])
return preprocessed, mesh_name_obj, mesh_name_glb
with gr.Blocks() as demo:
gr.Markdown(HEADER)
with gr.Row(variant="panel"):
with gr.Column():
with gr.Row():
text_prompt = gr.Textbox(
label="Text Prompt",
placeholder="Enter a text prompt for image generation"
)
input_image = gr.Image(
label="Generated Image",
image_mode="RGBA",
sources="upload",
type="pil",
elem_id="content_image",
visible=False # Hidden since we generate the image from text
)
processed_image = gr.Image(label="Processed Image", interactive=False)
with gr.Row():
with gr.Group():
do_remove_background = gr.Checkbox(
label="Remove Background", value=True
)
foreground_ratio = gr.Slider(
label="Foreground Ratio",
minimum=0.5,
maximum=1.0,
value=0.85,
step=0.05,
)
mc_resolution = gr.Slider(
label="Marching Cubes Resolution",
minimum=32,
maximum=320,
value=256,
step=32
)
with gr.Row():
submit = gr.Button("Generate", elem_id="generate", variant="primary")
with gr.Column():
with gr.Tab("OBJ"):
output_model_obj = gr.Model3D(
label="Output Model (OBJ Format)",
interactive=False,
)
gr.Markdown("Note: Downloaded object will be flipped in case of .obj export. Export .glb instead or manually flip it before usage.")
with gr.Tab("GLB"):
output_model_glb = gr.Model3D(
label="Output Model (GLB Format)",
interactive=False,
)
gr.Markdown("Note: The model shown here has a darker appearance. Download to get correct results.")
with gr.Row(variant="panel"):
gr.Examples(
examples=[
os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples"))
],
inputs=[text_prompt],
outputs=[processed_image, output_model_obj, output_model_glb],
cache_examples=True,
fn=partial(run_example, do_remove_background=True, foreground_ratio=0.85, mc_resolution=256),
label="Examples",
examples_per_page=20
)
submit.click(fn=check_input_image, inputs=[text_prompt]).success(
fn=run_example,
inputs=[text_prompt, do_remove_background, foreground_ratio, mc_resolution],
outputs=[processed_image, output_model_obj, output_model_glb],
)
demo.queue(max_size=10)
demo.launch()
|