Spaces:
Paused
Paused
File size: 10,603 Bytes
1d50f64 577df10 2647415 577df10 1b3bb2f 577df10 95ec856 577df10 17760de 1b3bb2f 577df10 1ad8408 010d2b7 1b3bb2f 010d2b7 1b3bb2f 010d2b7 46574e1 d46a5f8 46574e1 d46a5f8 46574e1 1f09285 46574e1 1f09285 46574e1 d46a5f8 2bf82d5 46574e1 010d2b7 0f65a27 010d2b7 577df10 93d27bc f020ac9 1f09285 aceb72e 11c3fc1 010d2b7 f020ac9 010d2b7 93d27bc 1b6f106 010d2b7 1b6f106 6a0e561 577df10 2bad595 577df10 2bad595 577df10 2bad595 577df10 2bad595 577df10 2bad595 ec2b233 577df10 2bad595 577df10 2bad595 577df10 2bad595 577df10 2bad595 577df10 2bad595 577df10 2bad595 577df10 2bad595 577df10 2bad595 577df10 2bad595 43df257 93d27bc 1b3bb2f 577df10 1b3bb2f a774a30 1b3bb2f a774a30 1b3bb2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from typing import Optional
import logging
import os
import boto3
import json
import shlex
import subprocess
import tempfile
import time
import base64
import gradio as gr
import numpy as np
import rembg
import spaces
import torch
from PIL import Image
from functools import partial
import io
import datetime
app = FastAPI()
subprocess.run(shlex.split('pip install wheel/torchmcubes-0.1.0-cp310-cp310-linux_x86_64.whl'))
from tsr.system import TSR
from tsr.utils import remove_background, resize_foreground, to_gradio_3d_orientation
if torch.cuda.is_available():
device = "cuda:0"
else:
device = "cpu"
# torch.cuda.synchronize()
model = TSR.from_pretrained(
"stabilityai/TripoSR",
config_name="config.yaml",
weight_name="model.ckpt",
)
model.renderer.set_chunk_size(131072)
model.to(device)
rembg_session = rembg.new_session()
ACCESS = os.getenv("ACCESS")
SECRET = os.getenv("SECRET")
bedrock = boto3.client(service_name='bedrock', aws_access_key_id = ACCESS, aws_secret_access_key = SECRET, region_name='us-east-1')
bedrock_runtime = boto3.client(service_name='bedrock-runtime', aws_access_key_id = ACCESS, aws_secret_access_key = SECRET, region_name='us-east-1')
def upload_file_to_s3(file_path, bucket_name, object_name=None):
s3_client = boto3.client('s3',aws_access_key_id = ACCESS, aws_secret_access_key = SECRET, region_name='us-east-1')
if object_name is None:
object_name = file_path
try:
s3_client.upload_file(file_path, bucket_name, object_name)
except FileNotFoundError:
print(f"The file {file_path} was not found.")
return False
except NoCredentialsError:
print("Credentials not available.")
return False
except PartialCredentialsError:
print("Incomplete credentials provided.")
return False
except Exception as e:
print(f"An error occurred: {e}")
return False
print(f"File {file_path} uploaded successfully to {bucket_name}/{object_name}.")
return True
def gen_pos_prompt(text):
instruction = f'''Your task is to create a positive prompt for image generation.
Objective: Generate images that prioritize structural integrity and accurate shapes. The focus should be on the correct form and basic contours of objects, with minimal concern for colors.
Guidelines:
Complex Objects (e.g., animals, vehicles, Machines, Fictional Characters, Fantasy and Mythical Creatures, Historical or Cultural Artifacts, Humanoid Figures,Buildings and Architecture): For these, the image should resemble a toy object, emphasizing the correct shape and structure while minimizing details and color complexity.
Example Input: A sports bike
Example Positive Prompt: Simple sports bike with accurate shape and structure, minimal details, digital painting, concept art style, basic contours, soft lighting, clean lines, neutral or muted colors, toy-like appearance, low contrast.
Example Input: A lion
Example Positive Prompt: Toy-like depiction of a lion with a focus on structural accuracy, minimal details, digital painting, concept art style, basic contours, soft lighting, clean lines, neutral or muted colors, simplified features, low contrast.
Input: The Spiderman with Wolverine Claws
Positive Prompt: Toy-like depiction of Spiderman with Wolverine claws, emphasizing structural accuracy with minimal details, digital painting, concept art style, basic contours, soft lighting, clean lines, neutral or muted colors, simplified features, low contrast.
Simple Objects (e.g., a tennis ball): For these, the prompt should specify a realistic depiction, focusing on the accurate shape and structure.
Example Input: A tennis ball
Example Positive Prompt: photorealistic, uhd, high resolution, high quality, highly detailed; A tennis ball
Prompt Structure:
Subject: Clearly describe the object and its essential shape and structure.
Medium: Specify the art style (e.g., digital painting, concept art).
Style: Include relevant style terms (e.g., simplified, toy-like for complex objects; realistic for simple objects).
Resolution: Mention resolution if necessary (e.g., basic resolution).
Lighting: Indicate the type of lighting (e.g., soft lighting).
Color: Use neutral or muted colors with minimal emphasis on color details.
Additional Details: Keep additional details minimal.
### MAXIMUM OUTPUT LENGTH SHOULD BE UNDER 30 WORDS ###
Input: {text}
Positive Prompt:
'''
body = json.dumps({'inputText': instruction,
'textGenerationConfig': {'temperature': 0, 'topP': 0.01, 'maxTokenCount':1024}})
response = bedrock_runtime.invoke_model(body=body, modelId='amazon.titan-text-express-v1')
pos_prompt = json.loads(response.get('body').read())['results'][0]['outputText']
return pos_prompt
def generate_image_from_text(pos_prompt, seed):
new_prompt = gen_pos_prompt(pos_prompt)
print(new_prompt)
# neg_prompt = '''Detailed, complex textures, intricate patterns, realistic lighting, high contrast, reflections, fuzzy surface, realistic proportions, photographic quality, vibrant colors, detailed background, shadows, disfigured, deformed, ugly, multiple, duplicate.'''
# neg_prompt = '''Complex textures, intricate patterns, realistic lighting, high contrast, reflections, fuzzy surface, photographic quality, vibrant colors, detailed background, shadows, disfigured, deformed, ugly, multiple, duplicate.'''
neg_prompt = '''Complex patterns, realistic lighting, high contrast, reflections, fuzzy, photographic, vibrant, detailed, shadows, disfigured, duplicate.'''
parameters = {
'taskType': 'TEXT_IMAGE',
'textToImageParams': {'text': new_prompt,
'negativeText': neg_prompt},
'imageGenerationConfig': {"cfgScale":8,
"seed":int(seed),
"width":768,
"height":768,
"numberOfImages":1
}
}
request_body = json.dumps(parameters)
response = bedrock_runtime.invoke_model(body=request_body, modelId='amazon.titan-image-generator-v1')
response_body = json.loads(response.get('body').read())
base64_image_data = base64.b64decode(response_body['images'][0])
return Image.open(io.BytesIO(base64_image_data))
def check_input_image(input_image):
if input_image is None:
raise gr.Error("No image uploaded!")
def preprocess(input_image, do_remove_background, foreground_ratio):
def fill_background(image):
torch.cuda.synchronize() # Ensure previous CUDA operations are complete
image = np.array(image).astype(np.float32) / 255.0
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
image = Image.fromarray((image * 255.0).astype(np.uint8))
return image
if do_remove_background:
torch.cuda.synchronize()
image = input_image.convert("RGB")
image = remove_background(image, rembg_session)
image = resize_foreground(image, foreground_ratio)
image = fill_background(image)
torch.cuda.synchronize()
else:
image = input_image
if image.mode == "RGBA":
image = fill_background(image)
torch.cuda.synchronize() # Wait for all CUDA operations to complete
torch.cuda.empty_cache()
return image
# @spaces.GPU
def generate(image, mc_resolution, formats=["obj", "glb"]):
torch.cuda.synchronize()
scene_codes = model(image, device=device)
torch.cuda.synchronize()
mesh = model.extract_mesh(scene_codes, resolution=mc_resolution)[0]
torch.cuda.synchronize()
mesh = to_gradio_3d_orientation(mesh)
torch.cuda.synchronize()
mesh_path_glb = tempfile.NamedTemporaryFile(suffix=f".glb", delete=False)
torch.cuda.synchronize()
mesh.export(mesh_path_glb.name)
torch.cuda.synchronize()
mesh_path_obj = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False)
torch.cuda.synchronize()
mesh.apply_scale([-1, 1, 1])
mesh.export(mesh_path_obj.name)
torch.cuda.synchronize()
torch.cuda.empty_cache()
return mesh_path_obj.name, mesh_path_glb.name
def run_example(text_prompt,seed ,do_remove_background, foreground_ratio, mc_resolution):
image_pil = generate_image_from_text(text_prompt, seed)
preprocessed = preprocess(image_pil, do_remove_background, foreground_ratio)
mesh_name_obj, mesh_name_glb = generate(preprocessed, mc_resolution, ["obj", "glb"])
return preprocessed, mesh_name_obj, mesh_name_glb
@app.post("/process_text/")
async def process_image(
text_prompt: str = Form(...),
seed: int = Form(...),
do_remove_background: bool = Form(...),
foreground_ratio: float = Form(...),
mc_resolution: int = Form(...),
auth: str = Form(...)
):
if auth == os.getenv("AUTHORIZE"):
preprocessed, mesh_name_obj, mesh_name_glb = run_example(text_prompt,seed ,do_remove_background, foreground_ratio, mc_resolution)
# preprocessed = preprocess(image_pil, do_remove_background, foreground_ratio)
# mesh_name_obj, mesh_name_glb = generate(preprocessed, mc_resolution)
timestamp = datetime.datetime.now().strftime('%Y%m%d%H%M%S%f')
object_name = f'object_{timestamp}_1.obj'
object_name_2 = f'object_{timestamp}_2.glb'
object_name_3 = f"object_{timestamp}.png"
preprocessed_image_tempfile = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
preprocessed.save(preprocessed_image_tempfile.name)
upload_file_to_s3(preprocessed_image_tempfile.name, 'framebucket3d', object_name_3)
if upload_file_to_s3(mesh_name_obj, 'framebucket3d',object_name) and upload_file_to_s3(mesh_name_glb, 'framebucket3d',object_name_2):
return {
"img_path": f"https://framebucket3d.s3.amazonaws.com/{object_name_3}",
"obj_path": f"https://framebucket3d.s3.amazonaws.com/{object_name}",
"glb_path": f"https://framebucket3d.s3.amazonaws.com/{object_name_2}"
}
else:
return {"Internal Server Error": False}
else:
return {"Authentication":"Failed"}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |