vibs08 commited on
Commit
4ab212d
·
verified ·
1 Parent(s): 3e61a28

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +241 -193
app.py CHANGED
@@ -4,255 +4,303 @@ from pydantic import BaseModel
4
  from typing import Optional
5
  import logging
6
  import os
7
- import boto3
8
  import json
9
- import shlex
10
- import subprocess
11
- import tempfile
12
- import time
13
- import base64
14
- import gradio as gr
15
- import numpy as np
16
- import rembg
17
- import spaces
18
- import torch
19
- from PIL import Image
20
- from functools import partial
21
- import io
22
- import datetime
23
 
24
  app = FastAPI()
25
 
26
 
27
- subprocess.run(shlex.split('pip install wheel/torchmcubes-0.1.0-cp310-cp310-linux_x86_64.whl'))
28
 
29
- from tsr.system import TSR
30
- from tsr.utils import remove_background, resize_foreground, to_gradio_3d_orientation
31
 
32
 
33
 
34
- if torch.cuda.is_available():
35
- device = "cuda:0"
36
- else:
37
- device = "cpu"
38
 
39
- # torch.cuda.synchronize()
40
 
41
 
42
- model = TSR.from_pretrained(
43
- "stabilityai/TripoSR",
44
- config_name="config.yaml",
45
- weight_name="model.ckpt",
46
- )
47
- model.renderer.set_chunk_size(124218)
48
- model.to(device)
49
 
50
- rembg_session = rembg.new_session()
51
- ACCESS = os.getenv("ACCESS")
52
- SECRET = os.getenv("SECRET")
53
- bedrock = boto3.client(service_name='bedrock', aws_access_key_id = ACCESS, aws_secret_access_key = SECRET, region_name='us-east-1')
54
- bedrock_runtime = boto3.client(service_name='bedrock-runtime', aws_access_key_id = ACCESS, aws_secret_access_key = SECRET, region_name='us-east-1')
55
 
56
- def upload_file_to_s3(file_path, bucket_name, object_name=None):
57
- s3_client = boto3.client('s3',aws_access_key_id = ACCESS, aws_secret_access_key = SECRET, region_name='us-east-1')
58
 
59
- if object_name is None:
60
- object_name = file_path
61
 
62
- try:
63
- s3_client.upload_file(file_path, bucket_name, object_name)
64
- except FileNotFoundError:
65
- print(f"The file {file_path} was not found.")
66
- return False
67
- except NoCredentialsError:
68
- print("Credentials not available.")
69
- return False
70
- except PartialCredentialsError:
71
- print("Incomplete credentials provided.")
72
- return False
73
- except Exception as e:
74
- print(f"An error occurred: {e}")
75
- return False
76
 
77
- print(f"File {file_path} uploaded successfully to {bucket_name}/{object_name}.")
78
- return True
79
 
80
 
81
- def gen_pos_prompt(text):
82
- instruction = f'''Your task is to create a positive prompt for image generation.
83
 
84
- Objective: Generate images that prioritize structural integrity and accurate shapes. The focus should be on the correct form and basic contours of objects, with minimal concern for colors.
85
 
86
- Guidelines:
87
 
88
- Complex Objects (e.g., animals, vehicles, Machines, Fictional Characters, Fantasy and Mythical Creatures, Historical or Cultural Artifacts, Humanoid Figures,Buildings and Architecture): For these, the image should resemble a toy object, emphasizing the correct shape and structure while minimizing details and color complexity.
89
 
90
- Example Input: A sports bike
91
- Example Positive Prompt: Simple sports bike with accurate shape and structure, minimal details, digital painting, concept art style, basic contours, soft lighting, clean lines, neutral or muted colors, toy-like appearance, low contrast.
92
 
93
- Example Input: A lion
94
- Example Positive Prompt: Toy-like depiction of a lion with a focus on structural accuracy, minimal details, digital painting, concept art style, basic contours, soft lighting, clean lines, neutral or muted colors, simplified features, low contrast.
95
 
96
- Input: The Spiderman with Wolverine Claws
97
- Positive Prompt: Toy-like depiction of Spiderman with Wolverine claws, emphasizing structural accuracy with minimal details, digital painting, concept art style, basic contours, soft lighting, clean lines, neutral or muted colors, simplified features, low contrast.
98
 
99
- Simple Objects (e.g., a tennis ball): For these, the prompt should specify a realistic depiction, focusing on the accurate shape and structure.
100
 
101
- Example Input: A tennis ball
102
- Example Positive Prompt: photorealistic, uhd, high resolution, high quality, highly detailed; A tennis ball
103
 
104
- Prompt Structure:
105
 
106
- Subject: Clearly describe the object and its essential shape and structure.
107
- Medium: Specify the art style (e.g., digital painting, concept art).
108
- Style: Include relevant style terms (e.g., simplified, toy-like for complex objects; realistic for simple objects).
109
- Resolution: Mention resolution if necessary (e.g., basic resolution).
110
- Lighting: Indicate the type of lighting (e.g., soft lighting).
111
- Color: Use neutral or muted colors with minimal emphasis on color details.
112
- Additional Details: Keep additional details minimal.
113
-
114
-
115
- ### MAXIMUM OUTPUT LENGTH SHOULD BE UNDER 30 WORDS ###
116
-
117
- Input: {text}
118
- Positive Prompt:
119
- '''
120
-
121
- body = json.dumps({'inputText': instruction,
122
- 'textGenerationConfig': {'temperature': 0, 'topP': 0.01, 'maxTokenCount':1024}})
123
- response = bedrock_runtime.invoke_model(body=body, modelId='amazon.titan-text-express-v1')
124
- pos_prompt = json.loads(response.get('body').read())['results'][0]['outputText']
125
- return pos_prompt
126
-
127
- def generate_image_from_text(pos_prompt, seed):
128
- new_prompt = gen_pos_prompt(pos_prompt)
129
- # print(new_prompt)
130
- # neg_prompt = '''Detailed, complex textures, intricate patterns, realistic lighting, high contrast, reflections, fuzzy surface, realistic proportions, photographic quality, vibrant colors, detailed background, shadows, disfigured, deformed, ugly, multiple, duplicate.'''
131
- neg_prompt = '''Out of frame, blurry, ugly, cropped, reflections, detailed background, shadows, disfigured, deformed, ugly, multiple, duplicate.'''
132
- # neg_prompt = '''Complex patterns, realistic lighting, high contrast, reflections, fuzzy, photographic, vibrant, detailed, shadows, disfigured, duplicate.'''
133
 
134
- parameters = {
135
- 'taskType': 'TEXT_IMAGE',
136
- 'textToImageParams': {'text': new_prompt,
137
- 'negativeText': neg_prompt},
138
- 'imageGenerationConfig': {"cfgScale":8,
139
- "seed":int(seed),
140
- "width":1024,
141
- "height":1024,
142
- "numberOfImages":1
143
- }
144
- }
145
- request_body = json.dumps(parameters)
146
- response = bedrock_runtime.invoke_model(body=request_body, modelId='amazon.titan-image-generator-v2:0')
147
- response_body = json.loads(response.get('body').read())
148
- base64_image_data = base64.b64decode(response_body['images'][0])
149
-
150
- return Image.open(io.BytesIO(base64_image_data))
151
-
152
-
153
- def check_input_image(input_image):
154
- if input_image is None:
155
- raise gr.Error("No image uploaded!")
156
-
157
- def preprocess(input_image, do_remove_background, foreground_ratio):
158
- def fill_background(image):
159
- torch.cuda.synchronize() # Ensure previous CUDA operations are complete
160
- image = np.array(image).astype(np.float32) / 255.0
161
- image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
162
- image = Image.fromarray((image * 255.0).astype(np.uint8))
163
- return image
164
-
165
- if do_remove_background:
166
- torch.cuda.synchronize()
167
- image = input_image.convert("RGB")
168
- image = remove_background(image, rembg_session)
169
- image = resize_foreground(image, foreground_ratio)
170
- image = fill_background(image)
171
 
172
- torch.cuda.synchronize()
173
- else:
174
- image = input_image
175
- if image.mode == "RGBA":
176
- image = fill_background(image)
177
- torch.cuda.synchronize() # Wait for all CUDA operations to complete
178
- torch.cuda.empty_cache()
179
- return image
180
-
181
-
182
-
183
- # @spaces.GPU
184
- def generate(image, mc_resolution, formats=["obj", "glb"]):
185
- torch.cuda.synchronize()
186
- scene_codes = model(image, device=device)
187
- torch.cuda.synchronize()
188
- mesh = model.extract_mesh(scene_codes, resolution=mc_resolution)[0]
189
- torch.cuda.synchronize()
190
- mesh = to_gradio_3d_orientation(mesh)
191
- torch.cuda.synchronize()
192
 
193
- mesh_path_glb = tempfile.NamedTemporaryFile(suffix=f".glb", delete=False)
194
- torch.cuda.synchronize()
195
- mesh.export(mesh_path_glb.name)
196
- torch.cuda.synchronize()
197
 
198
- mesh_path_obj = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False)
199
- torch.cuda.synchronize()
200
- mesh.apply_scale([-1, 1, 1])
201
- mesh.export(mesh_path_obj.name)
202
- torch.cuda.synchronize()
203
- torch.cuda.empty_cache()
204
- return mesh_path_obj.name, mesh_path_glb.name
205
 
206
 
207
 
208
- def run_example(text_prompt,seed ,do_remove_background, foreground_ratio, mc_resolution):
209
- image_pil = generate_image_from_text(text_prompt, seed)
210
 
211
- preprocessed = preprocess(image_pil, do_remove_background, foreground_ratio)
212
 
213
- mesh_name_obj, mesh_name_glb = generate(preprocessed, mc_resolution, ["obj", "glb"])
214
 
215
- return preprocessed, mesh_name_obj, mesh_name_glb
 
 
 
 
216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
217
 
 
 
 
 
 
 
 
 
 
 
 
218
  @app.post("/process_text/")
219
  async def process_image(
220
  text_prompt: str = Form(...),
221
  seed: int = Form(...),
222
- do_remove_background: bool = Form(...),
223
  foreground_ratio: float = Form(...),
224
  mc_resolution: int = Form(...),
225
  auth: str = Form(...)
226
  ):
227
 
228
  if auth == os.getenv("AUTHORIZE"):
229
-
230
- preprocessed, mesh_name_obj, mesh_name_glb = run_example(text_prompt,seed ,do_remove_background, foreground_ratio, mc_resolution)
231
- # preprocessed = preprocess(image_pil, do_remove_background, foreground_ratio)
232
- # mesh_name_obj, mesh_name_glb = generate(preprocessed, mc_resolution)
233
- timestamp = datetime.datetime.now().strftime('%Y%m%d%H%M%S%f')
234
- object_name = f'object_{timestamp}_1.obj'
235
- object_name_2 = f'object_{timestamp}_2.glb'
236
- object_name_3 = f"object_{timestamp}.png"
237
- preprocessed_image_tempfile = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
238
- preprocessed.save(preprocessed_image_tempfile.name)
239
- upload_file_to_s3(preprocessed_image_tempfile.name, 'framebucket3d', object_name_3)
 
 
 
 
240
 
241
 
242
- if upload_file_to_s3(mesh_name_obj, 'framebucket3d',object_name) and upload_file_to_s3(mesh_name_glb, 'framebucket3d',object_name_2):
243
 
244
- return {
245
- "img_path": f"https://framebucket3d.s3.amazonaws.com/{object_name_3}",
246
- "obj_path": f"https://framebucket3d.s3.amazonaws.com/{object_name}",
247
- "glb_path": f"https://framebucket3d.s3.amazonaws.com/{object_name_2}"
248
 
249
- }
250
 
251
- else:
252
- return {"Internal Server Error": False}
253
  else:
254
  return {"Authentication":"Failed"}
255
 
256
- if __name__ == "__main__":
257
- import uvicorn
258
- uvicorn.run(app, host="0.0.0.0", port=7860)
 
4
  from typing import Optional
5
  import logging
6
  import os
7
+ # import boto3
8
  import json
9
+ # import shlex
10
+ # import subprocess
11
+ # import tempfile
12
+ # import time
13
+ # import base64
14
+ # import gradio as gr
15
+ # import numpy as np
16
+ # import rembg
17
+ # import spaces
18
+ # import torch
19
+ # from PIL import Image
20
+ # from functools import partial
21
+ # import io
22
+ # import datetime
23
 
24
  app = FastAPI()
25
 
26
 
27
+ # subprocess.run(shlex.split('pip install wheel/torchmcubes-0.1.0-cp310-cp310-linux_x86_64.whl'))
28
 
29
+ # from tsr.system import TSR
30
+ # from tsr.utils import remove_background, resize_foreground, to_gradio_3d_orientation
31
 
32
 
33
 
34
+ # if torch.cuda.is_available():
35
+ # device = "cuda:0"
36
+ # else:
37
+ # device = "cpu"
38
 
39
+ # # torch.cuda.synchronize()
40
 
41
 
42
+ # model = TSR.from_pretrained(
43
+ # "stabilityai/TripoSR",
44
+ # config_name="config.yaml",
45
+ # weight_name="model.ckpt",
46
+ # )
47
+ # model.renderer.set_chunk_size(124218)
48
+ # model.to(device)
49
 
50
+ # rembg_session = rembg.new_session()
51
+ # ACCESS = os.getenv("ACCESS")
52
+ # SECRET = os.getenv("SECRET")
53
+ # bedrock = boto3.client(service_name='bedrock', aws_access_key_id = ACCESS, aws_secret_access_key = SECRET, region_name='us-east-1')
54
+ # bedrock_runtime = boto3.client(service_name='bedrock-runtime', aws_access_key_id = ACCESS, aws_secret_access_key = SECRET, region_name='us-east-1')
55
 
56
+ # def upload_file_to_s3(file_path, bucket_name, object_name=None):
57
+ # s3_client = boto3.client('s3',aws_access_key_id = ACCESS, aws_secret_access_key = SECRET, region_name='us-east-1')
58
 
59
+ # if object_name is None:
60
+ # object_name = file_path
61
 
62
+ # try:
63
+ # s3_client.upload_file(file_path, bucket_name, object_name)
64
+ # except FileNotFoundError:
65
+ # print(f"The file {file_path} was not found.")
66
+ # return False
67
+ # except NoCredentialsError:
68
+ # print("Credentials not available.")
69
+ # return False
70
+ # except PartialCredentialsError:
71
+ # print("Incomplete credentials provided.")
72
+ # return False
73
+ # except Exception as e:
74
+ # print(f"An error occurred: {e}")
75
+ # return False
76
 
77
+ # print(f"File {file_path} uploaded successfully to {bucket_name}/{object_name}.")
78
+ # return True
79
 
80
 
81
+ # def gen_pos_prompt(text):
82
+ # instruction = f'''Your task is to create a positive prompt for image generation.
83
 
84
+ # Objective: Generate images that prioritize structural integrity and accurate shapes. The focus should be on the correct form and basic contours of objects, with minimal concern for colors.
85
 
86
+ # Guidelines:
87
 
88
+ # Complex Objects (e.g., animals, vehicles, Machines, Fictional Characters, Fantasy and Mythical Creatures, Historical or Cultural Artifacts, Humanoid Figures,Buildings and Architecture): For these, the image should resemble a toy object, emphasizing the correct shape and structure while minimizing details and color complexity.
89
 
90
+ # Example Input: A sports bike
91
+ # Example Positive Prompt: Simple sports bike with accurate shape and structure, minimal details, digital painting, concept art style, basic contours, soft lighting, clean lines, neutral or muted colors, toy-like appearance, low contrast.
92
 
93
+ # Example Input: A lion
94
+ # Example Positive Prompt: Toy-like depiction of a lion with a focus on structural accuracy, minimal details, digital painting, concept art style, basic contours, soft lighting, clean lines, neutral or muted colors, simplified features, low contrast.
95
 
96
+ # Input: The Spiderman with Wolverine Claws
97
+ # Positive Prompt: Toy-like depiction of Spiderman with Wolverine claws, emphasizing structural accuracy with minimal details, digital painting, concept art style, basic contours, soft lighting, clean lines, neutral or muted colors, simplified features, low contrast.
98
 
99
+ # Simple Objects (e.g., a tennis ball): For these, the prompt should specify a realistic depiction, focusing on the accurate shape and structure.
100
 
101
+ # Example Input: A tennis ball
102
+ # Example Positive Prompt: photorealistic, uhd, high resolution, high quality, highly detailed; A tennis ball
103
 
104
+ # Prompt Structure:
105
 
106
+ # Subject: Clearly describe the object and its essential shape and structure.
107
+ # Medium: Specify the art style (e.g., digital painting, concept art).
108
+ # Style: Include relevant style terms (e.g., simplified, toy-like for complex objects; realistic for simple objects).
109
+ # Resolution: Mention resolution if necessary (e.g., basic resolution).
110
+ # Lighting: Indicate the type of lighting (e.g., soft lighting).
111
+ # Color: Use neutral or muted colors with minimal emphasis on color details.
112
+ # Additional Details: Keep additional details minimal.
113
+
114
+
115
+ # ### MAXIMUM OUTPUT LENGTH SHOULD BE UNDER 30 WORDS ###
116
+
117
+ # Input: {text}
118
+ # Positive Prompt:
119
+ # '''
120
+
121
+ # body = json.dumps({'inputText': instruction,
122
+ # 'textGenerationConfig': {'temperature': 0, 'topP': 0.01, 'maxTokenCount':1024}})
123
+ # response = bedrock_runtime.invoke_model(body=body, modelId='amazon.titan-text-express-v1')
124
+ # pos_prompt = json.loads(response.get('body').read())['results'][0]['outputText']
125
+ # return pos_prompt
126
+
127
+ # def generate_image_from_text(pos_prompt, seed):
128
+ # new_prompt = gen_pos_prompt(pos_prompt)
129
+ # # print(new_prompt)
130
+ # # neg_prompt = '''Detailed, complex textures, intricate patterns, realistic lighting, high contrast, reflections, fuzzy surface, realistic proportions, photographic quality, vibrant colors, detailed background, shadows, disfigured, deformed, ugly, multiple, duplicate.'''
131
+ # neg_prompt = '''Out of frame, blurry, ugly, cropped, reflections, detailed background, shadows, disfigured, deformed, ugly, multiple, duplicate.'''
132
+ # # neg_prompt = '''Complex patterns, realistic lighting, high contrast, reflections, fuzzy, photographic, vibrant, detailed, shadows, disfigured, duplicate.'''
133
 
134
+ # parameters = {
135
+ # 'taskType': 'TEXT_IMAGE',
136
+ # 'textToImageParams': {'text': new_prompt,
137
+ # 'negativeText': neg_prompt},
138
+ # 'imageGenerationConfig': {"cfgScale":8,
139
+ # "seed":int(seed),
140
+ # "width":1024,
141
+ # "height":1024,
142
+ # "numberOfImages":1
143
+ # }
144
+ # }
145
+ # request_body = json.dumps(parameters)
146
+ # response = bedrock_runtime.invoke_model(body=request_body, modelId='amazon.titan-image-generator-v2:0')
147
+ # response_body = json.loads(response.get('body').read())
148
+ # base64_image_data = base64.b64decode(response_body['images'][0])
149
+
150
+ # return Image.open(io.BytesIO(base64_image_data))
151
+
152
+
153
+ # def check_input_image(input_image):
154
+ # if input_image is None:
155
+ # raise gr.Error("No image uploaded!")
156
+
157
+ # def preprocess(input_image, do_remove_background, foreground_ratio):
158
+ # def fill_background(image):
159
+ # torch.cuda.synchronize() # Ensure previous CUDA operations are complete
160
+ # image = np.array(image).astype(np.float32) / 255.0
161
+ # image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
162
+ # image = Image.fromarray((image * 255.0).astype(np.uint8))
163
+ # return image
164
+
165
+ # if do_remove_background:
166
+ # torch.cuda.synchronize()
167
+ # image = input_image.convert("RGB")
168
+ # image = remove_background(image, rembg_session)
169
+ # image = resize_foreground(image, foreground_ratio)
170
+ # image = fill_background(image)
171
 
172
+ # torch.cuda.synchronize()
173
+ # else:
174
+ # image = input_image
175
+ # if image.mode == "RGBA":
176
+ # image = fill_background(image)
177
+ # torch.cuda.synchronize() # Wait for all CUDA operations to complete
178
+ # torch.cuda.empty_cache()
179
+ # return image
180
+
181
+
182
+
183
+ # # @spaces.GPU
184
+ # def generate(image, mc_resolution, formats=["obj", "glb"]):
185
+ # torch.cuda.synchronize()
186
+ # scene_codes = model(image, device=device)
187
+ # torch.cuda.synchronize()
188
+ # mesh = model.extract_mesh(scene_codes, resolution=mc_resolution)[0]
189
+ # torch.cuda.synchronize()
190
+ # mesh = to_gradio_3d_orientation(mesh)
191
+ # torch.cuda.synchronize()
192
 
193
+ # mesh_path_glb = tempfile.NamedTemporaryFile(suffix=f".glb", delete=False)
194
+ # torch.cuda.synchronize()
195
+ # mesh.export(mesh_path_glb.name)
196
+ # torch.cuda.synchronize()
197
 
198
+ # mesh_path_obj = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False)
199
+ # torch.cuda.synchronize()
200
+ # mesh.apply_scale([-1, 1, 1])
201
+ # mesh.export(mesh_path_obj.name)
202
+ # torch.cuda.synchronize()
203
+ # torch.cuda.empty_cache()
204
+ # return mesh_path_obj.name, mesh_path_glb.name
205
 
206
 
207
 
208
+ # def run_example(text_prompt,seed ,do_remove_background, foreground_ratio, mc_resolution):
209
+ # image_pil = generate_image_from_text(text_prompt, seed)
210
 
211
+ # preprocessed = preprocess(image_pil, do_remove_background, foreground_ratio)
212
 
213
+ # mesh_name_obj, mesh_name_glb = generate(preprocessed, mc_resolution, ["obj", "glb"])
214
 
215
+ # return preprocessed, mesh_name_obj, mesh_name_glb
216
+
217
+ from gradio_client import Client
218
+ import requests
219
+ import json
220
 
221
+ client = Client("vibs08/flash-sd3",hf_token=os.getenv("token"))
222
+
223
+ url = 'https://vibs08-image-3d-fastapi.hf.space/process_image/'
224
+
225
+
226
+ def text2img(prompt):
227
+ result = client.predict(
228
+ prompt=prompt,
229
+ seed=0,
230
+ randomize_seed=False,
231
+ guidance_scale=1,
232
+ num_inference_steps=4,
233
+ negative_prompt="deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW, bad text",
234
+ api_name="/infer"
235
+ )
236
+ return result
237
+
238
+
239
+ def three_d(prompt,seed,fr,mc,auth,text=None):
240
+
241
+ file_path = text2img(prompt)
242
+ payload = {
243
+ 'seed': seed,
244
+ 'enhance_image': False,
245
+ 'do_remove_background': True,
246
+ 'foreground_ratio': fr,
247
+ 'mc_resolution': mc,
248
+ 'auth': auth,
249
+ 'text_prompt': text
250
+ }
251
 
252
+ files = {
253
+ 'file': (file_path, open(file_path, 'rb'), 'image/png')
254
+ }
255
+
256
+ headers = {
257
+ 'accept': 'application/json'
258
+ }
259
+
260
+ response = requests.post(url, headers=headers, files=files, data=payload)
261
+
262
+ return response.json()
263
  @app.post("/process_text/")
264
  async def process_image(
265
  text_prompt: str = Form(...),
266
  seed: int = Form(...),
 
267
  foreground_ratio: float = Form(...),
268
  mc_resolution: int = Form(...),
269
  auth: str = Form(...)
270
  ):
271
 
272
  if auth == os.getenv("AUTHORIZE"):
273
+ return three_d(text_prompt, seed, foreground_ratio, mc_resolution, auth)
274
+
275
+ # else:
276
+ # return {"ERROR": "Too Many Requests!"}
277
+
278
+ # preprocessed, mesh_name_obj, mesh_name_glb = run_example(text_prompt,seed ,do_remove_background, foreground_ratio, mc_resolution)
279
+ # # preprocessed = preprocess(image_pil, do_remove_background, foreground_ratio)
280
+ # # mesh_name_obj, mesh_name_glb = generate(preprocessed, mc_resolution)
281
+ # timestamp = datetime.datetime.now().strftime('%Y%m%d%H%M%S%f')
282
+ # object_name = f'object_{timestamp}_1.obj'
283
+ # object_name_2 = f'object_{timestamp}_2.glb'
284
+ # object_name_3 = f"object_{timestamp}.png"
285
+ # preprocessed_image_tempfile = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
286
+ # preprocessed.save(preprocessed_image_tempfile.name)
287
+ # upload_file_to_s3(preprocessed_image_tempfile.name, 'framebucket3d', object_name_3)
288
 
289
 
290
+ # if upload_file_to_s3(mesh_name_obj, 'framebucket3d',object_name) and upload_file_to_s3(mesh_name_glb, 'framebucket3d',object_name_2):
291
 
292
+ # return {
293
+ # "img_path": f"https://framebucket3d.s3.amazonaws.com/{object_name_3}",
294
+ # "obj_path": f"https://framebucket3d.s3.amazonaws.com/{object_name}",
295
+ # "glb_path": f"https://framebucket3d.s3.amazonaws.com/{object_name_2}"
296
 
297
+ # }
298
 
299
+ # else:
300
+ # return {"Internal Server Error": False}
301
  else:
302
  return {"Authentication":"Failed"}
303
 
304
+ # if __name__ == "__main__":
305
+ # import uvicorn
306
+ # uvicorn.run(app, host="0.0.0.0", port=7860)