File size: 1,716 Bytes
4824cb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import nltk
import random
import numpy as np
import json
import pickle
from nltk.stem import WordNetLemmatizer
from tensorflow.keras.models import load_model

lemmatizer = WordNetLemmatizer()

with open('intents.json') as json_file:
    intents = json.load(json_file)

words = pickle.load(open('words.pkl', 'rb'))
classes = pickle.load(open('classes.pkl', 'rb'))
model = load_model('chatbotmodel.h5')

def clean_up_sentence(sentence):
    sentence_words = nltk.word_tokenize(sentence)
    sentence_words = [lemmatizer.lemmatize(word.lower()) for word in sentence_words]
    return sentence_words

def bag_of_words(sentence):
    sentence_words = clean_up_sentence(sentence)
    bag = [0] * len(words)
    for w in sentence_words:
        for i, word in enumerate(words):
            if word == w:
                bag[i] = 1
    return np.array(bag)

def predict_class(sentence):
    bow = bag_of_words(sentence)
    res = model.predict(np.array([bow]))[0]
    ERROR_THRESHOLD = 0.25
    results = [[i, r] for i, r in enumerate(res) if r > ERROR_THRESHOLD]

    results.sort(key=lambda x: x[1], reverse=True)
    return_list = []
    for r in results:
        return_list.append({'intent': classes[r[0]], 'probability': str(r[1])})
    return return_list

def get_response(intents_list, intents_json):
    tag = intents_list[0]['intent']
    list_of_intents = intents_json['intents']
    for i in list_of_intents:
        if i['tag'] == tag:
            result = random.choice(i['responses'])
            break
    return result

def chat(text):
    ints = predict_class(text)
    res = get_response(ints, intents)
    return res

print("GO! BOT IS RUNNING")