Spaces:
Runtime error
Runtime error
File size: 5,650 Bytes
431c7a8 c83db8b 431c7a8 8168982 3db2f15 0b67988 431c7a8 8168982 50b44f7 fe7389a 4386ef2 53b232b 8168982 3506dfe 8168982 e4ffaa9 8168982 e77b448 8168982 fbf7ae4 8168982 fbf7ae4 8168982 e4ffaa9 fbf7ae4 8168982 fbf7ae4 8168982 fbf7ae4 8168982 fbf7ae4 8168982 fbf7ae4 8168982 fbf7ae4 8168982 fbf7ae4 8168982 fbf7ae4 8168982 fbf7ae4 8168982 fbf7ae4 8168982 fbf7ae4 8168982 3db2f15 431c7a8 0c4832c e4ffaa9 431c7a8 5c828ac 3506dfe 5c828ac c561654 530d878 5c828ac 53b232b 5c828ac 4be8881 5c828ac 0b67988 5c828ac 431c7a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from pydantic import Field
from typing import Optional
import logging
import os
import boto3
import json
import shlex
import subprocess
import tempfile
import time
import base64
import gradio as gr
import numpy as np
import rembg
import spaces
import torch
from PIL import Image
from functools import partial
import io
from io import BytesIO
from botocore.exceptions import NoCredentialsError, PartialCredentialsError
import datetime
app = FastAPI()
subprocess.run(shlex.split('pip install wheel/torchmcubes-0.1.0-cp310-cp310-linux_x86_64.whl'))
from tsr.system import TSR
from tsr.utils import remove_background, resize_foreground, to_gradio_3d_orientation
if torch.cuda.is_available():
device = "cuda:0"
else:
device = "cpu"
# torch.cuda.synchronize()
model = TSR.from_pretrained(
"stabilityai/TripoSR",
config_name="config.yaml",
weight_name="model.ckpt",
)
model.renderer.set_chunk_size(131072)
model.to(device)
rembg_session = rembg.new_session()
ACCESS = os.getenv("ACCESS")
SECRET = os.getenv("SECRET")
bedrock = boto3.client(service_name='bedrock', aws_access_key_id = ACCESS, aws_secret_access_key = SECRET, region_name='us-east-1')
bedrock_runtime = boto3.client(service_name='bedrock-runtime', aws_access_key_id = ACCESS, aws_secret_access_key = SECRET, region_name='us-east-1')
s3_client = boto3.client('s3',aws_access_key_id = ACCESS, aws_secret_access_key = SECRET, region_name='us-east-1')
def upload_file_to_s3(file_path, bucket_name, object_name=None):
s3_client.upload_file(file_path, bucket_name, object_name)
return True
def check_input_image(input_image):
if input_image is None:
raise gr.Error("No image uploaded!")
def preprocess(input_image, do_remove_background, foreground_ratio):
def fill_background(image):
torch.cuda.synchronize() # Ensure previous CUDA operations are complete
image = np.array(image).astype(np.float32) / 255.0
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
image = Image.fromarray((image * 255.0).astype(np.uint8))
return image
if do_remove_background:
torch.cuda.synchronize()
image = input_image.convert("RGB")
image = remove_background(image, rembg_session)
image = resize_foreground(image, foreground_ratio)
image = fill_background(image)
torch.cuda.synchronize()
else:
image = input_image
if image.mode == "RGBA":
image = fill_background(image)
torch.cuda.synchronize() # Wait for all CUDA operations to complete
torch.cuda.empty_cache()
return image
def generate(image, mc_resolution, formats=["obj", "glb"]):
torch.cuda.synchronize()
scene_codes = model(image, device=device)
torch.cuda.synchronize()
mesh = model.extract_mesh(scene_codes, resolution=mc_resolution)[0]
torch.cuda.synchronize()
mesh = to_gradio_3d_orientation(mesh)
torch.cuda.synchronize()
mesh_path_glb = tempfile.NamedTemporaryFile(suffix=f".glb", delete=False)
torch.cuda.synchronize()
mesh.export(mesh_path_glb.name)
torch.cuda.synchronize()
mesh_path_obj = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False)
torch.cuda.synchronize()
mesh.apply_scale([-1, 1, 1])
mesh.export(mesh_path_obj.name)
torch.cuda.synchronize()
torch.cuda.empty_cache()
return mesh_path_obj.name, mesh_path_glb.name
@app.post("/process_image/")
async def process_image(
file: UploadFile = File(...),
seed: int = Form(...),
enhance_image: bool = Form(...), # Default enhance_image value
do_remove_background: bool = Form(...), # Default do_remove_background value
foreground_ratio: float = Form(...), # Ratio must be between 0.0 and 1.0 (exclusive)
mc_resolution: int = Form(...), # Resolution must be between 256 and 4096
auth: str = Form(...),
text_prompt: Optional[str] = Form(None)
):
if auth == os.getenv("AUTHORIZE"):
image_bytes = await file.read()
image_pil = Image.open(BytesIO(image_bytes))
preprocessed = preprocess(image_pil, do_remove_background, foreground_ratio)
mesh_name_obj, mesh_name_glb = generate(preprocessed, mc_resolution)
timestamp = datetime.datetime.now().strftime('%Y%m%d%H%M%S%f')
object_name = f'object_{timestamp}.obj'
object_name_2 = f'object_{timestamp}.glb'
object_name_3 = f"object_{timestamp}.png"
preprocessed_image_tempfile = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
preprocessed.save(preprocessed_image_tempfile.name)
upload_file_to_s3(preprocessed_image_tempfile.name, 'framebucket3d', object_name_3)
if upload_file_to_s3(mesh_name_obj, 'framebucket3d',object_name) and upload_file_to_s3(mesh_name_glb, 'framebucket3d',object_name_2):
# torch.cuda.synchronize() # Wait for all CUDA operations to complete
# torch.cuda.empty_cache()
return {
"img_path": f"https://framebucket3d.s3.amazonaws.com/{object_name_3}",
"obj_path": f"https://framebucket3d.s3.amazonaws.com/{object_name}",
"glb_path": f"https://framebucket3d.s3.amazonaws.com/{object_name_2}"
}
else:
return {"Internal Server Error": False}
else:
return {"Authentication":"Failed"}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |