Spaces:
Runtime error
Runtime error
Harisreedhar
commited on
Commit
Β·
d8ef00b
1
Parent(s):
db275a2
add codeformer
Browse files
assets/pretrained_models/{codeformer.pth β codeformer.onnx}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91e7e881c5001fea4a535e8f96eaeaa672d30c963a678a3e27f0429a6620f57a
|
3 |
+
size 376821950
|
assets/pretrained_models/nsfwmodel_281.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:ac92f5326f0d83f24f51ba4ac9f2a79314d29199e900a8ea495a74816ad3eb67
|
3 |
-
size 4925
|
|
|
|
|
|
|
|
face_enhancer.py
CHANGED
@@ -4,7 +4,7 @@ import torch
|
|
4 |
import gfpgan
|
5 |
from PIL import Image
|
6 |
from upscaler.RealESRGAN import RealESRGAN
|
7 |
-
|
8 |
|
9 |
def gfpgan_runner(img, model):
|
10 |
_, imgs, _ = model.enhance(img, paste_back=True, has_aligned=True)
|
@@ -16,7 +16,13 @@ def realesrgan_runner(img, model):
|
|
16 |
return img
|
17 |
|
18 |
|
|
|
|
|
|
|
|
|
|
|
19 |
supported_enhancers = {
|
|
|
20 |
"GFPGAN": ("./assets/pretrained_models/GFPGANv1.4.pth", gfpgan_runner),
|
21 |
"REAL-ESRGAN 2x": ("./assets/pretrained_models/RealESRGAN_x2.pth", realesrgan_runner),
|
22 |
"REAL-ESRGAN 4x": ("./assets/pretrained_models/RealESRGAN_x4.pth", realesrgan_runner),
|
@@ -39,7 +45,9 @@ def load_face_enhancer_model(name='GFPGAN', device="cpu"):
|
|
39 |
if name in supported_enhancers.keys():
|
40 |
model_path, model_runner = supported_enhancers.get(name)
|
41 |
model_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), model_path)
|
42 |
-
if name == '
|
|
|
|
|
43 |
model = gfpgan.GFPGANer(model_path=model_path, upscale=1, device=device)
|
44 |
elif name == 'REAL-ESRGAN 2x':
|
45 |
model = RealESRGAN(device, scale=2)
|
|
|
4 |
import gfpgan
|
5 |
from PIL import Image
|
6 |
from upscaler.RealESRGAN import RealESRGAN
|
7 |
+
from upscaler.codeformer import CodeFormerEnhancer
|
8 |
|
9 |
def gfpgan_runner(img, model):
|
10 |
_, imgs, _ = model.enhance(img, paste_back=True, has_aligned=True)
|
|
|
16 |
return img
|
17 |
|
18 |
|
19 |
+
def codeformer_runner(img, model):
|
20 |
+
img = model.enhance(img)
|
21 |
+
return img
|
22 |
+
|
23 |
+
|
24 |
supported_enhancers = {
|
25 |
+
"CodeFormer": ("./assets/pretrained_models/codeformer.onnx", codeformer_runner),
|
26 |
"GFPGAN": ("./assets/pretrained_models/GFPGANv1.4.pth", gfpgan_runner),
|
27 |
"REAL-ESRGAN 2x": ("./assets/pretrained_models/RealESRGAN_x2.pth", realesrgan_runner),
|
28 |
"REAL-ESRGAN 4x": ("./assets/pretrained_models/RealESRGAN_x4.pth", realesrgan_runner),
|
|
|
45 |
if name in supported_enhancers.keys():
|
46 |
model_path, model_runner = supported_enhancers.get(name)
|
47 |
model_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), model_path)
|
48 |
+
if name == 'CodeFormer':
|
49 |
+
model = CodeFormerEnhancer(model_path=model_path, device=device)
|
50 |
+
elif name == 'GFPGAN':
|
51 |
model = gfpgan.GFPGANer(model_path=model_path, upscale=1, device=device)
|
52 |
elif name == 'REAL-ESRGAN 2x':
|
53 |
model = RealESRGAN(device, scale=2)
|
upscaler/codeformer.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import torch
|
3 |
+
import onnx
|
4 |
+
import onnxruntime
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
import time
|
8 |
+
|
9 |
+
# codeformer converted to onnx
|
10 |
+
# using https://github.com/redthing1/CodeFormer
|
11 |
+
|
12 |
+
|
13 |
+
class CodeFormerEnhancer:
|
14 |
+
def __init__(self, model_path="CodeFormer/weights/CodeFormer/codeformer.pth", device='cpu'):
|
15 |
+
model = onnx.load(model_path)
|
16 |
+
session_options = onnxruntime.SessionOptions()
|
17 |
+
session_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
18 |
+
providers = ["CPUExecutionProvider"]
|
19 |
+
if device == 'cuda':
|
20 |
+
providers = [("CUDAExecutionProvider", {"cudnn_conv_algo_search": "DEFAULT"}),"CPUExecutionProvider"]
|
21 |
+
self.session = onnxruntime.InferenceSession("codeformer.onnx", sess_options=session_options, providers=providers)
|
22 |
+
|
23 |
+
def enhance(self, img, w=0.9):
|
24 |
+
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
|
25 |
+
img = img.astype(np.float32)[:,:,::-1] / 255.0
|
26 |
+
img = img.transpose((2, 0, 1))
|
27 |
+
nrm_mean = np.array([0.5, 0.5, 0.5]).reshape((-1, 1, 1))
|
28 |
+
nrm_std = np.array([0.5, 0.5, 0.5]).reshape((-1, 1, 1))
|
29 |
+
img = (img - nrm_mean) / nrm_std
|
30 |
+
|
31 |
+
img = np.expand_dims(img, axis=0)
|
32 |
+
|
33 |
+
out = self.session.run(None, {'x':img.astype(np.float32), 'w':np.array([w], dtype=np.double)})[0]
|
34 |
+
out = (out[0].transpose(1,2,0).clip(-1,1) + 1) * 0.5
|
35 |
+
out = (out * 255)[:,:,::-1]
|
36 |
+
|
37 |
+
return out.astype('uint8')
|