File size: 8,933 Bytes
742d952 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
from datetime import datetime
import os
import random
import torch
import torch.optim as optim
import torch.nn.functional as F
import Image
import ModelFormat
from StyleTransferLoss import StyleTransferLoss
import onnxruntime as rt
import cv2
from insightface.data import get_image as ins_get_image
from insightface.app import FaceAnalysis
import face_align
from StyleTransferModel_128 import StyleTransferModel
from torch.utils.tensorboard import SummaryWriter
inswapper_128_path = 'inswapper_128.onnx'
img_size = 128
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
inswapperInferenceSession = rt.InferenceSession(inswapper_128_path, providers=providers)
faceAnalysis = FaceAnalysis(name='buffalo_l')
faceAnalysis.prepare(ctx_id=0, det_size=(512, 512))
def get_device():
return torch.device('cuda' if torch.cuda.is_available() else 'cpu')
style_loss_fn = StyleTransferLoss().to(get_device())
def train(datasetDir, learning_rate=0.0001, model_path=None, outputModelFolder='', saveModelEachSteps = 1, stopAtSteps=None, logDir=None, previewDir=None, saveAs_onnx = False, resolutions = [128], enableDataAugmentation = False):
device = get_device()
print(f"Using device: {device}")
model = StyleTransferModel().to(device)
if model_path is not None:
model.load_state_dict(torch.load(model_path, map_location=device), strict=False)
print(f"Loaded model from {model_path}")
lastSteps = int(model_path.split('-')[-1].split('.')[0])
print(f"Resuming training from step {lastSteps}")
else:
lastSteps = 0
model.train()
model = model.to(device)
# Initialize optimizer
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# Initialize TensorBoard writer
if logDir is not None:
train_writer = SummaryWriter(os.path.join(logDir, "training"))
val_writer = SummaryWriter(os.path.join(logDir, "validation"))
steps = 0
image = os.listdir(datasetDir)
resolutionIndex = 0
# Training loop
while True:
start_time = datetime.now()
resolution = resolutions[resolutionIndex%len(resolutions)]
targetFaceIndex = random.randint(0, len(image)-1)
sourceFaceIndex = random.randint(0, len(image)-1)
target_img=cv2.imread(f"{datasetDir}/{image[targetFaceIndex]}")
if enableDataAugmentation and steps % 2 == 0:
target_img = cv2.cvtColor(target_img, cv2.COLOR_BGR2GRAY)
target_img = cv2.cvtColor(target_img, cv2.COLOR_GRAY2BGR)
faces = faceAnalysis.get(target_img)
if targetFaceIndex != sourceFaceIndex:
source_img = cv2.imread(f"{datasetDir}/{image[sourceFaceIndex]}")
faces2 = faceAnalysis.get(source_img)
else:
faces2 = faces
if len(faces) > 0 and len(faces2) > 0:
new_aligned_face, _ = face_align.norm_crop2(target_img, faces[0].kps, img_size)
blob = Image.getBlob(new_aligned_face)
latent = Image.getLatent(faces2[0])
else:
continue
if targetFaceIndex != sourceFaceIndex:
input = {inswapperInferenceSession.get_inputs()[0].name: blob,
inswapperInferenceSession.get_inputs()[1].name: latent}
expected_output = inswapperInferenceSession.run([inswapperInferenceSession.get_outputs()[0].name], input)[0]
else:
expected_output = blob
expected_output_tensor = torch.from_numpy(expected_output).to(device)
if resolution != 128:
new_aligned_face, _ = face_align.norm_crop2(target_img, faces[0].kps, resolution)
blob = Image.getBlob(new_aligned_face, (resolution, resolution))
latent_tensor = torch.from_numpy(latent).to(device)
target_input_tensor = torch.from_numpy(blob).to(device)
optimizer.zero_grad()
output = model(target_input_tensor, latent_tensor)
if (resolution != 128):
output = F.interpolate(output, size=(128, 128), mode='bilinear', align_corners=False)
content_loss, identity_loss = style_loss_fn(output, expected_output_tensor)
loss = content_loss
if identity_loss is not None:
loss +=identity_loss
loss.backward()
optimizer.step()
steps += 1
totalSteps = steps + lastSteps
if logDir is not None:
train_writer.add_scalar("Loss/total", loss.item(), totalSteps)
train_writer.add_scalar("Loss/content_loss", content_loss.item(), totalSteps)
if identity_loss is not None:
train_writer.add_scalar("Loss/identity_loss", identity_loss.item(), totalSteps)
elapsed_time = datetime.now() - start_time
print(f"Total Steps: {totalSteps}, Step: {steps}, Loss: {loss.item():.4f}, Elapsed time: {elapsed_time}")
if steps % saveModelEachSteps == 0:
outputModelPath = f"reswapper-{totalSteps}.pth"
if outputModelFolder != '':
outputModelPath = f"{outputModelFolder}/{outputModelPath}"
saveModel(model, outputModelPath)
validation_total_loss, validation_content_loss, validation_identity_loss, swapped_face, swapped_face_256 = validate(outputModelPath)
if previewDir is not None:
cv2.imwrite(f"{previewDir}/{totalSteps}.jpg", swapped_face)
cv2.imwrite(f"{previewDir}/{totalSteps}_256.jpg", swapped_face_256)
if logDir is not None:
val_writer.add_scalar("Loss/total", validation_total_loss.item(), totalSteps)
val_writer.add_scalar("Loss/content_loss", validation_content_loss.item(), totalSteps)
if validation_identity_loss is not None:
val_writer.add_scalar("Loss/identity_loss", validation_identity_loss.item(), totalSteps)
if saveAs_onnx :
ModelFormat.save_as_onnx_model(outputModelPath)
if stopAtSteps is not None and steps == stopAtSteps:
exit()
resolutionIndex += 1
def saveModel(model, outputModelPath):
torch.save(model.state_dict(), outputModelPath)
def load_model(model_path):
device = get_device()
model = StyleTransferModel().to(device)
model.load_state_dict(torch.load(model_path, map_location=device), strict=False)
model.eval()
return model
def swap_face(model, target_face, source_face_latent):
device = get_device()
target_tensor = torch.from_numpy(target_face).to(device)
source_tensor = torch.from_numpy(source_face_latent).to(device)
with torch.no_grad():
swapped_tensor = model(target_tensor, source_tensor)
swapped_face = Image.postprocess_face(swapped_tensor)
return swapped_face, swapped_tensor
# test image
test_img = ins_get_image('t1')
test_faces = faceAnalysis.get(test_img)
test_faces = sorted(test_faces, key = lambda x : x.bbox[0])
test_target_face, _ = face_align.norm_crop2(test_img, test_faces[0].kps, img_size)
test_target_face = Image.getBlob(test_target_face)
test_l = Image.getLatent(test_faces[2])
test_target_face_256, _ = face_align.norm_crop2(test_img, test_faces[0].kps, 256)
test_target_face_256 = Image.getBlob(test_target_face_256, (256, 256))
test_input = {inswapperInferenceSession.get_inputs()[0].name: test_target_face,
inswapperInferenceSession.get_inputs()[1].name: test_l}
test_inswapperOutput = inswapperInferenceSession.run([inswapperInferenceSession.get_outputs()[0].name], test_input)[0]
def validate(modelPath):
model = load_model(modelPath)
swapped_face, swapped_tensor= swap_face(model, test_target_face, test_l)
swapped_face_256, _= swap_face(model, test_target_face_256, test_l)
validation_content_loss, validation_identity_loss = style_loss_fn(swapped_tensor, torch.from_numpy(test_inswapperOutput).to(get_device()))
validation_total_loss = validation_content_loss
if validation_identity_loss is not None:
validation_total_loss += validation_identity_loss
return validation_total_loss, validation_content_loss, validation_identity_loss, swapped_face, swapped_face_256
def main():
outputModelFolder = "model"
modelPath = None
# modelPath = f"{outputModelFolder}/reswapper-<step>.pth"
logDir = "training/log"
previewDir = "training/preview"
datasetDir = "FFHQ"
os.makedirs(outputModelFolder, exist_ok=True)
os.makedirs(previewDir, exist_ok=True)
train(
datasetDir=datasetDir,
model_path=modelPath,
learning_rate=0.0001,
# resolutions = [128, 256],
# enableDataAugmentation=True,
outputModelFolder=outputModelFolder,
saveModelEachSteps = 1000,
stopAtSteps = 70000,
logDir=f"{logDir}/{datetime.now().strftime('%Y%m%d %H%M%S')}",
previewDir=previewDir)
if __name__ == "__main__":
main() |