|
import cv2 |
|
import numpy as np |
|
from skimage import transform as trans |
|
|
|
|
|
arcface_dst = np.array( |
|
[[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366], |
|
[41.5493, 92.3655], [70.7299, 92.2041]], |
|
dtype=np.float32) |
|
|
|
def estimate_norm(lmk, image_size=112,mode='arcface'): |
|
|
|
|
|
if image_size%112==0: |
|
ratio = float(image_size)/112.0 |
|
diff_x = 0 |
|
else: |
|
ratio = float(image_size)/128.0 |
|
diff_x = 8.0*ratio |
|
dst = arcface_dst * ratio |
|
dst[:,0] += diff_x |
|
|
|
if image_size != 128: |
|
offset = (128/32768)*image_size-0.5 |
|
dst[:,0] += offset |
|
dst[:,1] += offset |
|
|
|
tform = trans.SimilarityTransform() |
|
tform.estimate(lmk, dst) |
|
M = tform.params[0:2, :] |
|
return M |
|
|
|
def norm_crop(img, landmark, image_size=112, mode='arcface'): |
|
M = estimate_norm(landmark, image_size, mode) |
|
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0) |
|
return warped |
|
|
|
def norm_crop2(img, landmark, image_size=112, mode='arcface'): |
|
M = estimate_norm(landmark, image_size, mode) |
|
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0) |
|
return warped, M |
|
|
|
def square_crop(im, S): |
|
if im.shape[0] > im.shape[1]: |
|
height = S |
|
width = int(float(im.shape[1]) / im.shape[0] * S) |
|
scale = float(S) / im.shape[0] |
|
else: |
|
width = S |
|
height = int(float(im.shape[0]) / im.shape[1] * S) |
|
scale = float(S) / im.shape[1] |
|
resized_im = cv2.resize(im, (width, height)) |
|
det_im = np.zeros((S, S, 3), dtype=np.uint8) |
|
det_im[:resized_im.shape[0], :resized_im.shape[1], :] = resized_im |
|
return det_im, scale |
|
|
|
|
|
def transform(data, center, output_size, scale, rotation): |
|
scale_ratio = scale |
|
rot = float(rotation) * np.pi / 180.0 |
|
|
|
t1 = trans.SimilarityTransform(scale=scale_ratio) |
|
cx = center[0] * scale_ratio |
|
cy = center[1] * scale_ratio |
|
t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy)) |
|
t3 = trans.SimilarityTransform(rotation=rot) |
|
t4 = trans.SimilarityTransform(translation=(output_size / 2, |
|
output_size / 2)) |
|
t = t1 + t2 + t3 + t4 |
|
M = t.params[0:2] |
|
cropped = cv2.warpAffine(data, |
|
M, (output_size, output_size), |
|
borderValue=0.0) |
|
return cropped, M |
|
|
|
|
|
def trans_points2d(pts, M): |
|
new_pts = np.zeros(shape=pts.shape, dtype=np.float32) |
|
for i in range(pts.shape[0]): |
|
pt = pts[i] |
|
new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32) |
|
new_pt = np.dot(M, new_pt) |
|
|
|
new_pts[i] = new_pt[0:2] |
|
|
|
return new_pts |
|
|
|
|
|
def trans_points3d(pts, M): |
|
scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1]) |
|
|
|
new_pts = np.zeros(shape=pts.shape, dtype=np.float32) |
|
for i in range(pts.shape[0]): |
|
pt = pts[i] |
|
new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32) |
|
new_pt = np.dot(M, new_pt) |
|
|
|
new_pts[i][0:2] = new_pt[0:2] |
|
new_pts[i][2] = pts[i][2] * scale |
|
|
|
return new_pts |
|
|
|
|
|
def trans_points(pts, M): |
|
if pts.shape[1] == 2: |
|
return trans_points2d(pts, M) |
|
else: |
|
return trans_points3d(pts, M) |
|
|
|
|