Update app.py
Browse files
app.py
CHANGED
@@ -3,32 +3,34 @@ import os
|
|
3 |
|
4 |
import cv2
|
5 |
import torch
|
6 |
-
import numpy as np
|
7 |
-
from PIL import Image
|
8 |
from insightface.app import FaceAnalysis
|
9 |
import face_align
|
10 |
|
11 |
faceAnalysis = FaceAnalysis(name='buffalo_l')
|
12 |
-
faceAnalysis.prepare(ctx_id=-1, det_size=(512, 512))
|
13 |
|
14 |
from StyleTransferModel_128 import StyleTransferModel
|
15 |
import gradio as gr
|
16 |
|
17 |
def parse_arguments():
|
18 |
parser = argparse.ArgumentParser(description='Process command line arguments')
|
19 |
-
|
20 |
-
parser.add_argument('--modelPath', required=True, help='Model path')
|
21 |
-
parser.add_argument('--resolution', type=int, default=128, help='Resolution')
|
22 |
|
23 |
return parser.parse_args()
|
24 |
|
25 |
def get_device():
|
26 |
-
return torch.device('cpu')
|
27 |
|
28 |
def load_model(model_path):
|
29 |
device = get_device()
|
30 |
model = StyleTransferModel().to(device)
|
31 |
-
|
|
|
|
|
|
|
|
|
32 |
model.eval()
|
33 |
return model
|
34 |
|
@@ -41,20 +43,20 @@ def swap_face(model, target_face, source_face_latent):
|
|
41 |
with torch.no_grad():
|
42 |
swapped_tensor = model(target_tensor, source_tensor)
|
43 |
|
44 |
-
swapped_face = postprocess_face(swapped_tensor)
|
45 |
|
46 |
return swapped_face, swapped_tensor
|
47 |
|
48 |
def create_target(target_image, resolution):
|
49 |
-
target_face = faceAnalysis.get(np.array(target_image))[0]
|
50 |
|
51 |
-
aligned_target_face, M = face_align.norm_crop2(np.array(target_image), target_face.kps, resolution)
|
52 |
target_face_blob = getBlob(aligned_target_face, (resolution, resolution))
|
53 |
|
54 |
return target_face_blob, M
|
55 |
|
56 |
def create_source(source_image):
|
57 |
-
source_face = faceAnalysis.get(np.array(source_image))[0]
|
58 |
source_latent = getLatent(source_face)
|
59 |
|
60 |
return source_latent
|
@@ -64,7 +66,7 @@ def postprocess_face(swapped_tensor):
|
|
64 |
swapped_tensor = swapped_tensor.cpu().numpy()
|
65 |
swapped_tensor = np.transpose(swapped_tensor, (0, 2, 3, 1))
|
66 |
swapped_tensor = (swapped_tensor * 255).astype(np.uint8)
|
67 |
-
swapped_face = Image.fromarray(swapped_tensor[0])
|
68 |
return swapped_face
|
69 |
|
70 |
def getBlob(aligned_face, size):
|
@@ -80,39 +82,41 @@ def getLatent(source_face):
|
|
80 |
|
81 |
|
82 |
def blend_swapped_image(swapped_face, target_img, M):
|
83 |
-
swapped_face = np.array(swapped_face)
|
84 |
swapped_face = cv2.warpAffine(swapped_face, M, (target_img.shape[1], target_img.shape[0]))
|
85 |
mask = np.ones_like(swapped_face) * 255
|
86 |
mask = cv2.warpAffine(mask, M, (target_img.shape[1], target_img.shape[0]))
|
87 |
|
88 |
-
target_img = np.array(target_img)
|
89 |
swapped_face = Image.blend(Image.fromarray(target_img), Image.fromarray(swapped_face), Image.fromarray(mask).convert("L"))
|
90 |
|
91 |
-
return np.array(swapped_face)
|
92 |
|
93 |
|
94 |
-
def process_images(target_image, source_image
|
95 |
args = parse_arguments()
|
96 |
-
args.modelPath = model_path
|
97 |
-
args.no_paste_back = False # or True, as you prefer
|
98 |
args.resolution = 128
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
target_face_blob, M = create_target(target_image, args.resolution)
|
102 |
source_latent = create_source(source_image)
|
103 |
swapped_face, _ = swap_face(model, target_face_blob, source_latent)
|
104 |
|
105 |
-
swapped_face = blend_swapped_image(swapped_face, target_image, M)
|
106 |
|
107 |
-
return Image.fromarray(swapped_face)
|
108 |
|
109 |
|
110 |
with gr.Blocks() as demo:
|
111 |
-
target_image = gr.Image(label="Target Image", type="pil")
|
112 |
-
source_image = gr.Image(label="Source Image", type="pil")
|
113 |
-
|
114 |
-
output_image = gr.Image(label="Output Image", type="pil") # Use PIL type
|
115 |
btn = gr.Button("Swap Face")
|
116 |
-
btn.click(fn=process_images, inputs=[target_image, source_image
|
117 |
|
118 |
-
demo.launch()
|
|
|
3 |
|
4 |
import cv2
|
5 |
import torch
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
from insightface.app import FaceAnalysis
|
9 |
import face_align
|
10 |
|
11 |
faceAnalysis = FaceAnalysis(name='buffalo_l')
|
12 |
+
faceAnalysis.prepare(ctx_id=-1, det_size=(512, 512))
|
13 |
|
14 |
from StyleTransferModel_128 import StyleTransferModel
|
15 |
import gradio as gr
|
16 |
|
17 |
def parse_arguments():
|
18 |
parser = argparse.ArgumentParser(description='Process command line arguments')
|
19 |
+
parser.add_argument('--resolution', type=int, default=128, help='Resolution') #Removed model path
|
|
|
|
|
20 |
|
21 |
return parser.parse_args()
|
22 |
|
23 |
def get_device():
|
24 |
+
return torch.device('cpu')
|
25 |
|
26 |
def load_model(model_path):
|
27 |
device = get_device()
|
28 |
model = StyleTransferModel().to(device)
|
29 |
+
try:
|
30 |
+
model.load_state_dict(torch.load(model_path, map_location=device), strict=False)
|
31 |
+
except FileNotFoundError:
|
32 |
+
print(f"Error: Model file not found at {model_path}")
|
33 |
+
return None
|
34 |
model.eval()
|
35 |
return model
|
36 |
|
|
|
43 |
with torch.no_grad():
|
44 |
swapped_tensor = model(target_tensor, source_tensor)
|
45 |
|
46 |
+
swapped_face = postprocess_face(swapped_tensor)
|
47 |
|
48 |
return swapped_face, swapped_tensor
|
49 |
|
50 |
def create_target(target_image, resolution):
|
51 |
+
target_face = faceAnalysis.get(np.array(target_image))[0]
|
52 |
|
53 |
+
aligned_target_face, M = face_align.norm_crop2(np.array(target_image), target_face.kps, resolution)
|
54 |
target_face_blob = getBlob(aligned_target_face, (resolution, resolution))
|
55 |
|
56 |
return target_face_blob, M
|
57 |
|
58 |
def create_source(source_image):
|
59 |
+
source_face = faceAnalysis.get(np.array(source_image))[0]
|
60 |
source_latent = getLatent(source_face)
|
61 |
|
62 |
return source_latent
|
|
|
66 |
swapped_tensor = swapped_tensor.cpu().numpy()
|
67 |
swapped_tensor = np.transpose(swapped_tensor, (0, 2, 3, 1))
|
68 |
swapped_tensor = (swapped_tensor * 255).astype(np.uint8)
|
69 |
+
swapped_face = Image.fromarray(swapped_tensor[0])
|
70 |
return swapped_face
|
71 |
|
72 |
def getBlob(aligned_face, size):
|
|
|
82 |
|
83 |
|
84 |
def blend_swapped_image(swapped_face, target_img, M):
|
85 |
+
swapped_face = np.array(swapped_face)
|
86 |
swapped_face = cv2.warpAffine(swapped_face, M, (target_img.shape[1], target_img.shape[0]))
|
87 |
mask = np.ones_like(swapped_face) * 255
|
88 |
mask = cv2.warpAffine(mask, M, (target_img.shape[1], target_img.shape[0]))
|
89 |
|
90 |
+
target_img = np.array(target_img)
|
91 |
swapped_face = Image.blend(Image.fromarray(target_img), Image.fromarray(swapped_face), Image.fromarray(mask).convert("L"))
|
92 |
|
93 |
+
return np.array(swapped_face)
|
94 |
|
95 |
|
96 |
+
def process_images(target_image, source_image):
|
97 |
args = parse_arguments()
|
|
|
|
|
98 |
args.resolution = 128
|
99 |
+
|
100 |
+
model_path = "reswapper-429500.pth" # Hardcoded model path
|
101 |
+
|
102 |
+
model = load_model(model_path)
|
103 |
+
if model is None:
|
104 |
+
return "Error: Could not load the model. Check the path."
|
105 |
|
106 |
target_face_blob, M = create_target(target_image, args.resolution)
|
107 |
source_latent = create_source(source_image)
|
108 |
swapped_face, _ = swap_face(model, target_face_blob, source_latent)
|
109 |
|
110 |
+
swapped_face = blend_swapped_image(swapped_face, target_image, M)
|
111 |
|
112 |
+
return Image.fromarray(swapped_face)
|
113 |
|
114 |
|
115 |
with gr.Blocks() as demo:
|
116 |
+
target_image = gr.Image(label="Target Image", type="pil")
|
117 |
+
source_image = gr.Image(label="Source Image", type="pil")
|
118 |
+
output_image = gr.Image(label="Output Image", type="pil")
|
|
|
119 |
btn = gr.Button("Swap Face")
|
120 |
+
btn.click(fn=process_images, inputs=[target_image, source_image], outputs=output_image)
|
121 |
|
122 |
+
demo.launch()
|