DeepSwapFace / face_parsing /parse_mask.py
Harisreedhar
update nsfw-checker
db275a2
import cv2
import torch
import torchvision
import numpy as np
import torch.nn as nn
from PIL import Image
from tqdm import tqdm
import torch.nn.functional as F
import torchvision.transforms as transforms
from . model import BiSeNet
class SoftErosion(nn.Module):
def __init__(self, kernel_size=15, threshold=0.6, iterations=1):
super(SoftErosion, self).__init__()
r = kernel_size // 2
self.padding = r
self.iterations = iterations
self.threshold = threshold
# Create kernel
y_indices, x_indices = torch.meshgrid(torch.arange(0., kernel_size), torch.arange(0., kernel_size))
dist = torch.sqrt((x_indices - r) ** 2 + (y_indices - r) ** 2)
kernel = dist.max() - dist
kernel /= kernel.sum()
kernel = kernel.view(1, 1, *kernel.shape)
self.register_buffer('weight', kernel)
def forward(self, x):
batch_size = x.size(0) # Get the batch size
output = []
for i in tqdm(range(batch_size), desc="Soft-Erosion", leave=False):
input_tensor = x[i:i+1] # Take one input tensor from the batch
input_tensor = input_tensor.float() # Convert input to float tensor
input_tensor = input_tensor.unsqueeze(1) # Add a channel dimension
for _ in range(self.iterations - 1):
input_tensor = torch.min(input_tensor, F.conv2d(input_tensor, weight=self.weight,
groups=input_tensor.shape[1],
padding=self.padding))
input_tensor = F.conv2d(input_tensor, weight=self.weight, groups=input_tensor.shape[1],
padding=self.padding)
mask = input_tensor >= self.threshold
input_tensor[mask] = 1.0
input_tensor[~mask] /= input_tensor[~mask].max()
input_tensor = input_tensor.squeeze(1) # Remove the extra channel dimension
output.append(input_tensor.detach().cpu().numpy())
return np.array(output)
transform = transforms.Compose([
transforms.Resize((512, 512)),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
])
def init_parsing_model(model_path, device="cpu"):
net = BiSeNet(19)
net.to(device)
net.load_state_dict(torch.load(model_path))
net.eval()
return net
def transform_images(imgs):
tensor_images = torch.stack([transform(Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))) for img in imgs], dim=0)
return tensor_images
def get_parsed_mask(net, imgs, classes=[1, 2, 3, 4, 5, 10, 11, 12, 13], device="cpu", batch_size=8, softness=20):
if softness > 0:
smooth_mask = SoftErosion(kernel_size=17, threshold=0.9, iterations=softness).to(device)
masks = []
for i in tqdm(range(0, len(imgs), batch_size), total=len(imgs) // batch_size, desc="Face-parsing"):
batch_imgs = imgs[i:i + batch_size]
tensor_images = transform_images(batch_imgs).to(device)
with torch.no_grad():
out = net(tensor_images)[0]
# parsing = out.argmax(dim=1)
# arget_classes = torch.tensor(classes).to(device)
# batch_masks = torch.isin(parsing, target_classes).to(device)
## torch.isin was slightly slower in my test, so using np.isin
parsing = out.argmax(dim=1).detach().cpu().numpy()
batch_masks = np.isin(parsing, classes).astype('float32')
if softness > 0:
# batch_masks = smooth_mask(batch_masks).transpose(1,0,2,3)[0]
mask_tensor = torch.from_numpy(batch_masks.copy()).float().to(device)
batch_masks = smooth_mask(mask_tensor).transpose(1,0,2,3)[0]
yield batch_masks
#masks.append(batch_masks)
#if len(masks) >= 1:
# masks = np.concatenate(masks, axis=0)
# masks = np.repeat(np.expand_dims(masks, axis=1), 3, axis=1)
# for i, mask in enumerate(masks):
# cv2.imwrite(f"mask/{i}.jpg", (mask * 255).astype("uint8"))
#return masks