Spaces:
Running
Running
Harisreedhar
commited on
Commit
·
71c9afb
1
Parent(s):
47353b7
update
Browse files- app.py +179 -242
- assets/pretrained_models/RealESRGAN_x2.pth +3 -0
- assets/pretrained_models/RealESRGAN_x4.pth +3 -0
- assets/pretrained_models/RealESRGAN_x8.pth +3 -0
- assets/pretrained_models/codeformer.pth +3 -0
- assets/pretrained_models/nsfwmodel_281.pth +3 -0
- face_analyser.py +99 -1
- face_enhancer.py +39 -0
- face_parsing/__init__.py +3 -1
- face_parsing/parse_mask.py +50 -0
- face_parsing/swap.py +4 -5
- face_swapper.py +203 -0
- nsfw_detector.py +61 -0
- requirements.txt +4 -2
- upscaler/RealESRGAN/__init__.py +1 -0
- upscaler/RealESRGAN/arch_utils.py +197 -0
- upscaler/RealESRGAN/model.py +90 -0
- upscaler/RealESRGAN/rrdbnet_arch.py +121 -0
- upscaler/RealESRGAN/utils.py +133 -0
- upscaler/__init__.py +0 -0
- utils.py +57 -0
app.py
CHANGED
@@ -4,7 +4,6 @@ import glob
|
|
4 |
import time
|
5 |
import torch
|
6 |
import shutil
|
7 |
-
import gfpgan
|
8 |
import argparse
|
9 |
import platform
|
10 |
import datetime
|
@@ -13,22 +12,22 @@ import insightface
|
|
13 |
import onnxruntime
|
14 |
import numpy as np
|
15 |
import gradio as gr
|
16 |
-
from
|
|
|
17 |
|
18 |
-
from
|
19 |
-
from
|
|
|
|
|
20 |
from face_parsing import init_parser, swap_regions, mask_regions, mask_regions_to_list, SoftErosion
|
21 |
-
from
|
22 |
-
|
23 |
-
swap_face_with_condition,
|
24 |
-
swap_specific,
|
25 |
-
swap_options_list,
|
26 |
-
)
|
27 |
|
28 |
## ------------------------------ USER ARGS ------------------------------
|
29 |
|
30 |
parser = argparse.ArgumentParser(description="Swap-Mukham Face Swapper")
|
31 |
parser.add_argument("--out_dir", help="Default Output directory", default=os.getcwd())
|
|
|
32 |
parser.add_argument("--cuda", action="store_true", help="Enable cuda", default=False)
|
33 |
parser.add_argument(
|
34 |
"--colab", action="store_true", help="Enable colab mode", default=False
|
@@ -40,11 +39,12 @@ user_args = parser.parse_args()
|
|
40 |
USE_COLAB = user_args.colab
|
41 |
USE_CUDA = user_args.cuda
|
42 |
DEF_OUTPUT_PATH = user_args.out_dir
|
|
|
43 |
WORKSPACE = None
|
44 |
OUTPUT_FILE = None
|
45 |
CURRENT_FRAME = None
|
46 |
STREAMER = None
|
47 |
-
DETECT_CONDITION = "
|
48 |
DETECT_SIZE = 640
|
49 |
DETECT_THRESH = 0.6
|
50 |
NUM_OF_SRC_SPECIFIC = 10
|
@@ -67,6 +67,7 @@ FACE_SWAPPER = None
|
|
67 |
FACE_ANALYSER = None
|
68 |
FACE_ENHANCER = None
|
69 |
FACE_PARSER = None
|
|
|
70 |
|
71 |
## ------------------------------ SET EXECUTION PROVIDER ------------------------------
|
72 |
# Note: For AMD,MAC or non CUDA users, change settings here
|
@@ -99,25 +100,22 @@ def load_face_analyser_model(name="buffalo_l"):
|
|
99 |
)
|
100 |
|
101 |
|
102 |
-
def load_face_swapper_model(
|
103 |
global FACE_SWAPPER
|
104 |
-
path = os.path.join(os.path.abspath(os.path.dirname(__file__)), name)
|
105 |
if FACE_SWAPPER is None:
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
def load_face_enhancer_model(name="./assets/pretrained_models/GFPGANv1.4.pth"):
|
110 |
-
global FACE_ENHANCER
|
111 |
-
path = os.path.join(os.path.abspath(os.path.dirname(__file__)), name)
|
112 |
-
if FACE_ENHANCER is None:
|
113 |
-
FACE_ENHANCER = gfpgan.GFPGANer(model_path=path, upscale=1)
|
114 |
|
115 |
|
116 |
-
def load_face_parser_model(
|
117 |
global FACE_PARSER
|
118 |
-
path = os.path.join(os.path.abspath(os.path.dirname(__file__)), name)
|
119 |
if FACE_PARSER is None:
|
120 |
-
FACE_PARSER = init_parser(
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
|
123 |
load_face_analyser_model()
|
@@ -138,12 +136,18 @@ def process(
|
|
138 |
condition,
|
139 |
age,
|
140 |
distance,
|
141 |
-
|
142 |
enable_face_parser,
|
143 |
mask_includes,
|
144 |
mask_soft_kernel,
|
145 |
mask_soft_iterations,
|
146 |
blur_amount,
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
*specifics,
|
148 |
):
|
149 |
global WORKSPACE
|
@@ -177,12 +181,13 @@ def process(
|
|
177 |
gr.update(value=OUTPUT_FILE, visible=True),
|
178 |
)
|
179 |
|
180 |
-
## ------------------------------ LOAD PENDING MODELS ------------------------------
|
181 |
start_time = time.time()
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
|
|
|
|
186 |
|
187 |
yield "### \n ⌛ Loading face analyser model...", *ui_before()
|
188 |
load_face_analyser_model()
|
@@ -190,87 +195,100 @@ def process(
|
|
190 |
yield "### \n ⌛ Loading face swapper model...", *ui_before()
|
191 |
load_face_swapper_model()
|
192 |
|
193 |
-
if
|
194 |
-
yield "### \n ⌛ Loading
|
195 |
-
load_face_enhancer_model()
|
|
|
|
|
196 |
|
197 |
if enable_face_parser:
|
198 |
yield "### \n ⌛ Loading face parsing model...", *ui_before()
|
199 |
load_face_parser_model()
|
200 |
|
201 |
-
yield "### \n ⌛ Analysing Face...", *ui_before()
|
202 |
-
|
203 |
includes = mask_regions_to_list(mask_includes)
|
204 |
-
if mask_soft_iterations > 0
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
"
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
detect_condition=DETECT_CONDITION,
|
229 |
-
)
|
230 |
-
analysed_specific = analyse_face(
|
231 |
-
specific,
|
232 |
-
FACE_ANALYSER,
|
233 |
-
return_single_face=True,
|
234 |
-
detect_condition=DETECT_CONDITION,
|
235 |
-
)
|
236 |
-
analysed_source_specific.append([analysed_source, analysed_specific])
|
237 |
-
else:
|
238 |
-
source = cv2.imread(source_path)
|
239 |
-
analysed_source = analyse_face(
|
240 |
-
source,
|
241 |
FACE_ANALYSER,
|
242 |
-
|
|
|
|
|
243 |
detect_condition=DETECT_CONDITION,
|
|
|
244 |
)
|
245 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
## ------------------------------ IMAGE ------------------------------
|
247 |
|
248 |
if input_type == "Image":
|
249 |
target = cv2.imread(image_path)
|
250 |
-
|
251 |
-
|
252 |
-
swapped = swap_specific(
|
253 |
-
analysed_source_specific,
|
254 |
-
analysed_target,
|
255 |
-
target,
|
256 |
-
models,
|
257 |
-
threshold=distance,
|
258 |
-
)
|
259 |
-
else:
|
260 |
-
swapped = swap_face_with_condition(
|
261 |
-
target, analysed_target, analysed_source, condition, age, models
|
262 |
-
)
|
263 |
|
264 |
-
|
265 |
-
|
266 |
-
OUTPUT_FILE = filename
|
267 |
-
WORKSPACE = output_path
|
268 |
-
PREVIEW = swapped[:, :, ::-1]
|
269 |
|
270 |
-
|
271 |
-
|
|
|
272 |
|
273 |
-
yield
|
274 |
|
275 |
## ------------------------------ VIDEO ------------------------------
|
276 |
|
@@ -278,72 +296,26 @@ def process(
|
|
278 |
temp_path = os.path.join(output_path, output_name, "sequence")
|
279 |
os.makedirs(temp_path, exist_ok=True)
|
280 |
|
281 |
-
|
282 |
-
duration = video_clip.duration
|
283 |
-
fps = video_clip.fps
|
284 |
-
total_frames = video_clip.reader.nframes
|
285 |
-
|
286 |
-
analysed_targets = []
|
287 |
-
process_bar = ProcessBar(30, total_frames)
|
288 |
-
yield "### \n ⌛ Analysing...", *ui_before()
|
289 |
-
for i, frame in enumerate(video_clip.iter_frames()):
|
290 |
-
analysed_targets.append(
|
291 |
-
analyse_face(frame, FACE_ANALYSER, return_single_face=False)
|
292 |
-
)
|
293 |
-
info_text = "Analysing Faces || "
|
294 |
-
info_text += process_bar.get(i)
|
295 |
-
print("\033[1A\033[K", end="", flush=True)
|
296 |
-
print(info_text)
|
297 |
-
if i % 10 == 0:
|
298 |
-
yield "### \n" + info_text, *ui_before()
|
299 |
-
video_clip.close()
|
300 |
-
|
301 |
image_sequence = []
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
else:
|
319 |
-
swapped = swap_face_with_condition(
|
320 |
-
frame, analysed_target, analysed_source, condition, age, models
|
321 |
-
)
|
322 |
-
|
323 |
-
image_path = os.path.join(temp_path, f"frame_{i}.png")
|
324 |
-
cv2.imwrite(image_path, swapped[:, :, ::-1])
|
325 |
-
image_sequence.append(image_path)
|
326 |
-
|
327 |
-
info_text = "Swapping Faces || "
|
328 |
-
info_text += process_bar.get(i)
|
329 |
-
print("\033[1A\033[K", end="", flush=True)
|
330 |
-
print(info_text)
|
331 |
-
if i % 6 == 0:
|
332 |
-
PREVIEW = swapped
|
333 |
-
yield "### \n" + info_text, *ui_before()
|
334 |
-
|
335 |
-
yield "### \n ⌛ Merging...", *ui_before()
|
336 |
-
edited_video_clip = ImageSequenceClip(image_sequence, fps=fps)
|
337 |
-
|
338 |
-
if audio_clip is not None:
|
339 |
-
edited_video_clip = edited_video_clip.set_audio(audio_clip)
|
340 |
-
|
341 |
output_video_path = os.path.join(output_path, output_name + ".mp4")
|
342 |
-
|
343 |
-
output_video_path, codec="libx264"
|
344 |
-
)
|
345 |
-
edited_video_clip.close()
|
346 |
-
video_clip.close()
|
347 |
|
348 |
if os.path.exists(temp_path) and not keep_output_sequence:
|
349 |
yield "### \n ⌛ Removing temporary files...", *ui_before()
|
@@ -352,99 +324,38 @@ def process(
|
|
352 |
WORKSPACE = output_path
|
353 |
OUTPUT_FILE = output_video_path
|
354 |
|
355 |
-
|
356 |
-
_min, _sec = divmod(tot_exec_time, 60)
|
357 |
-
|
358 |
-
yield f"✔️ Completed in {int(_min)} min {int(_sec)} sec.", *ui_after_vid()
|
359 |
|
360 |
## ------------------------------ DIRECTORY ------------------------------
|
361 |
|
362 |
elif input_type == "Directory":
|
363 |
-
source = cv2.imread(source_path)
|
364 |
-
source = analyse_face(
|
365 |
-
source,
|
366 |
-
FACE_ANALYSER,
|
367 |
-
return_single_face=True,
|
368 |
-
detect_condition=DETECT_CONDITION,
|
369 |
-
)
|
370 |
extensions = ["jpg", "jpeg", "png", "bmp", "tiff", "ico", "webp"]
|
371 |
temp_path = os.path.join(output_path, output_name)
|
372 |
if os.path.exists(temp_path):
|
373 |
shutil.rmtree(temp_path)
|
374 |
os.mkdir(temp_path)
|
375 |
-
swapped = None
|
376 |
|
377 |
-
|
378 |
for file_path in glob.glob(os.path.join(directory_path, "*")):
|
379 |
if any(file_path.lower().endswith(ext) for ext in extensions):
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
for i, file_path in enumerate(files):
|
385 |
-
target = cv2.imread(file_path)
|
386 |
-
analysed_target = analyse_face(
|
387 |
-
target, FACE_ANALYSER, return_single_face=False
|
388 |
-
)
|
389 |
-
|
390 |
-
if condition == "Specific Face":
|
391 |
-
swapped = swap_specific(
|
392 |
-
analysed_source_specific,
|
393 |
-
analysed_target,
|
394 |
-
target,
|
395 |
-
models,
|
396 |
-
threshold=distance,
|
397 |
-
)
|
398 |
-
else:
|
399 |
-
swapped = swap_face_with_condition(
|
400 |
-
target, analysed_target, analysed_source, condition, age, models
|
401 |
-
)
|
402 |
|
403 |
-
|
404 |
-
|
405 |
-
info_text = f"### \n ⌛ Processing file {i+1} of {files_length}"
|
406 |
-
PREVIEW = swapped[:, :, ::-1]
|
407 |
-
yield info_text, *ui_before()
|
408 |
|
|
|
409 |
WORKSPACE = temp_path
|
410 |
-
OUTPUT_FILE =
|
411 |
-
|
412 |
-
tot_exec_time = time.time() - start_time
|
413 |
-
_min, _sec = divmod(tot_exec_time, 60)
|
414 |
|
415 |
-
yield
|
416 |
|
417 |
## ------------------------------ STREAM ------------------------------
|
418 |
|
419 |
elif input_type == "Stream":
|
420 |
-
|
421 |
-
global STREAMER
|
422 |
-
STREAMER = StreamerThread(src=directory_path)
|
423 |
-
STREAMER.start()
|
424 |
-
|
425 |
-
while True:
|
426 |
-
try:
|
427 |
-
target = STREAMER.frame
|
428 |
-
analysed_target = analyse_face(
|
429 |
-
target, FACE_ANALYSER, return_single_face=False
|
430 |
-
)
|
431 |
-
if condition == "Specific Face":
|
432 |
-
swapped = swap_specific(
|
433 |
-
target,
|
434 |
-
analysed_target,
|
435 |
-
analysed_source_specific,
|
436 |
-
models,
|
437 |
-
threshold=distance,
|
438 |
-
)
|
439 |
-
else:
|
440 |
-
swapped = swap_face_with_condition(
|
441 |
-
target, analysed_target, analysed_source, condition, age, models
|
442 |
-
)
|
443 |
-
PREVIEW = swapped[:, :, ::-1]
|
444 |
-
yield f"Streaming...", *ui_before()
|
445 |
-
except AttributeError:
|
446 |
-
yield "Streaming...", *ui_before()
|
447 |
-
STREAMER.stop()
|
448 |
|
449 |
|
450 |
## ------------------------------ GRADIO FUNC ------------------------------
|
@@ -626,10 +537,6 @@ with gr.Blocks(css=css) as interface:
|
|
626 |
)
|
627 |
|
628 |
with gr.Tab("🪄 Other Settings"):
|
629 |
-
with gr.Accordion("Enhance Face", open=True):
|
630 |
-
enable_face_enhance = gr.Checkbox(
|
631 |
-
label="Enable GFPGAN", value=False, interactive=True
|
632 |
-
)
|
633 |
with gr.Accordion("Advanced Mask", open=False):
|
634 |
enable_face_parser_mask = gr.Checkbox(
|
635 |
label="Enable Face Parsing",
|
@@ -665,6 +572,30 @@ with gr.Blocks(css=css) as interface:
|
|
665 |
interactive=True,
|
666 |
)
|
667 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
668 |
source_image_input = gr.Image(
|
669 |
label="Source face", type="filepath", interactive=True
|
670 |
)
|
@@ -690,7 +621,7 @@ with gr.Blocks(css=css) as interface:
|
|
690 |
|
691 |
with gr.Group():
|
692 |
input_type = gr.Radio(
|
693 |
-
["Image", "Video"]
|
694 |
label="Target Type",
|
695 |
value="Video",
|
696 |
)
|
@@ -701,7 +632,7 @@ with gr.Blocks(css=css) as interface:
|
|
701 |
)
|
702 |
|
703 |
with gr.Box(visible=True) as input_video_group:
|
704 |
-
vid_widget = gr.Video
|
705 |
video_input = vid_widget(
|
706 |
label="Target Video Path", interactive=True
|
707 |
)
|
@@ -794,14 +725,14 @@ with gr.Blocks(css=css) as interface:
|
|
794 |
fn=slider_changed,
|
795 |
inputs=[show_trim_preview_btn, video_input, start_frame],
|
796 |
outputs=[preview_image, preview_video],
|
797 |
-
show_progress=
|
798 |
)
|
799 |
|
800 |
end_frame_event = end_frame.release(
|
801 |
fn=slider_changed,
|
802 |
inputs=[show_trim_preview_btn, video_input, end_frame],
|
803 |
outputs=[preview_image, preview_video],
|
804 |
-
show_progress=
|
805 |
)
|
806 |
|
807 |
input_type.change(
|
@@ -839,12 +770,18 @@ with gr.Blocks(css=css) as interface:
|
|
839 |
swap_option,
|
840 |
age,
|
841 |
distance_slider,
|
842 |
-
|
843 |
enable_face_parser_mask,
|
844 |
mask_include,
|
845 |
mask_soft_kernel,
|
846 |
mask_soft_iterations,
|
847 |
blur_amount,
|
|
|
|
|
|
|
|
|
|
|
|
|
848 |
*src_specific_inputs,
|
849 |
]
|
850 |
|
@@ -857,7 +794,7 @@ with gr.Blocks(css=css) as interface:
|
|
857 |
]
|
858 |
|
859 |
swap_event = swap_button.click(
|
860 |
-
fn=process, inputs=swap_inputs, outputs=swap_outputs, show_progress=
|
861 |
)
|
862 |
|
863 |
cancel_button.click(
|
@@ -871,7 +808,7 @@ with gr.Blocks(css=css) as interface:
|
|
871 |
start_frame_event,
|
872 |
end_frame_event,
|
873 |
],
|
874 |
-
show_progress=
|
875 |
)
|
876 |
output_directory_button.click(
|
877 |
lambda: open_directory(path=WORKSPACE), inputs=None, outputs=None
|
|
|
4 |
import time
|
5 |
import torch
|
6 |
import shutil
|
|
|
7 |
import argparse
|
8 |
import platform
|
9 |
import datetime
|
|
|
12 |
import onnxruntime
|
13 |
import numpy as np
|
14 |
import gradio as gr
|
15 |
+
from tqdm import tqdm
|
16 |
+
from moviepy.editor import VideoFileClip
|
17 |
|
18 |
+
from nsfw_detector import get_nsfw_detector
|
19 |
+
from face_swapper import Inswapper, paste_to_whole
|
20 |
+
from face_analyser import detect_conditions, get_analysed_data, swap_options_list
|
21 |
+
from face_enhancer import load_face_enhancer_model, face_enhancer_list, gfpgan_enhance, realesrgan_enhance
|
22 |
from face_parsing import init_parser, swap_regions, mask_regions, mask_regions_to_list, SoftErosion
|
23 |
+
from utils import trim_video, StreamerThread, ProcessBar, open_directory, split_list_by_lengths, merge_img_sequence_from_ref
|
24 |
+
|
|
|
|
|
|
|
|
|
25 |
|
26 |
## ------------------------------ USER ARGS ------------------------------
|
27 |
|
28 |
parser = argparse.ArgumentParser(description="Swap-Mukham Face Swapper")
|
29 |
parser.add_argument("--out_dir", help="Default Output directory", default=os.getcwd())
|
30 |
+
parser.add_argument("--batch_size", help="Gpu batch size", default=32)
|
31 |
parser.add_argument("--cuda", action="store_true", help="Enable cuda", default=False)
|
32 |
parser.add_argument(
|
33 |
"--colab", action="store_true", help="Enable colab mode", default=False
|
|
|
39 |
USE_COLAB = user_args.colab
|
40 |
USE_CUDA = user_args.cuda
|
41 |
DEF_OUTPUT_PATH = user_args.out_dir
|
42 |
+
BATCH_SIZE = user_args.batch_size
|
43 |
WORKSPACE = None
|
44 |
OUTPUT_FILE = None
|
45 |
CURRENT_FRAME = None
|
46 |
STREAMER = None
|
47 |
+
DETECT_CONDITION = "best detection"
|
48 |
DETECT_SIZE = 640
|
49 |
DETECT_THRESH = 0.6
|
50 |
NUM_OF_SRC_SPECIFIC = 10
|
|
|
67 |
FACE_ANALYSER = None
|
68 |
FACE_ENHANCER = None
|
69 |
FACE_PARSER = None
|
70 |
+
NSFW_DETECTOR = None
|
71 |
|
72 |
## ------------------------------ SET EXECUTION PROVIDER ------------------------------
|
73 |
# Note: For AMD,MAC or non CUDA users, change settings here
|
|
|
100 |
)
|
101 |
|
102 |
|
103 |
+
def load_face_swapper_model(path="./assets/pretrained_models/inswapper_128.onnx"):
|
104 |
global FACE_SWAPPER
|
|
|
105 |
if FACE_SWAPPER is None:
|
106 |
+
batch = int(BATCH_SIZE) if device == "cuda" else 1
|
107 |
+
FACE_SWAPPER = Inswapper(model_file=path, batch_size=batch, providers=PROVIDER)
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
|
110 |
+
def load_face_parser_model(path="./assets/pretrained_models/79999_iter.pth"):
|
111 |
global FACE_PARSER
|
|
|
112 |
if FACE_PARSER is None:
|
113 |
+
FACE_PARSER = init_parser(path, mode=device)
|
114 |
+
|
115 |
+
def load_nsfw_detector_model(path="./assets/pretrained_models/nsfwmodel_281.pth"):
|
116 |
+
global NSFW_DETECTOR
|
117 |
+
if NSFW_DETECTOR is None:
|
118 |
+
NSFW_DETECTOR = get_nsfw_detector(model_path=path, device=device)
|
119 |
|
120 |
|
121 |
load_face_analyser_model()
|
|
|
136 |
condition,
|
137 |
age,
|
138 |
distance,
|
139 |
+
face_enhancer_name,
|
140 |
enable_face_parser,
|
141 |
mask_includes,
|
142 |
mask_soft_kernel,
|
143 |
mask_soft_iterations,
|
144 |
blur_amount,
|
145 |
+
face_scale,
|
146 |
+
enable_laplacian_blend,
|
147 |
+
crop_top,
|
148 |
+
crop_bott,
|
149 |
+
crop_left,
|
150 |
+
crop_right,
|
151 |
*specifics,
|
152 |
):
|
153 |
global WORKSPACE
|
|
|
181 |
gr.update(value=OUTPUT_FILE, visible=True),
|
182 |
)
|
183 |
|
|
|
184 |
start_time = time.time()
|
185 |
+
total_exec_time = lambda start_time: divmod(time.time() - start_time, 60)
|
186 |
+
get_finsh_text = lambda start_time: f"✔️ Completed in {int(total_exec_time(start_time)[0])} min {int(total_exec_time(start_time)[1])} sec."
|
187 |
+
|
188 |
+
## ------------------------------ PREPARE INPUTS & LOAD MODELS ------------------------------
|
189 |
+
yield "### \n ⌛ Loading NSFW detector model...", *ui_before()
|
190 |
+
load_nsfw_detector_model()
|
191 |
|
192 |
yield "### \n ⌛ Loading face analyser model...", *ui_before()
|
193 |
load_face_analyser_model()
|
|
|
195 |
yield "### \n ⌛ Loading face swapper model...", *ui_before()
|
196 |
load_face_swapper_model()
|
197 |
|
198 |
+
if face_enhancer_name != "NONE":
|
199 |
+
yield f"### \n ⌛ Loading {face_enhancer_name} model...", *ui_before()
|
200 |
+
FACE_ENHANCER = load_face_enhancer_model(name=face_enhancer_name, device=device)
|
201 |
+
else:
|
202 |
+
FACE_ENHANCER = None
|
203 |
|
204 |
if enable_face_parser:
|
205 |
yield "### \n ⌛ Loading face parsing model...", *ui_before()
|
206 |
load_face_parser_model()
|
207 |
|
|
|
|
|
208 |
includes = mask_regions_to_list(mask_includes)
|
209 |
+
smooth_mask = SoftErosion(kernel_size=17, threshold=0.9, iterations=int(mask_soft_iterations)).to(device) if mask_soft_iterations > 0 else None
|
210 |
+
specifics = list(specifics)
|
211 |
+
half = len(specifics) // 2
|
212 |
+
sources = specifics[:half]
|
213 |
+
specifics = specifics[half:]
|
214 |
+
|
215 |
+
## ------------------------------ ANALYSE & SWAP FUNC ------------------------------
|
216 |
+
|
217 |
+
def swap_process(image_sequence):
|
218 |
+
yield "### \n ⌛ Checking contents...", *ui_before()
|
219 |
+
nsfw = NSFW_DETECTOR.is_nsfw(image_sequence)
|
220 |
+
if nsfw:
|
221 |
+
message = "NSFW Content detected !!!"
|
222 |
+
yield f"### \n 🔞 {message}", *ui_before()
|
223 |
+
assert not nsfw, message
|
224 |
+
return False
|
225 |
+
if device == "cuda": torch.cuda.empty_cache()
|
226 |
+
|
227 |
+
yield "### \n ⌛ Analysing face data...", *ui_before()
|
228 |
+
if condition != "Specific Face":
|
229 |
+
source_data = source_path, age
|
230 |
+
else:
|
231 |
+
source_data = ((sources, specifics), distance)
|
232 |
+
analysed_targets, analysed_sources, whole_frame_list, num_faces_per_frame = get_analysed_data(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
FACE_ANALYSER,
|
234 |
+
image_sequence,
|
235 |
+
source_data,
|
236 |
+
swap_condition=condition,
|
237 |
detect_condition=DETECT_CONDITION,
|
238 |
+
scale=face_scale
|
239 |
)
|
240 |
|
241 |
+
yield "### \n ⌛ Swapping faces...", *ui_before()
|
242 |
+
preds, aimgs, matrs = FACE_SWAPPER.batch_forward(whole_frame_list, analysed_targets, analysed_sources)
|
243 |
+
torch.cuda.empty_cache()
|
244 |
+
|
245 |
+
if enable_face_parser:
|
246 |
+
yield "### \n ⌛ Applying face-parsing mask...", *ui_before()
|
247 |
+
for idx, (pred, aimg) in tqdm(enumerate(zip(preds, aimgs)), total=len(preds), desc="Face parsing"):
|
248 |
+
preds[idx] = swap_regions(pred, aimg, FACE_PARSER, smooth_mask, includes=includes, blur=int(blur_amount))
|
249 |
+
torch.cuda.empty_cache()
|
250 |
+
|
251 |
+
if face_enhancer_name != "NONE":
|
252 |
+
yield f"### \n ⌛ Enhancing faces with {face_enhancer_name}...", *ui_before()
|
253 |
+
for idx, pred in tqdm(enumerate(preds), total=len(preds), desc=f"{face_enhancer_name}"):
|
254 |
+
if face_enhancer_name == 'GFPGAN':
|
255 |
+
pred = gfpgan_enhance(pred, FACE_ENHANCER)
|
256 |
+
elif face_enhancer_name.startswith("REAL-ESRGAN"):
|
257 |
+
pred = realesrgan_enhance(pred, FACE_ENHANCER)
|
258 |
+
|
259 |
+
preds[idx] = cv2.resize(pred, (512,512))
|
260 |
+
aimgs[idx] = cv2.resize(aimgs[idx], (512,512))
|
261 |
+
matrs[idx] /= 0.25
|
262 |
+
torch.cuda.empty_cache()
|
263 |
+
|
264 |
+
split_preds = split_list_by_lengths(preds, num_faces_per_frame)
|
265 |
+
split_aimgs = split_list_by_lengths(aimgs, num_faces_per_frame)
|
266 |
+
split_matrs = split_list_by_lengths(matrs, num_faces_per_frame)
|
267 |
+
|
268 |
+
yield "### \n ⌛ Post-processing...", *ui_before()
|
269 |
+
for idx, frame_img in tqdm(enumerate(image_sequence), total=len(image_sequence), desc="Post-Processing"):
|
270 |
+
whole_img_path = frame_img
|
271 |
+
whole_img = cv2.imread(whole_img_path)
|
272 |
+
for p, a, m in zip(split_preds[idx], split_aimgs[idx], split_matrs[idx]):
|
273 |
+
whole_img = paste_to_whole(p, a, m, whole_img, laplacian_blend=enable_laplacian_blend, crop_mask=(crop_top,crop_bott,crop_left,crop_right))
|
274 |
+
cv2.imwrite(whole_img_path, whole_img)
|
275 |
+
|
276 |
+
|
277 |
## ------------------------------ IMAGE ------------------------------
|
278 |
|
279 |
if input_type == "Image":
|
280 |
target = cv2.imread(image_path)
|
281 |
+
output_file = os.path.join(output_path, output_name + ".png")
|
282 |
+
cv2.imwrite(output_file, target)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
283 |
|
284 |
+
for info_update in swap_process([output_file]):
|
285 |
+
yield info_update
|
|
|
|
|
|
|
286 |
|
287 |
+
OUTPUT_FILE = output_file
|
288 |
+
WORKSPACE = output_path
|
289 |
+
PREVIEW = cv2.imread(output_file)[:, :, ::-1]
|
290 |
|
291 |
+
yield get_finsh_text(start_time), *ui_after()
|
292 |
|
293 |
## ------------------------------ VIDEO ------------------------------
|
294 |
|
|
|
296 |
temp_path = os.path.join(output_path, output_name, "sequence")
|
297 |
os.makedirs(temp_path, exist_ok=True)
|
298 |
|
299 |
+
yield "### \n ⌛ Extracting video frames...", *ui_before()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
image_sequence = []
|
301 |
+
cap = cv2.VideoCapture(video_path)
|
302 |
+
curr_idx = 0
|
303 |
+
while True:
|
304 |
+
ret, frame = cap.read()
|
305 |
+
if not ret:break
|
306 |
+
frame_path = os.path.join(temp_path, f"frame_{curr_idx}.jpg")
|
307 |
+
cv2.imwrite(frame_path, frame)
|
308 |
+
image_sequence.append(frame_path)
|
309 |
+
curr_idx += 1
|
310 |
+
cap.release()
|
311 |
+
cv2.destroyAllWindows()
|
312 |
+
|
313 |
+
for info_update in swap_process(image_sequence):
|
314 |
+
yield info_update
|
315 |
+
|
316 |
+
yield "### \n ⌛ Merging sequence...", *ui_before()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
output_video_path = os.path.join(output_path, output_name + ".mp4")
|
318 |
+
merge_img_sequence_from_ref(video_path, image_sequence, output_video_path)
|
|
|
|
|
|
|
|
|
319 |
|
320 |
if os.path.exists(temp_path) and not keep_output_sequence:
|
321 |
yield "### \n ⌛ Removing temporary files...", *ui_before()
|
|
|
324 |
WORKSPACE = output_path
|
325 |
OUTPUT_FILE = output_video_path
|
326 |
|
327 |
+
yield get_finsh_text(start_time), *ui_after_vid()
|
|
|
|
|
|
|
328 |
|
329 |
## ------------------------------ DIRECTORY ------------------------------
|
330 |
|
331 |
elif input_type == "Directory":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
332 |
extensions = ["jpg", "jpeg", "png", "bmp", "tiff", "ico", "webp"]
|
333 |
temp_path = os.path.join(output_path, output_name)
|
334 |
if os.path.exists(temp_path):
|
335 |
shutil.rmtree(temp_path)
|
336 |
os.mkdir(temp_path)
|
|
|
337 |
|
338 |
+
file_paths =[]
|
339 |
for file_path in glob.glob(os.path.join(directory_path, "*")):
|
340 |
if any(file_path.lower().endswith(ext) for ext in extensions):
|
341 |
+
img = cv2.imread(file_path)
|
342 |
+
new_file_path = os.path.join(temp_path, os.path.basename(file_path))
|
343 |
+
cv2.imwrite(new_file_path, img)
|
344 |
+
file_paths.append(new_file_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
|
346 |
+
for info_update in swap_process(file_paths):
|
347 |
+
yield info_update
|
|
|
|
|
|
|
348 |
|
349 |
+
PREVIEW = cv2.imread(file_paths[-1])[:, :, ::-1]
|
350 |
WORKSPACE = temp_path
|
351 |
+
OUTPUT_FILE = file_paths[-1]
|
|
|
|
|
|
|
352 |
|
353 |
+
yield get_finsh_text(start_time), *ui_after()
|
354 |
|
355 |
## ------------------------------ STREAM ------------------------------
|
356 |
|
357 |
elif input_type == "Stream":
|
358 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
359 |
|
360 |
|
361 |
## ------------------------------ GRADIO FUNC ------------------------------
|
|
|
537 |
)
|
538 |
|
539 |
with gr.Tab("🪄 Other Settings"):
|
|
|
|
|
|
|
|
|
540 |
with gr.Accordion("Advanced Mask", open=False):
|
541 |
enable_face_parser_mask = gr.Checkbox(
|
542 |
label="Enable Face Parsing",
|
|
|
572 |
interactive=True,
|
573 |
)
|
574 |
|
575 |
+
face_scale = gr.Slider(
|
576 |
+
label="Face Scale",
|
577 |
+
minimum=0,
|
578 |
+
maximum=2,
|
579 |
+
value=1,
|
580 |
+
interactive=True,
|
581 |
+
)
|
582 |
+
|
583 |
+
with gr.Accordion("Crop Mask", open=False):
|
584 |
+
crop_top = gr.Number(label="Top", value=0, minimum=0, interactive=True)
|
585 |
+
crop_bott = gr.Number(label="Bottom", value=0, minimum=0, interactive=True)
|
586 |
+
crop_left = gr.Number(label="Left", value=0, minimum=0, interactive=True)
|
587 |
+
crop_right = gr.Number(label="Right", value=0, minimum=0, interactive=True)
|
588 |
+
|
589 |
+
enable_laplacian_blend = gr.Checkbox(
|
590 |
+
label="Laplacian Blending",
|
591 |
+
value=True,
|
592 |
+
interactive=True,
|
593 |
+
)
|
594 |
+
|
595 |
+
face_enhancer_name = gr.Dropdown(
|
596 |
+
face_enhancer_list, label="Face Enhancer", value="NONE", multiselect=False, interactive=True
|
597 |
+
)
|
598 |
+
|
599 |
source_image_input = gr.Image(
|
600 |
label="Source face", type="filepath", interactive=True
|
601 |
)
|
|
|
621 |
|
622 |
with gr.Group():
|
623 |
input_type = gr.Radio(
|
624 |
+
["Image", "Video"],
|
625 |
label="Target Type",
|
626 |
value="Video",
|
627 |
)
|
|
|
632 |
)
|
633 |
|
634 |
with gr.Box(visible=True) as input_video_group:
|
635 |
+
vid_widget = gr.Video if USE_COLAB else gr.Text
|
636 |
video_input = vid_widget(
|
637 |
label="Target Video Path", interactive=True
|
638 |
)
|
|
|
725 |
fn=slider_changed,
|
726 |
inputs=[show_trim_preview_btn, video_input, start_frame],
|
727 |
outputs=[preview_image, preview_video],
|
728 |
+
show_progress=True,
|
729 |
)
|
730 |
|
731 |
end_frame_event = end_frame.release(
|
732 |
fn=slider_changed,
|
733 |
inputs=[show_trim_preview_btn, video_input, end_frame],
|
734 |
outputs=[preview_image, preview_video],
|
735 |
+
show_progress=True,
|
736 |
)
|
737 |
|
738 |
input_type.change(
|
|
|
770 |
swap_option,
|
771 |
age,
|
772 |
distance_slider,
|
773 |
+
face_enhancer_name,
|
774 |
enable_face_parser_mask,
|
775 |
mask_include,
|
776 |
mask_soft_kernel,
|
777 |
mask_soft_iterations,
|
778 |
blur_amount,
|
779 |
+
face_scale,
|
780 |
+
enable_laplacian_blend,
|
781 |
+
crop_top,
|
782 |
+
crop_bott,
|
783 |
+
crop_left,
|
784 |
+
crop_right,
|
785 |
*src_specific_inputs,
|
786 |
]
|
787 |
|
|
|
794 |
]
|
795 |
|
796 |
swap_event = swap_button.click(
|
797 |
+
fn=process, inputs=swap_inputs, outputs=swap_outputs, show_progress=True
|
798 |
)
|
799 |
|
800 |
cancel_button.click(
|
|
|
808 |
start_frame_event,
|
809 |
end_frame_event,
|
810 |
],
|
811 |
+
show_progress=True,
|
812 |
)
|
813 |
output_directory_button.click(
|
814 |
lambda: open_directory(path=WORKSPACE), inputs=None, outputs=None
|
assets/pretrained_models/RealESRGAN_x2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c830d067d54fc767b9543a8432f36d91bc2de313584e8bbfe4ac26a47339e899
|
3 |
+
size 67061725
|
assets/pretrained_models/RealESRGAN_x4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa00f09ad753d88576b21ed977e97d634976377031b178acc3b5b238df463400
|
3 |
+
size 67040989
|
assets/pretrained_models/RealESRGAN_x8.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b72fb469d12f05a4770813d2603eb1b550f40df6fb8b37d6c7bc2db3d2bff5e
|
3 |
+
size 67189359
|
assets/pretrained_models/codeformer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1009e537e0c2a07d4cabce6355f53cb66767cd4b4297ec7a4a64ca4b8a5684b7
|
3 |
+
size 376637898
|
assets/pretrained_models/nsfwmodel_281.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac92f5326f0d83f24f51ba4ac9f2a79314d29199e900a8ea495a74816ad3eb67
|
3 |
+
size 4925
|
face_analyser.py
CHANGED
@@ -1,3 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
detect_conditions = [
|
2 |
"left most",
|
3 |
"right most",
|
@@ -5,11 +11,27 @@ detect_conditions = [
|
|
5 |
"bottom most",
|
6 |
"most width",
|
7 |
"most height",
|
|
|
8 |
]
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
def analyse_face(image, model, return_single_face=True, detect_condition="
|
12 |
faces = model.get(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
if not return_single_face:
|
14 |
return faces
|
15 |
|
@@ -30,3 +52,79 @@ def analyse_face(image, model, return_single_face=True, detect_condition="left m
|
|
30 |
return sorted(faces, key=lambda face: face["bbox"][2])[-1]
|
31 |
elif detect_condition == "most height":
|
32 |
return sorted(faces, key=lambda face: face["bbox"][3])[-1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
from tqdm import tqdm
|
5 |
+
from utils import scale_bbox_from_center
|
6 |
+
|
7 |
detect_conditions = [
|
8 |
"left most",
|
9 |
"right most",
|
|
|
11 |
"bottom most",
|
12 |
"most width",
|
13 |
"most height",
|
14 |
+
"best detection",
|
15 |
]
|
16 |
|
17 |
+
swap_options_list = [
|
18 |
+
"All face",
|
19 |
+
"Age less than",
|
20 |
+
"Age greater than",
|
21 |
+
"All Male",
|
22 |
+
"All Female",
|
23 |
+
"Specific Face",
|
24 |
+
]
|
25 |
|
26 |
+
def analyse_face(image, model, return_single_face=True, detect_condition="best detection", scale=1.0):
|
27 |
faces = model.get(image)
|
28 |
+
if scale != 1: # landmark-scale
|
29 |
+
for i, face in enumerate(faces):
|
30 |
+
landmark = face['kps']
|
31 |
+
center = np.mean(landmark, axis=0)
|
32 |
+
landmark = center + (landmark - center) * scale
|
33 |
+
faces[i]['kps'] = landmark
|
34 |
+
|
35 |
if not return_single_face:
|
36 |
return faces
|
37 |
|
|
|
52 |
return sorted(faces, key=lambda face: face["bbox"][2])[-1]
|
53 |
elif detect_condition == "most height":
|
54 |
return sorted(faces, key=lambda face: face["bbox"][3])[-1]
|
55 |
+
elif detect_condition == "best detection":
|
56 |
+
return sorted(faces, key=lambda face: face["det_score"])[-1]
|
57 |
+
|
58 |
+
|
59 |
+
def cosine_distance(a, b):
|
60 |
+
a /= np.linalg.norm(a)
|
61 |
+
b /= np.linalg.norm(b)
|
62 |
+
return 1 - np.dot(a, b)
|
63 |
+
|
64 |
+
|
65 |
+
def get_analysed_data(face_analyser, image_sequence, source_data, swap_condition="All face", detect_condition="left most", scale=1.0):
|
66 |
+
if swap_condition != "Specific Face":
|
67 |
+
source_path, age = source_data
|
68 |
+
source_image = cv2.imread(source_path)
|
69 |
+
analysed_source = analyse_face(source_image, face_analyser, return_single_face=True, detect_condition=detect_condition, scale=scale)
|
70 |
+
else:
|
71 |
+
analysed_source_specifics = []
|
72 |
+
source_specifics, threshold = source_data
|
73 |
+
for source, specific in zip(*source_specifics):
|
74 |
+
if source is None or specific is None:
|
75 |
+
continue
|
76 |
+
analysed_source = analyse_face(source, face_analyser, return_single_face=True, detect_condition=detect_condition, scale=scale)
|
77 |
+
analysed_specific = analyse_face(specific, face_analyser, return_single_face=True, detect_condition=detect_condition, scale=scale)
|
78 |
+
analysed_source_specifics.append([analysed_source, analysed_specific])
|
79 |
+
|
80 |
+
analysed_target_list = []
|
81 |
+
analysed_source_list = []
|
82 |
+
whole_frame_eql_list = []
|
83 |
+
num_faces_per_frame = []
|
84 |
+
|
85 |
+
total_frames = len(image_sequence)
|
86 |
+
curr_idx = 0
|
87 |
+
for curr_idx, frame_path in tqdm(enumerate(image_sequence), total=total_frames, desc="Analysing face data"):
|
88 |
+
frame = cv2.imread(frame_path)
|
89 |
+
analysed_faces = analyse_face(frame, face_analyser, return_single_face=False, detect_condition=detect_condition, scale=scale)
|
90 |
+
|
91 |
+
n_faces = 0
|
92 |
+
for analysed_face in analysed_faces:
|
93 |
+
if swap_condition == "All face":
|
94 |
+
analysed_target_list.append(analysed_face)
|
95 |
+
analysed_source_list.append(analysed_source)
|
96 |
+
whole_frame_eql_list.append(frame_path)
|
97 |
+
n_faces += 1
|
98 |
+
elif swap_condition == "Age less than" and analysed_face["age"] < age:
|
99 |
+
analysed_target_list.append(analysed_face)
|
100 |
+
analysed_source_list.append(analysed_source)
|
101 |
+
whole_frame_eql_list.append(frame_path)
|
102 |
+
n_faces += 1
|
103 |
+
elif swap_condition == "Age greater than" and analysed_face["age"] > age:
|
104 |
+
analysed_target_list.append(analysed_face)
|
105 |
+
analysed_source_list.append(analysed_source)
|
106 |
+
whole_frame_eql_list.append(frame_path)
|
107 |
+
n_faces += 1
|
108 |
+
elif swap_condition == "All Male" and analysed_face["gender"] == 1:
|
109 |
+
analysed_target_list.append(analysed_face)
|
110 |
+
analysed_source_list.append(analysed_source)
|
111 |
+
whole_frame_eql_list.append(frame_path)
|
112 |
+
n_faces += 1
|
113 |
+
elif swap_condition == "All Female" and analysed_face["gender"] == 0:
|
114 |
+
analysed_target_list.append(analysed_face)
|
115 |
+
analysed_source_list.append(analysed_source)
|
116 |
+
whole_frame_eql_list.append(frame_path)
|
117 |
+
n_faces += 1
|
118 |
+
elif swap_condition == "Specific Face":
|
119 |
+
for analysed_source, analysed_specific in analysed_source_specifics:
|
120 |
+
distance = cosine_distance(analysed_specific["embedding"], analysed_face["embedding"])
|
121 |
+
if distance < threshold:
|
122 |
+
analysed_target_list.append(analysed_face)
|
123 |
+
analysed_source_list.append(analysed_source)
|
124 |
+
whole_frame_eql_list.append(frame_path)
|
125 |
+
n_faces += 1
|
126 |
+
|
127 |
+
num_faces_per_frame.append(n_faces)
|
128 |
+
|
129 |
+
return analysed_target_list, analysed_source_list, whole_frame_eql_list, num_faces_per_frame
|
130 |
+
|
face_enhancer.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import gfpgan
|
4 |
+
from PIL import Image
|
5 |
+
from upscaler.RealESRGAN import RealESRGAN
|
6 |
+
|
7 |
+
face_enhancer_list = ['NONE', 'GFPGAN', 'REAL-ESRGAN 2x', 'REAL-ESRGAN 4x', 'REAL-ESRGAN 8x']
|
8 |
+
|
9 |
+
def load_face_enhancer_model(name='GFPGAN', device="cpu"):
|
10 |
+
if name == 'GFPGAN':
|
11 |
+
model_path = "./assets/pretrained_models/GFPGANv1.4.pth"
|
12 |
+
model_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), model_path)
|
13 |
+
model = gfpgan.GFPGANer(model_path=model_path, upscale=1)
|
14 |
+
elif name == 'REAL-ESRGAN 2x':
|
15 |
+
model_path = "./assets/pretrained_models/RealESRGAN_x2.pth"
|
16 |
+
model_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), model_path)
|
17 |
+
model = RealESRGAN(device, scale=2)
|
18 |
+
model.load_weights(model_path, download=False)
|
19 |
+
elif name == 'REAL-ESRGAN 4x':
|
20 |
+
model_path = "./assets/pretrained_models/RealESRGAN_x4.pth"
|
21 |
+
model_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), model_path)
|
22 |
+
model = RealESRGAN(device, scale=4)
|
23 |
+
model.load_weights(model_path, download=False)
|
24 |
+
elif name == 'REAL-ESRGAN 8x':
|
25 |
+
model_path = "./assets/pretrained_models/RealESRGAN_x8.pth"
|
26 |
+
model_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), model_path)
|
27 |
+
model = RealESRGAN(device, scale=8)
|
28 |
+
model.load_weights(model_path, download=False)
|
29 |
+
else:
|
30 |
+
model = None
|
31 |
+
return model
|
32 |
+
|
33 |
+
def gfpgan_enhance(img, model, has_aligned=True):
|
34 |
+
_, imgs, _ = model.enhance(img, paste_back=True, has_aligned=has_aligned)
|
35 |
+
return imgs[0]
|
36 |
+
|
37 |
+
def realesrgan_enhance(img, model):
|
38 |
+
img = model.predict(img)
|
39 |
+
return img
|
face_parsing/__init__.py
CHANGED
@@ -1 +1,3 @@
|
|
1 |
-
from .swap import init_parser, swap_regions, mask_regions, mask_regions_to_list, SoftErosion
|
|
|
|
|
|
1 |
+
from .swap import init_parser, swap_regions, mask_regions, mask_regions_to_list, SoftErosion
|
2 |
+
from .model import BiSeNet
|
3 |
+
from .parse_mask import init_parsing_model, get_parsed_mask
|
face_parsing/parse_mask.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import torch
|
3 |
+
import torchvision
|
4 |
+
import numpy as np
|
5 |
+
import torch.nn as nn
|
6 |
+
from PIL import Image
|
7 |
+
from tqdm import tqdm
|
8 |
+
import torch.nn.functional as F
|
9 |
+
import torchvision.transforms as transforms
|
10 |
+
|
11 |
+
from . model import BiSeNet
|
12 |
+
|
13 |
+
transform = transforms.Compose([
|
14 |
+
transforms.Resize((512, 512)),
|
15 |
+
transforms.ToTensor(),
|
16 |
+
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
|
17 |
+
])
|
18 |
+
|
19 |
+
def init_parsing_model(model_path, device="cpu"):
|
20 |
+
net = BiSeNet(19)
|
21 |
+
net.to(device)
|
22 |
+
net.load_state_dict(torch.load(model_path))
|
23 |
+
net.eval()
|
24 |
+
return net
|
25 |
+
|
26 |
+
def transform_images(imgs):
|
27 |
+
tensor_images = torch.stack([transform(Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))) for img in imgs], dim=0)
|
28 |
+
return tensor_images
|
29 |
+
|
30 |
+
def get_parsed_mask(net, imgs, classes=[1, 2, 3, 4, 5, 10, 11, 12, 13], device="cpu", batch_size=8):
|
31 |
+
masks = []
|
32 |
+
for i in tqdm(range(0, len(imgs), batch_size), total=len(imgs) // batch_size, desc="Face-parsing"):
|
33 |
+
batch_imgs = imgs[i:i + batch_size]
|
34 |
+
|
35 |
+
tensor_images = transform_images(batch_imgs).to(device)
|
36 |
+
with torch.no_grad():
|
37 |
+
out = net(tensor_images)[0]
|
38 |
+
parsing = out.argmax(dim=1).cpu().numpy()
|
39 |
+
batch_masks = np.isin(parsing, classes)
|
40 |
+
|
41 |
+
masks.append(batch_masks)
|
42 |
+
|
43 |
+
masks = np.concatenate(masks, axis=0)
|
44 |
+
# masks = np.repeat(np.expand_dims(masks, axis=1), 3, axis=1)
|
45 |
+
|
46 |
+
for i, mask in enumerate(masks):
|
47 |
+
cv2.imwrite(f"mask/{i}.jpg", (mask * 255).astype("uint8"))
|
48 |
+
|
49 |
+
return masks
|
50 |
+
|
face_parsing/swap.py
CHANGED
@@ -98,6 +98,7 @@ def get_mask(parsing, classes):
|
|
98 |
res += parsing == val
|
99 |
return res
|
100 |
|
|
|
101 |
def swap_regions(source, target, net, smooth_mask, includes=[1,2,3,4,5,10,11,12,13], blur=10):
|
102 |
parsing = image_to_parsing(source, net)
|
103 |
|
@@ -117,12 +118,10 @@ def swap_regions(source, target, net, smooth_mask, includes=[1,2,3,4,5,10,11,12,
|
|
117 |
if blur > 0:
|
118 |
mask = cv2.GaussianBlur(mask, (0, 0), blur)
|
119 |
|
120 |
-
resized_source = cv2.resize((source
|
121 |
-
resized_target = cv2.resize((target
|
122 |
-
|
123 |
result = mask * resized_source + (1 - mask) * resized_target
|
124 |
-
|
125 |
-
result = cv2.resize((result*255).astype("uint8"), (source.shape[1], source.shape[0]))
|
126 |
|
127 |
return result
|
128 |
|
|
|
98 |
res += parsing == val
|
99 |
return res
|
100 |
|
101 |
+
|
102 |
def swap_regions(source, target, net, smooth_mask, includes=[1,2,3,4,5,10,11,12,13], blur=10):
|
103 |
parsing = image_to_parsing(source, net)
|
104 |
|
|
|
118 |
if blur > 0:
|
119 |
mask = cv2.GaussianBlur(mask, (0, 0), blur)
|
120 |
|
121 |
+
resized_source = cv2.resize((source).astype("float32"), (512, 512))
|
122 |
+
resized_target = cv2.resize((target).astype("float32"), (512, 512))
|
|
|
123 |
result = mask * resized_source + (1 - mask) * resized_target
|
124 |
+
result = cv2.resize(result.astype("uint8"), (source.shape[1], source.shape[0]))
|
|
|
125 |
|
126 |
return result
|
127 |
|
face_swapper.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import torch
|
3 |
+
import onnx
|
4 |
+
import cv2
|
5 |
+
import onnxruntime
|
6 |
+
import numpy as np
|
7 |
+
from tqdm import tqdm
|
8 |
+
from onnx import numpy_helper
|
9 |
+
from skimage import transform as trans
|
10 |
+
|
11 |
+
arcface_dst = np.array(
|
12 |
+
[[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366],
|
13 |
+
[41.5493, 92.3655], [70.7299, 92.2041]],
|
14 |
+
dtype=np.float32)
|
15 |
+
|
16 |
+
def estimate_norm(lmk, image_size=112, mode='arcface'):
|
17 |
+
assert lmk.shape == (5, 2)
|
18 |
+
assert image_size % 112 == 0 or image_size % 128 == 0
|
19 |
+
if image_size % 112 == 0:
|
20 |
+
ratio = float(image_size) / 112.0
|
21 |
+
diff_x = 0
|
22 |
+
else:
|
23 |
+
ratio = float(image_size) / 128.0
|
24 |
+
diff_x = 8.0 * ratio
|
25 |
+
dst = arcface_dst * ratio
|
26 |
+
dst[:, 0] += diff_x
|
27 |
+
tform = trans.SimilarityTransform()
|
28 |
+
tform.estimate(lmk, dst)
|
29 |
+
M = tform.params[0:2, :]
|
30 |
+
return M
|
31 |
+
|
32 |
+
|
33 |
+
def norm_crop2(img, landmark, image_size=112, mode='arcface'):
|
34 |
+
M = estimate_norm(landmark, image_size, mode)
|
35 |
+
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0)
|
36 |
+
return warped, M
|
37 |
+
|
38 |
+
|
39 |
+
class Inswapper():
|
40 |
+
def __init__(self, model_file=None, batch_size=32, providers=['CPUExecutionProvider']):
|
41 |
+
self.model_file = model_file
|
42 |
+
self.batch_size = batch_size
|
43 |
+
|
44 |
+
model = onnx.load(self.model_file)
|
45 |
+
graph = model.graph
|
46 |
+
self.emap = numpy_helper.to_array(graph.initializer[-1])
|
47 |
+
self.input_mean = 0.0
|
48 |
+
self.input_std = 255.0
|
49 |
+
|
50 |
+
self.session_options = onnxruntime.SessionOptions()
|
51 |
+
self.session = onnxruntime.InferenceSession(self.model_file, sess_options=self.session_options, providers=providers)
|
52 |
+
|
53 |
+
inputs = self.session.get_inputs()
|
54 |
+
self.input_names = [inp.name for inp in inputs]
|
55 |
+
outputs = self.session.get_outputs()
|
56 |
+
self.output_names = [out.name for out in outputs]
|
57 |
+
assert len(self.output_names) == 1
|
58 |
+
self.output_shape = outputs[0].shape
|
59 |
+
input_cfg = inputs[0]
|
60 |
+
input_shape = input_cfg.shape
|
61 |
+
self.input_shape = input_shape
|
62 |
+
self.input_size = tuple(input_shape[2:4][::-1])
|
63 |
+
|
64 |
+
def forward(self, imgs, latents):
|
65 |
+
batch_preds = []
|
66 |
+
for img, latent in zip(imgs, latents):
|
67 |
+
img = (img - self.input_mean) / self.input_std
|
68 |
+
pred = self.session.run(self.output_names, {self.input_names[0]: img, self.input_names[1]: latent})[0]
|
69 |
+
batch_preds.append(pred)
|
70 |
+
return batch_preds
|
71 |
+
|
72 |
+
def get(self, imgs, target_faces, source_faces):
|
73 |
+
batch_preds = []
|
74 |
+
batch_aimgs = []
|
75 |
+
batch_ms = []
|
76 |
+
for img, target_face, source_face in zip(imgs, target_faces, source_faces):
|
77 |
+
if isinstance(img, str):
|
78 |
+
img = cv2.imread(img)
|
79 |
+
aimg, M = norm_crop2(img, target_face.kps, self.input_size[0])
|
80 |
+
blob = cv2.dnn.blobFromImage(aimg, 1.0 / self.input_std, self.input_size,
|
81 |
+
(self.input_mean, self.input_mean, self.input_mean), swapRB=True)
|
82 |
+
latent = source_face.normed_embedding.reshape((1, -1))
|
83 |
+
latent = np.dot(latent, self.emap)
|
84 |
+
latent /= np.linalg.norm(latent)
|
85 |
+
pred = self.session.run(self.output_names, {self.input_names[0]: blob, self.input_names[1]: latent})[0]
|
86 |
+
pred = pred.transpose((0, 2, 3, 1))[0]
|
87 |
+
pred = np.clip(255 * pred, 0, 255).astype(np.uint8)[:, :, ::-1]
|
88 |
+
batch_preds.append(pred)
|
89 |
+
batch_aimgs.append(aimg)
|
90 |
+
batch_ms.append(M)
|
91 |
+
return batch_preds, batch_aimgs, batch_ms
|
92 |
+
|
93 |
+
def batch_forward(self, img_list, target_f_list, source_f_list):
|
94 |
+
num_samples = len(img_list)
|
95 |
+
num_batches = (num_samples + self.batch_size - 1) // self.batch_size
|
96 |
+
|
97 |
+
preds = []
|
98 |
+
aimgs = []
|
99 |
+
ms = []
|
100 |
+
for i in tqdm(range(num_batches), desc="Swapping face by batch"):
|
101 |
+
start_idx = i * self.batch_size
|
102 |
+
end_idx = min((i + 1) * self.batch_size, num_samples)
|
103 |
+
|
104 |
+
batch_img = img_list[start_idx:end_idx]
|
105 |
+
batch_target_f = target_f_list[start_idx:end_idx]
|
106 |
+
batch_source_f = source_f_list[start_idx:end_idx]
|
107 |
+
|
108 |
+
batch_pred, batch_aimg, batch_m = self.get(batch_img, batch_target_f, batch_source_f)
|
109 |
+
preds.extend(batch_pred)
|
110 |
+
aimgs.extend(batch_aimg)
|
111 |
+
ms.extend(batch_m)
|
112 |
+
return preds, aimgs, ms
|
113 |
+
|
114 |
+
|
115 |
+
def laplacian_blending(A, B, m, num_levels=4):
|
116 |
+
assert A.shape == B.shape
|
117 |
+
assert B.shape == m.shape
|
118 |
+
height = m.shape[0]
|
119 |
+
width = m.shape[1]
|
120 |
+
size_list = np.array([4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096])
|
121 |
+
size = size_list[np.where(size_list > max(height, width))][0]
|
122 |
+
GA = np.zeros((size, size, 3), dtype=np.float32)
|
123 |
+
GA[:height, :width, :] = A
|
124 |
+
GB = np.zeros((size, size, 3), dtype=np.float32)
|
125 |
+
GB[:height, :width, :] = B
|
126 |
+
GM = np.zeros((size, size, 3), dtype=np.float32)
|
127 |
+
GM[:height, :width, :] = m
|
128 |
+
gpA = [GA]
|
129 |
+
gpB = [GB]
|
130 |
+
gpM = [GM]
|
131 |
+
for i in range(num_levels):
|
132 |
+
GA = cv2.pyrDown(GA)
|
133 |
+
GB = cv2.pyrDown(GB)
|
134 |
+
GM = cv2.pyrDown(GM)
|
135 |
+
gpA.append(np.float32(GA))
|
136 |
+
gpB.append(np.float32(GB))
|
137 |
+
gpM.append(np.float32(GM))
|
138 |
+
lpA = [gpA[num_levels-1]]
|
139 |
+
lpB = [gpB[num_levels-1]]
|
140 |
+
gpMr = [gpM[num_levels-1]]
|
141 |
+
for i in range(num_levels-1,0,-1):
|
142 |
+
LA = np.subtract(gpA[i-1], cv2.pyrUp(gpA[i]))
|
143 |
+
LB = np.subtract(gpB[i-1], cv2.pyrUp(gpB[i]))
|
144 |
+
lpA.append(LA)
|
145 |
+
lpB.append(LB)
|
146 |
+
gpMr.append(gpM[i-1])
|
147 |
+
LS = []
|
148 |
+
for la,lb,gm in zip(lpA,lpB,gpMr):
|
149 |
+
ls = la * gm + lb * (1.0 - gm)
|
150 |
+
LS.append(ls)
|
151 |
+
ls_ = LS[0]
|
152 |
+
for i in range(1,num_levels):
|
153 |
+
ls_ = cv2.pyrUp(ls_)
|
154 |
+
ls_ = cv2.add(ls_, LS[i])
|
155 |
+
ls_ = np.clip(ls_[:height, :width, :], 0, 255)
|
156 |
+
return ls_
|
157 |
+
|
158 |
+
|
159 |
+
def paste_to_whole(bgr_fake, aimg, M, whole_img, laplacian_blend=True, crop_mask=(0,0,0,0)):
|
160 |
+
IM = cv2.invertAffineTransform(M)
|
161 |
+
|
162 |
+
img_white = np.full((aimg.shape[0], aimg.shape[1]), 255, dtype=np.float32)
|
163 |
+
|
164 |
+
top = int(crop_mask[0])
|
165 |
+
bottom = int(crop_mask[1])
|
166 |
+
if top + bottom < aimg.shape[1]:
|
167 |
+
if top > 0: img_white[:top, :] = 0
|
168 |
+
if bottom > 0: img_white[-bottom:, :] = 0
|
169 |
+
|
170 |
+
left = int(crop_mask[2])
|
171 |
+
right = int(crop_mask[3])
|
172 |
+
if left + right < aimg.shape[0]:
|
173 |
+
if left > 0: img_white[:, :left] = 0
|
174 |
+
if right > 0: img_white[:, -right:] = 0
|
175 |
+
|
176 |
+
bgr_fake = cv2.warpAffine(
|
177 |
+
bgr_fake, IM, (whole_img.shape[1], whole_img.shape[0]), borderValue=0.0
|
178 |
+
)
|
179 |
+
img_white = cv2.warpAffine(
|
180 |
+
img_white, IM, (whole_img.shape[1], whole_img.shape[0]), borderValue=0.0
|
181 |
+
)
|
182 |
+
img_white[img_white > 20] = 255
|
183 |
+
img_mask = img_white
|
184 |
+
mask_h_inds, mask_w_inds = np.where(img_mask == 255)
|
185 |
+
mask_h = np.max(mask_h_inds) - np.min(mask_h_inds)
|
186 |
+
mask_w = np.max(mask_w_inds) - np.min(mask_w_inds)
|
187 |
+
mask_size = int(np.sqrt(mask_h * mask_w))
|
188 |
+
|
189 |
+
k = max(mask_size // 10, 10)
|
190 |
+
img_mask = cv2.erode(img_mask, np.ones((k, k), np.uint8), iterations=1)
|
191 |
+
|
192 |
+
k = max(mask_size // 20, 5)
|
193 |
+
kernel_size = (k, k)
|
194 |
+
blur_size = tuple(2 * i + 1 for i in kernel_size)
|
195 |
+
img_mask = cv2.GaussianBlur(img_mask, blur_size, 0) / 255
|
196 |
+
img_mask = np.tile(np.expand_dims(img_mask, axis=-1), (1, 1, 3))
|
197 |
+
|
198 |
+
if laplacian_blend:
|
199 |
+
bgr_fake = laplacian_blending(bgr_fake.astype("float32").clip(0,255), whole_img.astype("float32").clip(0,255), img_mask.clip(0,1))
|
200 |
+
bgr_fake = bgr_fake.astype("float32")
|
201 |
+
|
202 |
+
fake_merged = img_mask * bgr_fake + (1 - img_mask) * whole_img.astype(np.float32)
|
203 |
+
return fake_merged.astype("uint8")
|
nsfw_detector.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torchvision.transforms import Normalize
|
2 |
+
import torchvision.transforms as T
|
3 |
+
import torch.nn as nn
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import timm
|
8 |
+
from tqdm import tqdm
|
9 |
+
|
10 |
+
normalize_t = Normalize((0.4814, 0.4578, 0.4082), (0.2686, 0.2613, 0.2757))
|
11 |
+
|
12 |
+
#nsfw classifier
|
13 |
+
class NSFWClassifier(nn.Module):
|
14 |
+
def __init__(self):
|
15 |
+
super().__init__()
|
16 |
+
nsfw_model=self
|
17 |
+
nsfw_model.root_model = timm.create_model('convnext_base_in22ft1k', pretrained=True)
|
18 |
+
nsfw_model.linear_probe = nn.Linear(1024, 1, bias=False)
|
19 |
+
|
20 |
+
def forward(self, x):
|
21 |
+
nsfw_model = self
|
22 |
+
x = normalize_t(x)
|
23 |
+
x = nsfw_model.root_model.stem(x)
|
24 |
+
x = nsfw_model.root_model.stages(x)
|
25 |
+
x = nsfw_model.root_model.head.global_pool(x)
|
26 |
+
x = nsfw_model.root_model.head.norm(x)
|
27 |
+
x = nsfw_model.root_model.head.flatten(x)
|
28 |
+
x = nsfw_model.linear_probe(x)
|
29 |
+
return x
|
30 |
+
|
31 |
+
def is_nsfw(self, img_paths, threshold = 0.93):
|
32 |
+
skip_step = 1
|
33 |
+
total_len = len(img_paths)
|
34 |
+
if total_len < 100: skip_step = 1
|
35 |
+
if total_len > 100 and total_len < 500: skip_step = 10
|
36 |
+
if total_len > 500 and total_len < 1000: skip_step = 20
|
37 |
+
if total_len > 1000 and total_len < 10000: skip_step = 50
|
38 |
+
if total_len > 10000: skip_step = 100
|
39 |
+
|
40 |
+
for idx in tqdm(range(0, total_len, skip_step), total=total_len, desc="Checking for NSFW contents"):
|
41 |
+
img = Image.open(img_paths[idx]).convert('RGB')
|
42 |
+
img = img.resize((224, 224))
|
43 |
+
img = np.array(img)/255
|
44 |
+
img = T.ToTensor()(img).unsqueeze(0).float()
|
45 |
+
if next(self.parameters()).is_cuda:
|
46 |
+
img = img.cuda()
|
47 |
+
with torch.no_grad():
|
48 |
+
score = self.forward(img).sigmoid()[0].item()
|
49 |
+
if score > threshold:return True
|
50 |
+
return False
|
51 |
+
|
52 |
+
def get_nsfw_detector(model_path='nsfwmodel_281.pth', device="cpu"):
|
53 |
+
#load base model
|
54 |
+
nsfw_model = NSFWClassifier()
|
55 |
+
nsfw_model = nsfw_model.eval()
|
56 |
+
#load linear weights
|
57 |
+
linear_pth = model_path
|
58 |
+
linear_state_dict = torch.load(linear_pth, map_location='cpu')
|
59 |
+
nsfw_model.linear_probe.load_state_dict(linear_state_dict)
|
60 |
+
nsfw_model = nsfw_model.to(device)
|
61 |
+
return nsfw_model
|
requirements.txt
CHANGED
@@ -4,8 +4,10 @@ gradio>=3.33.1
|
|
4 |
insightface==0.7.3
|
5 |
moviepy>=1.0.3
|
6 |
numpy
|
7 |
-
opencv-python>=4.7.0.72
|
8 |
-
opencv-python-headless>=4.7.0.72
|
9 |
onnx==1.14.0
|
10 |
onnxruntime==1.15.0
|
|
|
|
|
11 |
gfpgan==1.3.8
|
|
|
|
|
|
4 |
insightface==0.7.3
|
5 |
moviepy>=1.0.3
|
6 |
numpy
|
|
|
|
|
7 |
onnx==1.14.0
|
8 |
onnxruntime==1.15.0
|
9 |
+
opencv-python>=4.7.0.72
|
10 |
+
opencv-python-headless>=4.7.0.72
|
11 |
gfpgan==1.3.8
|
12 |
+
timm==0.9.2
|
13 |
+
|
upscaler/RealESRGAN/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .model import RealESRGAN
|
upscaler/RealESRGAN/arch_utils.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn as nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
from torch.nn import init as init
|
6 |
+
from torch.nn.modules.batchnorm import _BatchNorm
|
7 |
+
|
8 |
+
@torch.no_grad()
|
9 |
+
def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs):
|
10 |
+
"""Initialize network weights.
|
11 |
+
|
12 |
+
Args:
|
13 |
+
module_list (list[nn.Module] | nn.Module): Modules to be initialized.
|
14 |
+
scale (float): Scale initialized weights, especially for residual
|
15 |
+
blocks. Default: 1.
|
16 |
+
bias_fill (float): The value to fill bias. Default: 0
|
17 |
+
kwargs (dict): Other arguments for initialization function.
|
18 |
+
"""
|
19 |
+
if not isinstance(module_list, list):
|
20 |
+
module_list = [module_list]
|
21 |
+
for module in module_list:
|
22 |
+
for m in module.modules():
|
23 |
+
if isinstance(m, nn.Conv2d):
|
24 |
+
init.kaiming_normal_(m.weight, **kwargs)
|
25 |
+
m.weight.data *= scale
|
26 |
+
if m.bias is not None:
|
27 |
+
m.bias.data.fill_(bias_fill)
|
28 |
+
elif isinstance(m, nn.Linear):
|
29 |
+
init.kaiming_normal_(m.weight, **kwargs)
|
30 |
+
m.weight.data *= scale
|
31 |
+
if m.bias is not None:
|
32 |
+
m.bias.data.fill_(bias_fill)
|
33 |
+
elif isinstance(m, _BatchNorm):
|
34 |
+
init.constant_(m.weight, 1)
|
35 |
+
if m.bias is not None:
|
36 |
+
m.bias.data.fill_(bias_fill)
|
37 |
+
|
38 |
+
|
39 |
+
def make_layer(basic_block, num_basic_block, **kwarg):
|
40 |
+
"""Make layers by stacking the same blocks.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
basic_block (nn.module): nn.module class for basic block.
|
44 |
+
num_basic_block (int): number of blocks.
|
45 |
+
|
46 |
+
Returns:
|
47 |
+
nn.Sequential: Stacked blocks in nn.Sequential.
|
48 |
+
"""
|
49 |
+
layers = []
|
50 |
+
for _ in range(num_basic_block):
|
51 |
+
layers.append(basic_block(**kwarg))
|
52 |
+
return nn.Sequential(*layers)
|
53 |
+
|
54 |
+
|
55 |
+
class ResidualBlockNoBN(nn.Module):
|
56 |
+
"""Residual block without BN.
|
57 |
+
|
58 |
+
It has a style of:
|
59 |
+
---Conv-ReLU-Conv-+-
|
60 |
+
|________________|
|
61 |
+
|
62 |
+
Args:
|
63 |
+
num_feat (int): Channel number of intermediate features.
|
64 |
+
Default: 64.
|
65 |
+
res_scale (float): Residual scale. Default: 1.
|
66 |
+
pytorch_init (bool): If set to True, use pytorch default init,
|
67 |
+
otherwise, use default_init_weights. Default: False.
|
68 |
+
"""
|
69 |
+
|
70 |
+
def __init__(self, num_feat=64, res_scale=1, pytorch_init=False):
|
71 |
+
super(ResidualBlockNoBN, self).__init__()
|
72 |
+
self.res_scale = res_scale
|
73 |
+
self.conv1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
|
74 |
+
self.conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
|
75 |
+
self.relu = nn.ReLU(inplace=True)
|
76 |
+
|
77 |
+
if not pytorch_init:
|
78 |
+
default_init_weights([self.conv1, self.conv2], 0.1)
|
79 |
+
|
80 |
+
def forward(self, x):
|
81 |
+
identity = x
|
82 |
+
out = self.conv2(self.relu(self.conv1(x)))
|
83 |
+
return identity + out * self.res_scale
|
84 |
+
|
85 |
+
|
86 |
+
class Upsample(nn.Sequential):
|
87 |
+
"""Upsample module.
|
88 |
+
|
89 |
+
Args:
|
90 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
91 |
+
num_feat (int): Channel number of intermediate features.
|
92 |
+
"""
|
93 |
+
|
94 |
+
def __init__(self, scale, num_feat):
|
95 |
+
m = []
|
96 |
+
if (scale & (scale - 1)) == 0: # scale = 2^n
|
97 |
+
for _ in range(int(math.log(scale, 2))):
|
98 |
+
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
99 |
+
m.append(nn.PixelShuffle(2))
|
100 |
+
elif scale == 3:
|
101 |
+
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
102 |
+
m.append(nn.PixelShuffle(3))
|
103 |
+
else:
|
104 |
+
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
|
105 |
+
super(Upsample, self).__init__(*m)
|
106 |
+
|
107 |
+
|
108 |
+
def flow_warp(x, flow, interp_mode='bilinear', padding_mode='zeros', align_corners=True):
|
109 |
+
"""Warp an image or feature map with optical flow.
|
110 |
+
|
111 |
+
Args:
|
112 |
+
x (Tensor): Tensor with size (n, c, h, w).
|
113 |
+
flow (Tensor): Tensor with size (n, h, w, 2), normal value.
|
114 |
+
interp_mode (str): 'nearest' or 'bilinear'. Default: 'bilinear'.
|
115 |
+
padding_mode (str): 'zeros' or 'border' or 'reflection'.
|
116 |
+
Default: 'zeros'.
|
117 |
+
align_corners (bool): Before pytorch 1.3, the default value is
|
118 |
+
align_corners=True. After pytorch 1.3, the default value is
|
119 |
+
align_corners=False. Here, we use the True as default.
|
120 |
+
|
121 |
+
Returns:
|
122 |
+
Tensor: Warped image or feature map.
|
123 |
+
"""
|
124 |
+
assert x.size()[-2:] == flow.size()[1:3]
|
125 |
+
_, _, h, w = x.size()
|
126 |
+
# create mesh grid
|
127 |
+
grid_y, grid_x = torch.meshgrid(torch.arange(0, h).type_as(x), torch.arange(0, w).type_as(x))
|
128 |
+
grid = torch.stack((grid_x, grid_y), 2).float() # W(x), H(y), 2
|
129 |
+
grid.requires_grad = False
|
130 |
+
|
131 |
+
vgrid = grid + flow
|
132 |
+
# scale grid to [-1,1]
|
133 |
+
vgrid_x = 2.0 * vgrid[:, :, :, 0] / max(w - 1, 1) - 1.0
|
134 |
+
vgrid_y = 2.0 * vgrid[:, :, :, 1] / max(h - 1, 1) - 1.0
|
135 |
+
vgrid_scaled = torch.stack((vgrid_x, vgrid_y), dim=3)
|
136 |
+
output = F.grid_sample(x, vgrid_scaled, mode=interp_mode, padding_mode=padding_mode, align_corners=align_corners)
|
137 |
+
|
138 |
+
# TODO, what if align_corners=False
|
139 |
+
return output
|
140 |
+
|
141 |
+
|
142 |
+
def resize_flow(flow, size_type, sizes, interp_mode='bilinear', align_corners=False):
|
143 |
+
"""Resize a flow according to ratio or shape.
|
144 |
+
|
145 |
+
Args:
|
146 |
+
flow (Tensor): Precomputed flow. shape [N, 2, H, W].
|
147 |
+
size_type (str): 'ratio' or 'shape'.
|
148 |
+
sizes (list[int | float]): the ratio for resizing or the final output
|
149 |
+
shape.
|
150 |
+
1) The order of ratio should be [ratio_h, ratio_w]. For
|
151 |
+
downsampling, the ratio should be smaller than 1.0 (i.e., ratio
|
152 |
+
< 1.0). For upsampling, the ratio should be larger than 1.0 (i.e.,
|
153 |
+
ratio > 1.0).
|
154 |
+
2) The order of output_size should be [out_h, out_w].
|
155 |
+
interp_mode (str): The mode of interpolation for resizing.
|
156 |
+
Default: 'bilinear'.
|
157 |
+
align_corners (bool): Whether align corners. Default: False.
|
158 |
+
|
159 |
+
Returns:
|
160 |
+
Tensor: Resized flow.
|
161 |
+
"""
|
162 |
+
_, _, flow_h, flow_w = flow.size()
|
163 |
+
if size_type == 'ratio':
|
164 |
+
output_h, output_w = int(flow_h * sizes[0]), int(flow_w * sizes[1])
|
165 |
+
elif size_type == 'shape':
|
166 |
+
output_h, output_w = sizes[0], sizes[1]
|
167 |
+
else:
|
168 |
+
raise ValueError(f'Size type should be ratio or shape, but got type {size_type}.')
|
169 |
+
|
170 |
+
input_flow = flow.clone()
|
171 |
+
ratio_h = output_h / flow_h
|
172 |
+
ratio_w = output_w / flow_w
|
173 |
+
input_flow[:, 0, :, :] *= ratio_w
|
174 |
+
input_flow[:, 1, :, :] *= ratio_h
|
175 |
+
resized_flow = F.interpolate(
|
176 |
+
input=input_flow, size=(output_h, output_w), mode=interp_mode, align_corners=align_corners)
|
177 |
+
return resized_flow
|
178 |
+
|
179 |
+
|
180 |
+
# TODO: may write a cpp file
|
181 |
+
def pixel_unshuffle(x, scale):
|
182 |
+
""" Pixel unshuffle.
|
183 |
+
|
184 |
+
Args:
|
185 |
+
x (Tensor): Input feature with shape (b, c, hh, hw).
|
186 |
+
scale (int): Downsample ratio.
|
187 |
+
|
188 |
+
Returns:
|
189 |
+
Tensor: the pixel unshuffled feature.
|
190 |
+
"""
|
191 |
+
b, c, hh, hw = x.size()
|
192 |
+
out_channel = c * (scale**2)
|
193 |
+
assert hh % scale == 0 and hw % scale == 0
|
194 |
+
h = hh // scale
|
195 |
+
w = hw // scale
|
196 |
+
x_view = x.view(b, c, h, scale, w, scale)
|
197 |
+
return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w)
|
upscaler/RealESRGAN/model.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from torch.nn import functional as F
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
import cv2
|
7 |
+
|
8 |
+
from .rrdbnet_arch import RRDBNet
|
9 |
+
from .utils import pad_reflect, split_image_into_overlapping_patches, stich_together, \
|
10 |
+
unpad_image
|
11 |
+
|
12 |
+
|
13 |
+
HF_MODELS = {
|
14 |
+
2: dict(
|
15 |
+
repo_id='sberbank-ai/Real-ESRGAN',
|
16 |
+
filename='RealESRGAN_x2.pth',
|
17 |
+
),
|
18 |
+
4: dict(
|
19 |
+
repo_id='sberbank-ai/Real-ESRGAN',
|
20 |
+
filename='RealESRGAN_x4.pth',
|
21 |
+
),
|
22 |
+
8: dict(
|
23 |
+
repo_id='sberbank-ai/Real-ESRGAN',
|
24 |
+
filename='RealESRGAN_x8.pth',
|
25 |
+
),
|
26 |
+
}
|
27 |
+
|
28 |
+
|
29 |
+
class RealESRGAN:
|
30 |
+
def __init__(self, device, scale=4):
|
31 |
+
self.device = device
|
32 |
+
self.scale = scale
|
33 |
+
self.model = RRDBNet(
|
34 |
+
num_in_ch=3, num_out_ch=3, num_feat=64,
|
35 |
+
num_block=23, num_grow_ch=32, scale=scale
|
36 |
+
)
|
37 |
+
|
38 |
+
def load_weights(self, model_path, download=True):
|
39 |
+
if not os.path.exists(model_path) and download:
|
40 |
+
from huggingface_hub import hf_hub_url, cached_download
|
41 |
+
assert self.scale in [2,4,8], 'You can download models only with scales: 2, 4, 8'
|
42 |
+
config = HF_MODELS[self.scale]
|
43 |
+
cache_dir = os.path.dirname(model_path)
|
44 |
+
local_filename = os.path.basename(model_path)
|
45 |
+
config_file_url = hf_hub_url(repo_id=config['repo_id'], filename=config['filename'])
|
46 |
+
cached_download(config_file_url, cache_dir=cache_dir, force_filename=local_filename)
|
47 |
+
print('Weights downloaded to:', os.path.join(cache_dir, local_filename))
|
48 |
+
|
49 |
+
loadnet = torch.load(model_path)
|
50 |
+
if 'params' in loadnet:
|
51 |
+
self.model.load_state_dict(loadnet['params'], strict=True)
|
52 |
+
elif 'params_ema' in loadnet:
|
53 |
+
self.model.load_state_dict(loadnet['params_ema'], strict=True)
|
54 |
+
else:
|
55 |
+
self.model.load_state_dict(loadnet, strict=True)
|
56 |
+
self.model.eval()
|
57 |
+
self.model.to(self.device)
|
58 |
+
|
59 |
+
@torch.cuda.amp.autocast()
|
60 |
+
def predict(self, lr_image, batch_size=4, patches_size=192,
|
61 |
+
padding=24, pad_size=15):
|
62 |
+
scale = self.scale
|
63 |
+
device = self.device
|
64 |
+
lr_image = np.array(lr_image)
|
65 |
+
lr_image = pad_reflect(lr_image, pad_size)
|
66 |
+
|
67 |
+
patches, p_shape = split_image_into_overlapping_patches(
|
68 |
+
lr_image, patch_size=patches_size, padding_size=padding
|
69 |
+
)
|
70 |
+
img = torch.FloatTensor(patches/255).permute((0,3,1,2)).to(device).detach()
|
71 |
+
|
72 |
+
with torch.no_grad():
|
73 |
+
res = self.model(img[0:batch_size])
|
74 |
+
for i in range(batch_size, img.shape[0], batch_size):
|
75 |
+
res = torch.cat((res, self.model(img[i:i+batch_size])), 0)
|
76 |
+
|
77 |
+
sr_image = res.permute((0,2,3,1)).clamp_(0, 1).cpu()
|
78 |
+
np_sr_image = sr_image.numpy()
|
79 |
+
|
80 |
+
padded_size_scaled = tuple(np.multiply(p_shape[0:2], scale)) + (3,)
|
81 |
+
scaled_image_shape = tuple(np.multiply(lr_image.shape[0:2], scale)) + (3,)
|
82 |
+
np_sr_image = stich_together(
|
83 |
+
np_sr_image, padded_image_shape=padded_size_scaled,
|
84 |
+
target_shape=scaled_image_shape, padding_size=padding * scale
|
85 |
+
)
|
86 |
+
sr_img = (np_sr_image*255).astype(np.uint8)
|
87 |
+
sr_img = unpad_image(sr_img, pad_size*scale)
|
88 |
+
#sr_img = Image.fromarray(sr_img)
|
89 |
+
|
90 |
+
return sr_img
|
upscaler/RealESRGAN/rrdbnet_arch.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn as nn
|
3 |
+
from torch.nn import functional as F
|
4 |
+
|
5 |
+
from .arch_utils import default_init_weights, make_layer, pixel_unshuffle
|
6 |
+
|
7 |
+
|
8 |
+
class ResidualDenseBlock(nn.Module):
|
9 |
+
"""Residual Dense Block.
|
10 |
+
|
11 |
+
Used in RRDB block in ESRGAN.
|
12 |
+
|
13 |
+
Args:
|
14 |
+
num_feat (int): Channel number of intermediate features.
|
15 |
+
num_grow_ch (int): Channels for each growth.
|
16 |
+
"""
|
17 |
+
|
18 |
+
def __init__(self, num_feat=64, num_grow_ch=32):
|
19 |
+
super(ResidualDenseBlock, self).__init__()
|
20 |
+
self.conv1 = nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1)
|
21 |
+
self.conv2 = nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1)
|
22 |
+
self.conv3 = nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1)
|
23 |
+
self.conv4 = nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1)
|
24 |
+
self.conv5 = nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1)
|
25 |
+
|
26 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
27 |
+
|
28 |
+
# initialization
|
29 |
+
default_init_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)
|
30 |
+
|
31 |
+
def forward(self, x):
|
32 |
+
x1 = self.lrelu(self.conv1(x))
|
33 |
+
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
|
34 |
+
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
|
35 |
+
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
|
36 |
+
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
|
37 |
+
# Emperically, we use 0.2 to scale the residual for better performance
|
38 |
+
return x5 * 0.2 + x
|
39 |
+
|
40 |
+
|
41 |
+
class RRDB(nn.Module):
|
42 |
+
"""Residual in Residual Dense Block.
|
43 |
+
|
44 |
+
Used in RRDB-Net in ESRGAN.
|
45 |
+
|
46 |
+
Args:
|
47 |
+
num_feat (int): Channel number of intermediate features.
|
48 |
+
num_grow_ch (int): Channels for each growth.
|
49 |
+
"""
|
50 |
+
|
51 |
+
def __init__(self, num_feat, num_grow_ch=32):
|
52 |
+
super(RRDB, self).__init__()
|
53 |
+
self.rdb1 = ResidualDenseBlock(num_feat, num_grow_ch)
|
54 |
+
self.rdb2 = ResidualDenseBlock(num_feat, num_grow_ch)
|
55 |
+
self.rdb3 = ResidualDenseBlock(num_feat, num_grow_ch)
|
56 |
+
|
57 |
+
def forward(self, x):
|
58 |
+
out = self.rdb1(x)
|
59 |
+
out = self.rdb2(out)
|
60 |
+
out = self.rdb3(out)
|
61 |
+
# Emperically, we use 0.2 to scale the residual for better performance
|
62 |
+
return out * 0.2 + x
|
63 |
+
|
64 |
+
|
65 |
+
class RRDBNet(nn.Module):
|
66 |
+
"""Networks consisting of Residual in Residual Dense Block, which is used
|
67 |
+
in ESRGAN.
|
68 |
+
|
69 |
+
ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks.
|
70 |
+
|
71 |
+
We extend ESRGAN for scale x2 and scale x1.
|
72 |
+
Note: This is one option for scale 1, scale 2 in RRDBNet.
|
73 |
+
We first employ the pixel-unshuffle (an inverse operation of pixelshuffle to reduce the spatial size
|
74 |
+
and enlarge the channel size before feeding inputs into the main ESRGAN architecture.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
num_in_ch (int): Channel number of inputs.
|
78 |
+
num_out_ch (int): Channel number of outputs.
|
79 |
+
num_feat (int): Channel number of intermediate features.
|
80 |
+
Default: 64
|
81 |
+
num_block (int): Block number in the trunk network. Defaults: 23
|
82 |
+
num_grow_ch (int): Channels for each growth. Default: 32.
|
83 |
+
"""
|
84 |
+
|
85 |
+
def __init__(self, num_in_ch, num_out_ch, scale=4, num_feat=64, num_block=23, num_grow_ch=32):
|
86 |
+
super(RRDBNet, self).__init__()
|
87 |
+
self.scale = scale
|
88 |
+
if scale == 2:
|
89 |
+
num_in_ch = num_in_ch * 4
|
90 |
+
elif scale == 1:
|
91 |
+
num_in_ch = num_in_ch * 16
|
92 |
+
self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
|
93 |
+
self.body = make_layer(RRDB, num_block, num_feat=num_feat, num_grow_ch=num_grow_ch)
|
94 |
+
self.conv_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
95 |
+
# upsample
|
96 |
+
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
97 |
+
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
98 |
+
if scale == 8:
|
99 |
+
self.conv_up3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
100 |
+
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
101 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
102 |
+
|
103 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
104 |
+
|
105 |
+
def forward(self, x):
|
106 |
+
if self.scale == 2:
|
107 |
+
feat = pixel_unshuffle(x, scale=2)
|
108 |
+
elif self.scale == 1:
|
109 |
+
feat = pixel_unshuffle(x, scale=4)
|
110 |
+
else:
|
111 |
+
feat = x
|
112 |
+
feat = self.conv_first(feat)
|
113 |
+
body_feat = self.conv_body(self.body(feat))
|
114 |
+
feat = feat + body_feat
|
115 |
+
# upsample
|
116 |
+
feat = self.lrelu(self.conv_up1(F.interpolate(feat, scale_factor=2, mode='nearest')))
|
117 |
+
feat = self.lrelu(self.conv_up2(F.interpolate(feat, scale_factor=2, mode='nearest')))
|
118 |
+
if self.scale == 8:
|
119 |
+
feat = self.lrelu(self.conv_up3(F.interpolate(feat, scale_factor=2, mode='nearest')))
|
120 |
+
out = self.conv_last(self.lrelu(self.conv_hr(feat)))
|
121 |
+
return out
|
upscaler/RealESRGAN/utils.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
import os
|
5 |
+
import io
|
6 |
+
|
7 |
+
def pad_reflect(image, pad_size):
|
8 |
+
imsize = image.shape
|
9 |
+
height, width = imsize[:2]
|
10 |
+
new_img = np.zeros([height+pad_size*2, width+pad_size*2, imsize[2]]).astype(np.uint8)
|
11 |
+
new_img[pad_size:-pad_size, pad_size:-pad_size, :] = image
|
12 |
+
|
13 |
+
new_img[0:pad_size, pad_size:-pad_size, :] = np.flip(image[0:pad_size, :, :], axis=0) #top
|
14 |
+
new_img[-pad_size:, pad_size:-pad_size, :] = np.flip(image[-pad_size:, :, :], axis=0) #bottom
|
15 |
+
new_img[:, 0:pad_size, :] = np.flip(new_img[:, pad_size:pad_size*2, :], axis=1) #left
|
16 |
+
new_img[:, -pad_size:, :] = np.flip(new_img[:, -pad_size*2:-pad_size, :], axis=1) #right
|
17 |
+
|
18 |
+
return new_img
|
19 |
+
|
20 |
+
def unpad_image(image, pad_size):
|
21 |
+
return image[pad_size:-pad_size, pad_size:-pad_size, :]
|
22 |
+
|
23 |
+
|
24 |
+
def process_array(image_array, expand=True):
|
25 |
+
""" Process a 3-dimensional array into a scaled, 4 dimensional batch of size 1. """
|
26 |
+
|
27 |
+
image_batch = image_array / 255.0
|
28 |
+
if expand:
|
29 |
+
image_batch = np.expand_dims(image_batch, axis=0)
|
30 |
+
return image_batch
|
31 |
+
|
32 |
+
|
33 |
+
def process_output(output_tensor):
|
34 |
+
""" Transforms the 4-dimensional output tensor into a suitable image format. """
|
35 |
+
|
36 |
+
sr_img = output_tensor.clip(0, 1) * 255
|
37 |
+
sr_img = np.uint8(sr_img)
|
38 |
+
return sr_img
|
39 |
+
|
40 |
+
|
41 |
+
def pad_patch(image_patch, padding_size, channel_last=True):
|
42 |
+
""" Pads image_patch with with padding_size edge values. """
|
43 |
+
|
44 |
+
if channel_last:
|
45 |
+
return np.pad(
|
46 |
+
image_patch,
|
47 |
+
((padding_size, padding_size), (padding_size, padding_size), (0, 0)),
|
48 |
+
'edge',
|
49 |
+
)
|
50 |
+
else:
|
51 |
+
return np.pad(
|
52 |
+
image_patch,
|
53 |
+
((0, 0), (padding_size, padding_size), (padding_size, padding_size)),
|
54 |
+
'edge',
|
55 |
+
)
|
56 |
+
|
57 |
+
|
58 |
+
def unpad_patches(image_patches, padding_size):
|
59 |
+
return image_patches[:, padding_size:-padding_size, padding_size:-padding_size, :]
|
60 |
+
|
61 |
+
|
62 |
+
def split_image_into_overlapping_patches(image_array, patch_size, padding_size=2):
|
63 |
+
""" Splits the image into partially overlapping patches.
|
64 |
+
The patches overlap by padding_size pixels.
|
65 |
+
Pads the image twice:
|
66 |
+
- first to have a size multiple of the patch size,
|
67 |
+
- then to have equal padding at the borders.
|
68 |
+
Args:
|
69 |
+
image_array: numpy array of the input image.
|
70 |
+
patch_size: size of the patches from the original image (without padding).
|
71 |
+
padding_size: size of the overlapping area.
|
72 |
+
"""
|
73 |
+
|
74 |
+
xmax, ymax, _ = image_array.shape
|
75 |
+
x_remainder = xmax % patch_size
|
76 |
+
y_remainder = ymax % patch_size
|
77 |
+
|
78 |
+
# modulo here is to avoid extending of patch_size instead of 0
|
79 |
+
x_extend = (patch_size - x_remainder) % patch_size
|
80 |
+
y_extend = (patch_size - y_remainder) % patch_size
|
81 |
+
|
82 |
+
# make sure the image is divisible into regular patches
|
83 |
+
extended_image = np.pad(image_array, ((0, x_extend), (0, y_extend), (0, 0)), 'edge')
|
84 |
+
|
85 |
+
# add padding around the image to simplify computations
|
86 |
+
padded_image = pad_patch(extended_image, padding_size, channel_last=True)
|
87 |
+
|
88 |
+
xmax, ymax, _ = padded_image.shape
|
89 |
+
patches = []
|
90 |
+
|
91 |
+
x_lefts = range(padding_size, xmax - padding_size, patch_size)
|
92 |
+
y_tops = range(padding_size, ymax - padding_size, patch_size)
|
93 |
+
|
94 |
+
for x in x_lefts:
|
95 |
+
for y in y_tops:
|
96 |
+
x_left = x - padding_size
|
97 |
+
y_top = y - padding_size
|
98 |
+
x_right = x + patch_size + padding_size
|
99 |
+
y_bottom = y + patch_size + padding_size
|
100 |
+
patch = padded_image[x_left:x_right, y_top:y_bottom, :]
|
101 |
+
patches.append(patch)
|
102 |
+
|
103 |
+
return np.array(patches), padded_image.shape
|
104 |
+
|
105 |
+
|
106 |
+
def stich_together(patches, padded_image_shape, target_shape, padding_size=4):
|
107 |
+
""" Reconstruct the image from overlapping patches.
|
108 |
+
After scaling, shapes and padding should be scaled too.
|
109 |
+
Args:
|
110 |
+
patches: patches obtained with split_image_into_overlapping_patches
|
111 |
+
padded_image_shape: shape of the padded image contructed in split_image_into_overlapping_patches
|
112 |
+
target_shape: shape of the final image
|
113 |
+
padding_size: size of the overlapping area.
|
114 |
+
"""
|
115 |
+
|
116 |
+
xmax, ymax, _ = padded_image_shape
|
117 |
+
patches = unpad_patches(patches, padding_size)
|
118 |
+
patch_size = patches.shape[1]
|
119 |
+
n_patches_per_row = ymax // patch_size
|
120 |
+
|
121 |
+
complete_image = np.zeros((xmax, ymax, 3))
|
122 |
+
|
123 |
+
row = -1
|
124 |
+
col = 0
|
125 |
+
for i in range(len(patches)):
|
126 |
+
if i % n_patches_per_row == 0:
|
127 |
+
row += 1
|
128 |
+
col = 0
|
129 |
+
complete_image[
|
130 |
+
row * patch_size: (row + 1) * patch_size, col * patch_size: (col + 1) * patch_size,:
|
131 |
+
] = patches[i]
|
132 |
+
col += 1
|
133 |
+
return complete_image[0: target_shape[0], 0: target_shape[1], :]
|
upscaler/__init__.py
ADDED
File without changes
|
utils.py
CHANGED
@@ -110,3 +110,60 @@ def add_logo_to_image(img, logo=logo_image):
|
|
110 |
roi[0] : roi[0] + logo_size, roi[1] : roi[1] + logo_size, c
|
111 |
]
|
112 |
return img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
roi[0] : roi[0] + logo_size, roi[1] : roi[1] + logo_size, c
|
111 |
]
|
112 |
return img
|
113 |
+
|
114 |
+
def split_list_by_lengths(data, length_list):
|
115 |
+
split_data = []
|
116 |
+
start_idx = 0
|
117 |
+
for length in length_list:
|
118 |
+
end_idx = start_idx + length
|
119 |
+
sublist = data[start_idx:end_idx]
|
120 |
+
split_data.append(sublist)
|
121 |
+
start_idx = end_idx
|
122 |
+
return split_data
|
123 |
+
|
124 |
+
def merge_img_sequence_from_ref(ref_video_path, image_sequence, output_file_name):
|
125 |
+
video_clip = VideoFileClip(ref_video_path)
|
126 |
+
fps = video_clip.fps
|
127 |
+
duration = video_clip.duration
|
128 |
+
total_frames = video_clip.reader.nframes
|
129 |
+
audio_clip = video_clip.audio if video_clip.audio is not None else None
|
130 |
+
edited_video_clip = ImageSequenceClip(image_sequence, fps=fps)
|
131 |
+
|
132 |
+
if audio_clip is not None:
|
133 |
+
edited_video_clip = edited_video_clip.set_audio(audio_clip)
|
134 |
+
|
135 |
+
edited_video_clip.set_duration(duration).write_videofile(
|
136 |
+
output_file_name, codec="libx264"
|
137 |
+
)
|
138 |
+
edited_video_clip.close()
|
139 |
+
video_clip.close()
|
140 |
+
|
141 |
+
def scale_bbox_from_center(bbox, scale_width, scale_height, image_width, image_height):
|
142 |
+
# Extract the coordinates of the bbox
|
143 |
+
x1, y1, x2, y2 = bbox
|
144 |
+
|
145 |
+
# Calculate the center point of the bbox
|
146 |
+
center_x = (x1 + x2) / 2
|
147 |
+
center_y = (y1 + y2) / 2
|
148 |
+
|
149 |
+
# Calculate the new width and height of the bbox based on the scaling factors
|
150 |
+
width = x2 - x1
|
151 |
+
height = y2 - y1
|
152 |
+
new_width = width * scale_width
|
153 |
+
new_height = height * scale_height
|
154 |
+
|
155 |
+
# Calculate the new coordinates of the bbox, considering the image boundaries
|
156 |
+
new_x1 = center_x - new_width / 2
|
157 |
+
new_y1 = center_y - new_height / 2
|
158 |
+
new_x2 = center_x + new_width / 2
|
159 |
+
new_y2 = center_y + new_height / 2
|
160 |
+
|
161 |
+
# Adjust the coordinates to ensure the bbox remains within the image boundaries
|
162 |
+
new_x1 = max(0, new_x1)
|
163 |
+
new_y1 = max(0, new_y1)
|
164 |
+
new_x2 = min(image_width - 1, new_x2)
|
165 |
+
new_y2 = min(image_height - 1, new_y2)
|
166 |
+
|
167 |
+
# Return the scaled bbox coordinates
|
168 |
+
scaled_bbox = [new_x1, new_y1, new_x2, new_y2]
|
169 |
+
return scaled_bbox
|