Spaces:
Running
Running
File size: 10,294 Bytes
36104f7 c25b2ba 36104f7 c25b2ba 36104f7 c25b2ba 36104f7 0394a83 6b3d598 c25b2ba 36104f7 3b8b9ad 36104f7 3b8b9ad 36104f7 3b8b9ad 36104f7 c25b2ba 36104f7 c25b2ba 36104f7 3b8b9ad c25b2ba 3b8b9ad 36104f7 3b8b9ad c25b2ba 3b8b9ad c25b2ba 3b8b9ad 36104f7 a20261c 36104f7 8f08d8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import numpy as np
import cv2
import os
import insightface
from insightface.app import FaceAnalysis
from insightface.data import get_image as ins_get_image
import gradio as gr
theme = gr.themes.Default(
font=['Helvetica', 'ui-sans-serif', 'system-ui', 'sans-serif'],
font_mono=['IBM Plex Mono', 'ui-monospace', 'Consolas', 'monospace'],
).set(
border_color_primary='#c5c5d2',
button_large_padding='6px 12px',
body_text_color_subdued='#484848',
background_fill_secondary='#eaeaea'
)
def add_bbox_padding(bbox, margin=5):
return [
bbox[0] - margin,
bbox[1] - margin,
bbox[2] + margin,
bbox[3] + margin]
def select_handler(img, evt: gr.SelectData):
faces = app.get(img)
faces = sorted(faces, key = lambda x : x.bbox[0])
cropped_image = []
face_index = -1
sel_face_index = 0
print("Coords: ", evt.index[0],evt.index[1])
for face in faces:
box = face.bbox.astype(np.int32)
face_index = face_index + 1
if point_in_box((box[0], box[1]),(box[2],box[3]),(evt.index[0],evt.index[1])) == True:
# print("True ", face_index)
# print("Bbox org: ", box)
# Add ~25% margin to the box so the face is recognized correctly
margin = int((box[2]-box[0]) * 0.35)
box = add_bbox_padding(box,margin)
box = np.clip(box,0,None)
print("Bbox exp: ", box)
sel_face_index = face_index
cropped_image = img[box[1]:box[3],box[0]:box[2]]
return cropped_image, sel_face_index
def point_in_box(bl, tr, p) :
if (p[0] > bl[0] and p[0] < tr[0] and p[1] > bl[1] and p[1] < tr[1]) :
return True
else:
return False
def get_faces(img):
faces = app.get(img)
faces = sorted(faces, key = lambda x : x.bbox[0])
#boxed_faces = app.draw_on(img, faces)
#for i in range(len(faces)):
# face = faces[i]
# box = face.bbox.astype(np.int32)
# cv2.putText(boxed_faces,'Face#:%d'%(i), (box[0]-1, box[3]+14),cv2.FONT_HERSHEY_COMPLEX,0.7,(0,0,255),2)
return img, len(faces)
def swap_face_fct(img_source,face_index,img_swap_face):
faces = app.get(img_source)
faces = sorted(faces, key = lambda x : x.bbox[0])
src_face = app.get(img_swap_face)
src_face = sorted(src_face, key = lambda x : x.bbox[0])
#print("index:",faces)
res = swapper.get(img_source, faces[face_index], src_face[0], paste_back=True)
return res
def swap_video_fct(video_path, output_path, source_face, destination_face, tolerance, preview=-1, progress=gr.Progress()):
# Get the Destination Face parameters (the face which should be swapped)
dest_face = app.get(destination_face)
dest_face = sorted(dest_face, key = lambda x : x.bbox[0])
if(len(dest_face) == 0):
print("💡 No dest face found")
return -1
dest_face_feats = []
dest_face_feats.append(dest_face[0].normed_embedding)
dest_face_feats = np.array(dest_face_feats, dtype=np.float32)
# Get the source face parameters (the face that replaces the original)
src_face = app.get(source_face)
src_face = sorted(src_face, key = lambda x : x.bbox[0])
if(len(src_face) == 0):
print("🚨 No source face found")
return -1
cap = cv2.VideoCapture(video_path)
ret, frame = cap.read()
fps = int(cap.get(cv2.CAP_PROP_FPS))
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fourcc = cv2.VideoWriter_fourcc(*'avc1')
# Use the same tmp dir from gradio if no output path is set
if(len(output_path) > 0):
out_path = output_path
else:
out_path = os.path.dirname(video_path) + "/out.mp4"
if preview == -1:
for_range = range(frame_count)
video_out = cv2.VideoWriter(out_path,fourcc,fps,(width,height))
else:
for_range = range(preview-1,preview)
for i in for_range:
progress(i/frame_count, desc="⏳Processing")
cap.set(cv2.CAP_PROP_POS_FRAMES, i)
ret, frame = cap.read()
#frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Find all faces in the current frame
faces = app.get(frame)
faces = sorted(faces, key = lambda x : x.bbox[0])
# No face in Scene => copy input frame
if(len(faces) > 0):
feats = []
for face in faces:
feats.append(face.normed_embedding)
feats = np.array(feats, dtype=np.float32)
sims = np.dot(dest_face_feats, feats.T)
print(sims)
# find the index of the most similar face
max_index = np.argmax(sims)
print("Sim:", max_index)
if(sims[0][max_index]*100 >= (100-tolerance)):
frame = swapper.get(frame, faces[max_index], src_face[0], paste_back=True)
if preview == -1:
video_out.write(frame)
if preview == -1:
video_out.release()
return out_path
else:
return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
ins_get_image
def analyze_video(video_path):
cap = cv2.VideoCapture(video_path)
fps = int(cap.get(cv2.CAP_PROP_FPS))
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
length = frame_count/fps
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
return f"Resolution: {width}x{height}\nLength: {length}\nFps: {fps}\nFrames: {frame_count}"
def update_slider(video_path):
cap = cv2.VideoCapture(video_path)
fps = int(cap.get(cv2.CAP_PROP_FPS))
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
length = frame_count/fps
return gr.update(minimum=0,maximum=frame_count,value=frame_count/2)
def show_preview(video_path, frame_number):
cap = cv2.VideoCapture(video_path)
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_number)
ret, frame = cap.read()
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
return frame
def create_interface():
title = '# 🧸FaceSwap UI'
with gr.Blocks(theme='WeixuanYuan/Base_dark') as face_swap_ui:
with gr.Tab("📀 Swap Face Image"):
with gr.Row():
with gr.Column():
image_input = gr.Image(label='🧑🦳 Target Face (🧩)', scale=0.5)
with gr.Row():
analyze_button = gr.Button("🕵️ Analyze")
with gr.Row():
with gr.Column():
face_num = gr.Number(label='🦋 Recognized Faces')
face_index_num = gr.Number(label='🍄 Face Index', precision=0)
selected_face = gr.Image(label='🫅 Source Face', interactive=False)
swap_face = gr.Image(label='☀️Swap Face')
swap_button = gr.Button("🧶 Swap")
with gr.Column():
image_output = gr.Image(label='📤Output Image',interactive=False)
#text_output = gr.Textbox(placeholder="What is your name?")
swap_button.click(fn=swap_face_fct, inputs=[image_input, face_index_num, swap_face], outputs=[image_output])
image_input.select(select_handler, image_input, [selected_face, face_index_num])
analyze_button.click(fn=get_faces, inputs=image_input, outputs=[image_input,face_num])
with gr.Tab("📺Swap Face Video"):
with gr.Row():
with gr.Column():
source_video = gr.Video()
video_info = gr.Textbox(label="💻 Video Information")
gr.Markdown("🛠️Select a frame for preview with the slider. Then select the face which should be swapped by clicking on it with the cursor")
video_position = gr.Slider(label="⛓️Frame preview",interactive=True)
frame_preview = gr.Image(label="🔗Frame preview")
face_index = gr.Textbox(label="⚙️ Face-Index",interactive=False)
with gr.Row():
dest_face_vid = gr.Image(label="👑 Face to swap",interactive=True)
source_face_vid = gr.Image(label="🎯 New Face")
gr.Markdown("🔑The higher the tolerance the more likely a wrong face will be swapped. 30-40 is a good starting point.")
face_tolerance = gr.Slider(label="⏳Tolerance",value=40,interactive=True)
preview_video = gr.Button("🎭 Preview")
video_file_path = gr.Text(label="🗳️Output Video path incl. file.mp4 (when left empty it will be put in the gradio temp dir)")
process_video = gr.Button("⚙️ Process")
with gr.Column():
with gr.Column(scale=1):
image_output = gr.Image()
output_video = gr.Video(interactive=False)
with gr.Column(scale=1):
pass
# Component Events
source_video.upload(fn=analyze_video,inputs=source_video,outputs=video_info)
video_info.change(fn=update_slider,inputs=source_video,outputs=video_position)
#preview_button.click(fn=show_preview,inputs=[source_video, video_position],outputs=frame_preview)
frame_preview.select(select_handler, frame_preview, [dest_face_vid, face_index ])
video_position.change(show_preview,inputs=[source_video, video_position],outputs=frame_preview)
process_video.click(fn=swap_video_fct,inputs=[source_video,video_file_path,source_face_vid,dest_face_vid, face_tolerance], outputs=output_video)
preview_video.click(fn=swap_video_fct,inputs=[source_video,video_file_path,source_face_vid,dest_face_vid, face_tolerance, video_position], outputs=image_output)
face_swap_ui.queue().launch()
#face_swap_ui.launch()
if __name__ == "__main__":
app = FaceAnalysis(name='buffalo_l')
app.prepare(ctx_id=0, det_size=(640, 640))
swapper = insightface.model_zoo.get_model('inswapper_128.onnx', download=True, download_zip=True)
create_interface() |