File size: 9,266 Bytes
fdfc45e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
from strings import TITLE, ABSTRACT, BOTTOM_LINE
from strings import DEFAULT_EXAMPLES
from strings import SPECIAL_STRS
from styles import PARENT_BLOCK_CSS

from constants import num_of_characters_to_keep

import time
import gradio as gr

from model import load_model
from gen import get_output_batch, StreamModel
from utils import generate_prompt, post_processes_batch, post_process_stream, get_generation_config, common_post_process

generation_config = get_generation_config(
    "./generation_config_default.yaml"
)

model, tokenizer = load_model(
    base="decapoda-research/llama-13b-hf",
    finetuned="chansung/alpaca-lora-13b"
)    

stream_model = StreamModel(model, tokenizer)

def chat_stream(
    context,
    instruction,
    state_chatbot,
):
    if len(context) > 1000 or len(instruction) > 300:
        raise gr.Error("context or prompt is too long!")
        
    bot_summarized_response = ''
    # user input should be appropriately formatted (don't be confused by the function name)
    instruction_display = common_post_process(instruction)
    instruction_prompt, conv_length = generate_prompt(instruction, state_chatbot, context)
    
    if conv_length > num_of_characters_to_keep:
        instruction_prompt = generate_prompt(SPECIAL_STRS["summarize"], state_chatbot, context, partial=True)[0]
        
        state_chatbot = state_chatbot + [
            (
                None, 
                "![](https://s2.gifyu.com/images/icons8-loading-circle.gif) too long conversations, so let's summarize..."
            )
        ]
        yield (state_chatbot, state_chatbot, context)
        
        bot_summarized_response = get_output_batch(
            model, tokenizer, [instruction_prompt], generation_config
        )[0]
        bot_summarized_response = bot_summarized_response.split("### Response:")[-1].strip()
        
        state_chatbot[-1] = (
            None, 
            "✅ summarization is done and set as context"
        )
        print(f"bot_summarized_response: {bot_summarized_response}")
        yield (state_chatbot, state_chatbot, f"{context}. {bot_summarized_response}".strip())
        
    instruction_prompt = generate_prompt(instruction, state_chatbot, f"{context} {bot_summarized_response}")[0]
    
    bot_response = stream_model(
        instruction_prompt,
        max_tokens=256,
        temperature=1,
        top_p=0.9
    )
    
    instruction_display = None if instruction_display == SPECIAL_STRS["continue"] else instruction_display
    state_chatbot = state_chatbot + [(instruction_display, None)]
    yield (state_chatbot, state_chatbot, f"{context}. {bot_summarized_response}".strip())
    
    prev_index = 0
    agg_tokens = ""
    cutoff_idx = 0
    for tokens in bot_response:
        tokens = tokens.strip()
        cur_token = tokens[prev_index:]
        
        if "#" in cur_token and agg_tokens == "":
            cutoff_idx = tokens.find("#")
            agg_tokens = tokens[cutoff_idx:]

        if agg_tokens != "":
            if len(agg_tokens) < len("### Instruction:") :
                agg_tokens = agg_tokens + cur_token
            elif len(agg_tokens) >= len("### Instruction:"):
                if tokens.find("### Instruction:") > -1:
                    processed_response, _ = post_process_stream(tokens[:tokens.find("### Instruction:")].strip())

                    state_chatbot[-1] = (
                        instruction_display, 
                        processed_response
                    )
                    yield (state_chatbot, state_chatbot, f"{context} {bot_summarized_response}".strip())
                    break
                else:
                    agg_tokens = ""
                    cutoff_idx = 0

        if agg_tokens == "":
            processed_response, to_exit = post_process_stream(tokens)
            state_chatbot[-1] = (instruction_display, processed_response)
            yield (state_chatbot, state_chatbot, f"{context} {bot_summarized_response}".strip())

            if to_exit:
                break

        prev_index = len(tokens)

    yield (
        state_chatbot,
        state_chatbot,
        f"{context} {bot_summarized_response}".strip()
    )


def chat_batch(
    contexts,
    instructions, 
    state_chatbots,
):
    state_results = []
    ctx_results = []

    instruct_prompts = [
        generate_prompt(instruct, histories, ctx) 
        for ctx, instruct, histories in zip(contexts, instructions, state_chatbots)
    ]
        
    bot_responses = get_output_batch(
        model, tokenizer, instruct_prompts, generation_config
    )
    bot_responses = post_processes_batch(bot_responses)

    for ctx, instruction, bot_response, state_chatbot in zip(contexts, instructions, bot_responses, state_chatbots):
        new_state_chatbot = state_chatbot + [('' if instruction == SPECIAL_STRS["continue"] else instruction, bot_response)]
        ctx_results.append(gr.Textbox.update(value=bot_response) if instruction == SPECIAL_STRS["summarize"] else ctx)
        state_results.append(new_state_chatbot)

    return (state_results, state_results, ctx_results)

def reset_textbox():
    return gr.Textbox.update(value='')

def reset_everything(
    context_txtbox, 
    instruction_txtbox, 
    state_chatbot):

    state_chatbot = []
    
    return (
        state_chatbot,
        state_chatbot,
        gr.Textbox.update(value=''),
        gr.Textbox.update(value=''),
    )

with gr.Blocks(css=PARENT_BLOCK_CSS) as demo:
    state_chatbot = gr.State([])

    with gr.Column(elem_id='col_container'):
        gr.Markdown(f"## {TITLE}\n\n\n{ABSTRACT}")

        with gr.Accordion("Context Setting", open=False):
            context_txtbox = gr.Textbox(placeholder="Surrounding information to AI", label="Enter Context")
            hidden_txtbox = gr.Textbox(placeholder="", label="Order", visible=False)

        chatbot = gr.Chatbot(elem_id='chatbot', label="Alpaca-LoRA")
        instruction_txtbox = gr.Textbox(placeholder="What do you want to say to AI?", label="Instruction")
        with gr.Row():
            cancel_btn = gr.Button(value="Cancel")
            reset_btn = gr.Button(value="Reset")

        with gr.Accordion("Helper Buttons", open=False):
            gr.Markdown(f"`Continue` lets AI to complete the previous incomplete answers. `Summarize` lets AI to summarize the conversations so far.")
            continue_txtbox = gr.Textbox(value=SPECIAL_STRS["continue"], visible=False)
            summrize_txtbox = gr.Textbox(value=SPECIAL_STRS["summarize"], visible=False)

            continue_btn = gr.Button(value="Continue")
            summarize_btn = gr.Button(value="Summarize")

        gr.Markdown("#### Examples")
        for _, (category, examples) in enumerate(DEFAULT_EXAMPLES.items()):
            with gr.Accordion(category, open=False):
                if category == "Identity":
                    for item in examples:
                        with gr.Accordion(item["title"], open=False):
                            gr.Examples(
                                examples=item["examples"],
                                inputs=[
                                    hidden_txtbox, context_txtbox, instruction_txtbox
                                ],
                                label=None
                            )
                else:
                    for item in examples:
                        with gr.Accordion(item["title"], open=False):
                            gr.Examples(
                                examples=item["examples"],
                                inputs=[
                                    hidden_txtbox, instruction_txtbox
                                ],
                                label=None
                            )

        gr.Markdown(f"{BOTTOM_LINE}")


    send_event = instruction_txtbox.submit(
        chat_stream, 
        [context_txtbox, instruction_txtbox, state_chatbot],
        [state_chatbot, chatbot, context_txtbox],
    )
    reset_event = instruction_txtbox.submit(
        reset_textbox, 
        [], 
        [instruction_txtbox],
    )
    
    continue_event = continue_btn.click(
        chat_stream, 
        [context_txtbox, continue_txtbox, state_chatbot],
        [state_chatbot, chatbot, context_txtbox],
    )
    reset_continue_event = continue_btn.click(
        reset_textbox, 
        [], 
        [instruction_txtbox],
    )
    
    summarize_event = summarize_btn.click(
        chat_stream, 
        [context_txtbox, summrize_txtbox, state_chatbot],
        [state_chatbot, chatbot, context_txtbox],
    )
    summarize_reset_event = summarize_btn.click(
        reset_textbox, 
        [], 
        [instruction_txtbox],
    )
    
    cancel_btn.click(
        None, None, None, 
        cancels=[
            send_event, continue_event, summarize_event
        ]
    )

    reset_btn.click(
        reset_everything,
        [context_txtbox, instruction_txtbox, state_chatbot],
        [state_chatbot, chatbot, context_txtbox, instruction_txtbox],
        cancels=[
            send_event, continue_event, summarize_event
        ]            
    )    

demo.queue(
    concurrency_count=1,
    max_size=100,
).launch(
    max_threads=5,
    server_name="0.0.0.0",
)