File size: 8,727 Bytes
e23587a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import argparse
import glob
import os
from pathlib import Path
import uuid
from src.pipelines.pipeline_animatediff_pix2pix import StableDiffusionInstructPix2PixPipeline
from diffusers import EulerAncestralDiscreteScheduler
import torch
from src.models.unet import UNet3DConditionModel
import numpy as np
from PIL import Image
import imageio

def convert_frames_to_mp4(frames, filename, fps=30):
    """Converts a list of PIL Image frames to an MP4 file.

    Args:
        frames: A list of PIL Image frames.
        filename: The name of the MP4 file to save.
        fps: Frames per second for the video.

    Returns:
        None
    """
    # Convert PIL Images to numpy arrays
    numpy_frames = [np.array(frame) for frame in frames]
    # Write frames to mp4
    imageio.mimwrite(filename, numpy_frames, fps=fps)

def convert_frames_to_gif(frames, filename, duration=100):
    """Converts a list of PIL Image frames to a GIF file.

    Args:
        frames: A list of PIL Image frames.
        filename: The name of the GIF file to save.
        duration: Duration of each frame in milliseconds.

    Returns:
        None
    """
    frames[0].save(
        filename, 
        save_all=True, 
        append_images=frames[1:], 
        loop=0, 
        duration=duration
    )


def convert_frames_to_gif_with_fps(frames, filename, fps=30):
    """Converts a list of PIL Image frames to a GIF file using fps.

    Args:
        frames: A list of PIL Image frames.
        filename: The name of the GIF file to save.
        fps: Frames per second for the gif.

    Returns:
        None
    """
    duration = 1000 // fps
    frames[0].save(
        filename, 
        save_all=True, 
        append_images=frames[1:], 
        loop=0, 
        duration=duration
    )


def run(t2i_model,
        prompt="", 
        negative_prompt="", 
        frame_count=16,
        num_inference_steps=20,
        guidance_scale=7.5,
        image_guidance_scale=1.5,
        width=512,
        height=512,
        dtype="float16",
        output_frames_directory="output_frames",
        output_video_directory="output_video",
        output_gif_directory="output_gif",
        motion_module="viddle/viddle-pix2pix-animatediff-v1.ckpt", 
        init_image=None,
        init_folder=None, 
        seed=42,
        fps=15,
        no_save_frames=False,
        no_save_video=False,
        no_save_gif=False,
        ):
  scheduler_kwargs = {
    "num_train_timesteps": 1000,
    "beta_start": 0.00085,
    "beta_end": 0.012,
    "beta_schedule": "linear",
  }

  device = "cuda" if torch.cuda.is_available() else "cpu"
  if dtype == "float16":
     dtype = torch.float16
     variant = "fp16"
  elif dtype == "float32":
      dtype = torch.float32
      variant = "fp32"

  unet_additional_kwargs = {
    "in_channels": 8,
    "unet_use_cross_frame_attention": False,
    "unet_use_temporal_attention": False,
    "use_motion_module": True,
    "motion_module_resolutions": [1, 2, 4, 8],
    "motion_module_mid_block": False,
    "motion_module_decoder_only": False,
    "motion_module_type": "Vanilla",
    "motion_module_kwargs": {
        "num_attention_heads": 8,
        "num_transformer_block": 1,
        "attention_block_types": ["Temporal_Self", "Temporal_Self"],
        "temporal_position_encoding": True,
        "temporal_position_encoding_max_len": 32,
        "temporal_attention_dim_div": 1,
    },
  }

  pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained(
      t2i_model,
      scheduler=EulerAncestralDiscreteScheduler(**scheduler_kwargs),
      safety_checker=None,
      feature_extractor=None,
      requires_safety_checker=False,
      torch_dtype=dtype,
      variant=variant,
  ).to(device)

  pipeline.unet = UNet3DConditionModel.from_pretrained_unet(pipeline.unet,
                                                            unet_additional_kwargs=unet_additional_kwargs,
                                                            ).to(device=device, dtype=dtype)
  
  pipeline.enable_vae_slicing()

  motion_module_state_dict = torch.load(motion_module, map_location="cpu")
  _, unexpected = pipeline.unet.load_state_dict(motion_module_state_dict, strict=False)
  assert len(unexpected) == 0

  if init_image is not None and init_folder is None:
    image = Image.open(init_image)
    image = image.resize((width, height))
  elif init_folder is not None and init_image is None:
    image_paths = glob.glob(init_folder + "/*.png")
    # add the jpgs
    image_paths += glob.glob(init_folder + "/*.jpg")
    image_paths.sort()
    image_paths = image_paths[:frame_count]
  
    image = []

    for image_path in image_paths:
      image.append(Image.open(image_path).resize((width, height)))
  else:
    raise ValueError("Must provide either init_image or init_folder but not both")
  
  generator = torch.Generator(device=device).manual_seed(seed)

  frames = pipeline(prompt=prompt, 
                negative_prompt=negative_prompt, 
                num_inference_steps=num_inference_steps,
                guidance_scale=guidance_scale,
                image_guidance_scale=image_guidance_scale,
                image=image,
                video_length=frame_count,
                generator=generator,
                )[0]

  # create a uuid prefix for the output files
  uuid_prefix = str(uuid.uuid4())

  if not no_save_frames:
    # Create output directory
    Path(output_frames_directory).mkdir(parents=True, exist_ok=True)

    # make the specific directory for this run
    output_frames_directory = os.path.join(output_frames_directory, uuid_prefix)
    Path(output_frames_directory).mkdir(parents=True, exist_ok=True)
    # Save frames
    for i, frame in enumerate(frames):
      frame.save(os.path.join(output_frames_directory, f"{str(i).zfill(4)}.png"))

  if not no_save_video:
    # Create output directory
    Path(output_video_directory).mkdir(parents=True, exist_ok=True)

    convert_frames_to_mp4(frames, os.path.join(output_video_directory, f"{uuid_prefix}.mp4"), fps=fps)

  if not no_save_gif:
    # Create output directory
    Path(output_gif_directory).mkdir(parents=True, exist_ok=True)

    # Convert frames to GIF
    convert_frames_to_gif(frames, os.path.join(output_gif_directory, f"{uuid_prefix}.gif"), duration=1000 // fps)


if __name__ == "__main__":
  argsparser = argparse.ArgumentParser()
  argsparser.add_argument("--prompt", type=str, default="")
  argsparser.add_argument("--negative_prompt", type=str, default="")
  argsparser.add_argument("--frame_count", type=int, default=16)
  argsparser.add_argument("--num_inference_steps", type=int, default=20)
  argsparser.add_argument("--guidance_scale", type=float, default=7.5)
  argsparser.add_argument("--image_guidance_scale", type=float, default=1.5)
  argsparser.add_argument("--width", type=int, default=512)
  argsparser.add_argument("--height", type=int, default=512)
  argsparser.add_argument("--dtype", type=str, default="float16")
  argsparser.add_argument("--output_frames_directory", type=str, default="output_frames")
  argsparser.add_argument("--output_video_directory", type=str, default="output_videos")
  argsparser.add_argument("--output_gif_directory", type=str, default="output_gifs")
  argsparser.add_argument("--init_image", type=str, default=None)
  argsparser.add_argument("--init_folder", type=str, default=None)
  argsparser.add_argument("--motion_module", type=str, default="checkpoints/viddle-pix2pix-animatediff-v1.ckpt")
  argsparser.add_argument("--t2i_model", type=str, default="timbrooks/instruct-pix2pix")
  argsparser.add_argument("--seed", type=int, default=42)
  argsparser.add_argument("--fps", type=int, default=15)
  argsparser.add_argument("--no_save_frames", action="store_true", default=False)
  argsparser.add_argument("--no_save_video", action="store_true", default=False)
  argsparser.add_argument("--no_save_gif", action="store_true", default=False)
  args = argsparser.parse_args()

  run(t2i_model=args.t2i_model,
      prompt=args.prompt, 
      negative_prompt=args.negative_prompt, 
      frame_count=args.frame_count,
      num_inference_steps=args.num_inference_steps,
      guidance_scale=args.guidance_scale,
      width=args.width,
      height=args.height,
      dtype=args.dtype,
      output_frames_directory=args.output_frames_directory,
      output_video_directory=args.output_video_directory,
      output_gif_directory=args.output_gif_directory,
      motion_module=args.motion_module,
      init_image=args.init_image,
      init_folder=args.init_folder,
      seed=args.seed,
      fps=args.fps,
      no_save_frames=args.no_save_frames,
      no_save_video=args.no_save_video,
      no_save_gif=args.no_save_gif,
      )