Spaces:
No application file
No application file
Create main.py (#2)
Browse files- Create main.py (e23587a5013ebb5c0049c2607b4715f1f9467166)
Co-authored-by: AP <[email protected]>
main.py
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import glob
|
3 |
+
import os
|
4 |
+
from pathlib import Path
|
5 |
+
import uuid
|
6 |
+
from src.pipelines.pipeline_animatediff_pix2pix import StableDiffusionInstructPix2PixPipeline
|
7 |
+
from diffusers import EulerAncestralDiscreteScheduler
|
8 |
+
import torch
|
9 |
+
from src.models.unet import UNet3DConditionModel
|
10 |
+
import numpy as np
|
11 |
+
from PIL import Image
|
12 |
+
import imageio
|
13 |
+
|
14 |
+
def convert_frames_to_mp4(frames, filename, fps=30):
|
15 |
+
"""Converts a list of PIL Image frames to an MP4 file.
|
16 |
+
|
17 |
+
Args:
|
18 |
+
frames: A list of PIL Image frames.
|
19 |
+
filename: The name of the MP4 file to save.
|
20 |
+
fps: Frames per second for the video.
|
21 |
+
|
22 |
+
Returns:
|
23 |
+
None
|
24 |
+
"""
|
25 |
+
# Convert PIL Images to numpy arrays
|
26 |
+
numpy_frames = [np.array(frame) for frame in frames]
|
27 |
+
# Write frames to mp4
|
28 |
+
imageio.mimwrite(filename, numpy_frames, fps=fps)
|
29 |
+
|
30 |
+
def convert_frames_to_gif(frames, filename, duration=100):
|
31 |
+
"""Converts a list of PIL Image frames to a GIF file.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
frames: A list of PIL Image frames.
|
35 |
+
filename: The name of the GIF file to save.
|
36 |
+
duration: Duration of each frame in milliseconds.
|
37 |
+
|
38 |
+
Returns:
|
39 |
+
None
|
40 |
+
"""
|
41 |
+
frames[0].save(
|
42 |
+
filename,
|
43 |
+
save_all=True,
|
44 |
+
append_images=frames[1:],
|
45 |
+
loop=0,
|
46 |
+
duration=duration
|
47 |
+
)
|
48 |
+
|
49 |
+
|
50 |
+
def convert_frames_to_gif_with_fps(frames, filename, fps=30):
|
51 |
+
"""Converts a list of PIL Image frames to a GIF file using fps.
|
52 |
+
|
53 |
+
Args:
|
54 |
+
frames: A list of PIL Image frames.
|
55 |
+
filename: The name of the GIF file to save.
|
56 |
+
fps: Frames per second for the gif.
|
57 |
+
|
58 |
+
Returns:
|
59 |
+
None
|
60 |
+
"""
|
61 |
+
duration = 1000 // fps
|
62 |
+
frames[0].save(
|
63 |
+
filename,
|
64 |
+
save_all=True,
|
65 |
+
append_images=frames[1:],
|
66 |
+
loop=0,
|
67 |
+
duration=duration
|
68 |
+
)
|
69 |
+
|
70 |
+
|
71 |
+
def run(t2i_model,
|
72 |
+
prompt="",
|
73 |
+
negative_prompt="",
|
74 |
+
frame_count=16,
|
75 |
+
num_inference_steps=20,
|
76 |
+
guidance_scale=7.5,
|
77 |
+
image_guidance_scale=1.5,
|
78 |
+
width=512,
|
79 |
+
height=512,
|
80 |
+
dtype="float16",
|
81 |
+
output_frames_directory="output_frames",
|
82 |
+
output_video_directory="output_video",
|
83 |
+
output_gif_directory="output_gif",
|
84 |
+
motion_module="viddle/viddle-pix2pix-animatediff-v1.ckpt",
|
85 |
+
init_image=None,
|
86 |
+
init_folder=None,
|
87 |
+
seed=42,
|
88 |
+
fps=15,
|
89 |
+
no_save_frames=False,
|
90 |
+
no_save_video=False,
|
91 |
+
no_save_gif=False,
|
92 |
+
):
|
93 |
+
scheduler_kwargs = {
|
94 |
+
"num_train_timesteps": 1000,
|
95 |
+
"beta_start": 0.00085,
|
96 |
+
"beta_end": 0.012,
|
97 |
+
"beta_schedule": "linear",
|
98 |
+
}
|
99 |
+
|
100 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
101 |
+
if dtype == "float16":
|
102 |
+
dtype = torch.float16
|
103 |
+
variant = "fp16"
|
104 |
+
elif dtype == "float32":
|
105 |
+
dtype = torch.float32
|
106 |
+
variant = "fp32"
|
107 |
+
|
108 |
+
unet_additional_kwargs = {
|
109 |
+
"in_channels": 8,
|
110 |
+
"unet_use_cross_frame_attention": False,
|
111 |
+
"unet_use_temporal_attention": False,
|
112 |
+
"use_motion_module": True,
|
113 |
+
"motion_module_resolutions": [1, 2, 4, 8],
|
114 |
+
"motion_module_mid_block": False,
|
115 |
+
"motion_module_decoder_only": False,
|
116 |
+
"motion_module_type": "Vanilla",
|
117 |
+
"motion_module_kwargs": {
|
118 |
+
"num_attention_heads": 8,
|
119 |
+
"num_transformer_block": 1,
|
120 |
+
"attention_block_types": ["Temporal_Self", "Temporal_Self"],
|
121 |
+
"temporal_position_encoding": True,
|
122 |
+
"temporal_position_encoding_max_len": 32,
|
123 |
+
"temporal_attention_dim_div": 1,
|
124 |
+
},
|
125 |
+
}
|
126 |
+
|
127 |
+
pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained(
|
128 |
+
t2i_model,
|
129 |
+
scheduler=EulerAncestralDiscreteScheduler(**scheduler_kwargs),
|
130 |
+
safety_checker=None,
|
131 |
+
feature_extractor=None,
|
132 |
+
requires_safety_checker=False,
|
133 |
+
torch_dtype=dtype,
|
134 |
+
variant=variant,
|
135 |
+
).to(device)
|
136 |
+
|
137 |
+
pipeline.unet = UNet3DConditionModel.from_pretrained_unet(pipeline.unet,
|
138 |
+
unet_additional_kwargs=unet_additional_kwargs,
|
139 |
+
).to(device=device, dtype=dtype)
|
140 |
+
|
141 |
+
pipeline.enable_vae_slicing()
|
142 |
+
|
143 |
+
motion_module_state_dict = torch.load(motion_module, map_location="cpu")
|
144 |
+
_, unexpected = pipeline.unet.load_state_dict(motion_module_state_dict, strict=False)
|
145 |
+
assert len(unexpected) == 0
|
146 |
+
|
147 |
+
if init_image is not None and init_folder is None:
|
148 |
+
image = Image.open(init_image)
|
149 |
+
image = image.resize((width, height))
|
150 |
+
elif init_folder is not None and init_image is None:
|
151 |
+
image_paths = glob.glob(init_folder + "/*.png")
|
152 |
+
# add the jpgs
|
153 |
+
image_paths += glob.glob(init_folder + "/*.jpg")
|
154 |
+
image_paths.sort()
|
155 |
+
image_paths = image_paths[:frame_count]
|
156 |
+
|
157 |
+
image = []
|
158 |
+
|
159 |
+
for image_path in image_paths:
|
160 |
+
image.append(Image.open(image_path).resize((width, height)))
|
161 |
+
else:
|
162 |
+
raise ValueError("Must provide either init_image or init_folder but not both")
|
163 |
+
|
164 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
165 |
+
|
166 |
+
frames = pipeline(prompt=prompt,
|
167 |
+
negative_prompt=negative_prompt,
|
168 |
+
num_inference_steps=num_inference_steps,
|
169 |
+
guidance_scale=guidance_scale,
|
170 |
+
image_guidance_scale=image_guidance_scale,
|
171 |
+
image=image,
|
172 |
+
video_length=frame_count,
|
173 |
+
generator=generator,
|
174 |
+
)[0]
|
175 |
+
|
176 |
+
# create a uuid prefix for the output files
|
177 |
+
uuid_prefix = str(uuid.uuid4())
|
178 |
+
|
179 |
+
if not no_save_frames:
|
180 |
+
# Create output directory
|
181 |
+
Path(output_frames_directory).mkdir(parents=True, exist_ok=True)
|
182 |
+
|
183 |
+
# make the specific directory for this run
|
184 |
+
output_frames_directory = os.path.join(output_frames_directory, uuid_prefix)
|
185 |
+
Path(output_frames_directory).mkdir(parents=True, exist_ok=True)
|
186 |
+
# Save frames
|
187 |
+
for i, frame in enumerate(frames):
|
188 |
+
frame.save(os.path.join(output_frames_directory, f"{str(i).zfill(4)}.png"))
|
189 |
+
|
190 |
+
if not no_save_video:
|
191 |
+
# Create output directory
|
192 |
+
Path(output_video_directory).mkdir(parents=True, exist_ok=True)
|
193 |
+
|
194 |
+
convert_frames_to_mp4(frames, os.path.join(output_video_directory, f"{uuid_prefix}.mp4"), fps=fps)
|
195 |
+
|
196 |
+
if not no_save_gif:
|
197 |
+
# Create output directory
|
198 |
+
Path(output_gif_directory).mkdir(parents=True, exist_ok=True)
|
199 |
+
|
200 |
+
# Convert frames to GIF
|
201 |
+
convert_frames_to_gif(frames, os.path.join(output_gif_directory, f"{uuid_prefix}.gif"), duration=1000 // fps)
|
202 |
+
|
203 |
+
|
204 |
+
if __name__ == "__main__":
|
205 |
+
argsparser = argparse.ArgumentParser()
|
206 |
+
argsparser.add_argument("--prompt", type=str, default="")
|
207 |
+
argsparser.add_argument("--negative_prompt", type=str, default="")
|
208 |
+
argsparser.add_argument("--frame_count", type=int, default=16)
|
209 |
+
argsparser.add_argument("--num_inference_steps", type=int, default=20)
|
210 |
+
argsparser.add_argument("--guidance_scale", type=float, default=7.5)
|
211 |
+
argsparser.add_argument("--image_guidance_scale", type=float, default=1.5)
|
212 |
+
argsparser.add_argument("--width", type=int, default=512)
|
213 |
+
argsparser.add_argument("--height", type=int, default=512)
|
214 |
+
argsparser.add_argument("--dtype", type=str, default="float16")
|
215 |
+
argsparser.add_argument("--output_frames_directory", type=str, default="output_frames")
|
216 |
+
argsparser.add_argument("--output_video_directory", type=str, default="output_videos")
|
217 |
+
argsparser.add_argument("--output_gif_directory", type=str, default="output_gifs")
|
218 |
+
argsparser.add_argument("--init_image", type=str, default=None)
|
219 |
+
argsparser.add_argument("--init_folder", type=str, default=None)
|
220 |
+
argsparser.add_argument("--motion_module", type=str, default="checkpoints/viddle-pix2pix-animatediff-v1.ckpt")
|
221 |
+
argsparser.add_argument("--t2i_model", type=str, default="timbrooks/instruct-pix2pix")
|
222 |
+
argsparser.add_argument("--seed", type=int, default=42)
|
223 |
+
argsparser.add_argument("--fps", type=int, default=15)
|
224 |
+
argsparser.add_argument("--no_save_frames", action="store_true", default=False)
|
225 |
+
argsparser.add_argument("--no_save_video", action="store_true", default=False)
|
226 |
+
argsparser.add_argument("--no_save_gif", action="store_true", default=False)
|
227 |
+
args = argsparser.parse_args()
|
228 |
+
|
229 |
+
run(t2i_model=args.t2i_model,
|
230 |
+
prompt=args.prompt,
|
231 |
+
negative_prompt=args.negative_prompt,
|
232 |
+
frame_count=args.frame_count,
|
233 |
+
num_inference_steps=args.num_inference_steps,
|
234 |
+
guidance_scale=args.guidance_scale,
|
235 |
+
width=args.width,
|
236 |
+
height=args.height,
|
237 |
+
dtype=args.dtype,
|
238 |
+
output_frames_directory=args.output_frames_directory,
|
239 |
+
output_video_directory=args.output_video_directory,
|
240 |
+
output_gif_directory=args.output_gif_directory,
|
241 |
+
motion_module=args.motion_module,
|
242 |
+
init_image=args.init_image,
|
243 |
+
init_folder=args.init_folder,
|
244 |
+
seed=args.seed,
|
245 |
+
fps=args.fps,
|
246 |
+
no_save_frames=args.no_save_frames,
|
247 |
+
no_save_video=args.no_save_video,
|
248 |
+
no_save_gif=args.no_save_gif,
|
249 |
+
)
|
250 |
+
|
251 |
+
|
252 |
+
|