File size: 8,966 Bytes
616e23d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import os
import sys
import json
import numpy as np
import triton_python_backend_utils as pb_utils

PWD = os.path.dirname(__file__)

INFERENCE_MODULE_DIR = "/home/indicTrans2/"
sys.path.insert(0, INFERENCE_MODULE_DIR)
from inference.engine import Model, iso_to_flores
INDIC_LANGUAGES = set(iso_to_flores)

ALLOWED_DIRECTION_STRINGS = {"en-indic", "indic-en", "indic-indic"}
FORCE_PIVOTING = False
DEFAULT_PIVOT_LANG = "en"

class TritonPythonModel:
    def initialize(self, args):
        self.model_config = json.loads(args['model_config'])
        self.model_instance_device_id = json.loads(args['model_instance_device_id'])
        self.output_name = "OUTPUT_TEXT"
        self.output_dtype = pb_utils.triton_string_to_numpy(
            pb_utils.get_output_config_by_name(self.model_config, self.output_name)["data_type"])
        

        # checkpoints_root_dir = os.path.join(PWD, "checkpoints")
        checkpoints_root_dir = "/models/checkpoints"
        checkpoint_folders = [ f.path for f in os.scandir(checkpoints_root_dir) if f.is_dir() ]
        # The assumption is that, each folder name is `<src_direction>-to-<tgt_direction>`

        if not checkpoint_folders:
            raise RuntimeError(f"No checkpoint folders in: {checkpoints_root_dir}")

        self.models = {}
        for checkpoint_folder in checkpoint_folders:
            direction_string = os.path.basename(checkpoint_folder)
            assert direction_string in ALLOWED_DIRECTION_STRINGS, f"Checkpoint folder-name `{direction_string}` not allowed"
            self.models[direction_string] = Model(os.path.join(checkpoint_folder, "ct2_fp16_model"), input_lang_code_format="iso", model_type="ctranslate2")
            # self.models[direction_string] = Model(checkpoint_folder, input_lang_code_format="iso", model_type="fairseq")
        
        self.pivot_lang = None
        if "en-indic" in self.models and "indic-en" in self.models:
            if  "indic-indic" not in self.models:
                self.pivot_lang = DEFAULT_PIVOT_LANG
            elif FORCE_PIVOTING:
                del self.models["indic-indic"]
                self.pivot_lang = DEFAULT_PIVOT_LANG
    
    def get_direction_string(self, input_language_id, output_language_id):
        direction_string = None
        if input_language_id == DEFAULT_PIVOT_LANG and output_language_id in INDIC_LANGUAGES:
            direction_string = "en-indic"
        elif input_language_id in INDIC_LANGUAGES:
            if output_language_id == DEFAULT_PIVOT_LANG:
                direction_string = "indic-en"
            elif output_language_id in INDIC_LANGUAGES:
                direction_string = "indic-indic"
        return direction_string

    def get_model(self, input_language_id, output_language_id):
        direction_string = self.get_direction_string(input_language_id, output_language_id)
        
        if direction_string in self.models:
            return self.models[direction_string]
        raise RuntimeError(f"Language-pair not supported: {input_language_id}-{output_language_id}")

    def execute(self,requests):
        # print("REQ_COUNT", len(requests))
        modelwise_batches = {}
        responses = []
        for request_id, request in enumerate(requests):
            input_text_batch = pb_utils.get_input_tensor_by_name(request, "INPUT_TEXT").as_numpy()
            input_language_id_batch = pb_utils.get_input_tensor_by_name(request, "INPUT_LANGUAGE_ID").as_numpy()
            output_language_id_batch = pb_utils.get_input_tensor_by_name(request, "OUTPUT_LANGUAGE_ID").as_numpy()
            
            input_text_batch = [input_text[0].decode("utf-8", "ignore") for input_text in input_text_batch]
            input_language_id_batch = [input_language_id[0].decode("utf-8", "ignore") for input_language_id in input_language_id_batch]
            output_language_id_batch = [output_language_id[0].decode("utf-8", "ignore") for output_language_id in output_language_id_batch]

            responses.append([['']] * len(input_text_batch))

            for input_id, (input_text, input_language_id, output_language_id) in enumerate(zip(input_text_batch, input_language_id_batch, output_language_id_batch)):
                direction_string = self.get_direction_string(input_language_id, output_language_id)
                if direction_string not in self.models:
                    if direction_string == "indic-indic" and self.pivot_lang:
                        pass
                    else:
                        raise RuntimeError(f"Language-pair not supported: {input_language_id}-{output_language_id}")
                
                if direction_string not in modelwise_batches:
                    modelwise_batches[direction_string] = {
                        "payloads": [],
                        "text_id_to_req_id_input_id": [],
                    }
                
                modelwise_batches[direction_string]["payloads"].append([input_text, input_language_id, output_language_id])
                modelwise_batches[direction_string]["text_id_to_req_id_input_id"].append((request_id, input_id))

        for direction_string, batch in modelwise_batches.items():
            if direction_string == "indic-indic" and self.pivot_lang:
                model = self.get_model("hi", self.pivot_lang)
                original_langs = []
                for i in range(len(batch["payloads"])):
                    original_langs.append(batch["payloads"][i][2])
                    batch["payloads"][i][2] = self.pivot_lang

                pivot_texts = model.paragraphs_batch_translate__multilingual(batch["payloads"])

                for i in range(len(batch["payloads"])):
                    batch["payloads"][i][0] = pivot_texts[i]
                    batch["payloads"][i][1] = self.pivot_lang
                    batch["payloads"][i][2] = original_langs[i]
                
                model = self.get_model(self.pivot_lang, "hi")
                translations = model.paragraphs_batch_translate__multilingual(batch["payloads"])
            else:
                model = self.models[direction_string]
                translations = model.paragraphs_batch_translate__multilingual(batch["payloads"])
                # translations = ["bro"] * len(batch["payloads"])
            
            for translation, (request_id, output_id) in zip(translations, batch["text_id_to_req_id_input_id"]):
                responses[request_id][output_id] = [translation]
        
        for i in range(len(responses)):
            responses[i] = pb_utils.InferenceResponse(output_tensors=[
                pb_utils.Tensor(
                    self.output_name,
                    np.array(responses[i], dtype=self.output_dtype),
                )
            ])
        return responses
    
    def execute_sequential(self,requests):
        # print("REQ_COUNT", len(requests))
        responses = []
        for request in requests:
            input_text_batch = pb_utils.get_input_tensor_by_name(request, "INPUT_TEXT").as_numpy()
            input_language_id_batch = pb_utils.get_input_tensor_by_name(request, "INPUT_LANGUAGE_ID").as_numpy()
            output_language_id_batch = pb_utils.get_input_tensor_by_name(request, "OUTPUT_LANGUAGE_ID").as_numpy()
            
            input_text_batch = [input_text[0].decode("utf-8", "ignore") for input_text in input_text_batch]
            input_language_id_batch = [input_language_id[0].decode("utf-8", "ignore") for input_language_id in input_language_id_batch]
            output_language_id_batch = [output_language_id[0].decode("utf-8", "ignore") for output_language_id in output_language_id_batch]

            generated_outputs = []

            for input_text, input_language_id, output_language_id in zip(input_text_batch, input_language_id_batch, output_language_id_batch):
                if self.pivot_lang and (input_language_id != self.pivot_lang and output_language_id != self.pivot_lang):
                    model = self.get_model(input_language_id, self.pivot_lang)
                    pivot_text = model.translate_paragraph(input_text, input_language_id, self.pivot_lang)
                    
                    model = self.get_model(self.pivot_lang, output_language_id)
                    translation = model.translate_paragraph(pivot_text, self.pivot_lang, output_language_id)
                else:
                    model = self.get_model(input_language_id, output_language_id)
                    translation = model.translate_paragraph(input_text, input_language_id, output_language_id)
                generated_outputs.append([translation])

            inference_response = pb_utils.InferenceResponse(output_tensors=[
                pb_utils.Tensor(
                    self.output_name,
                    np.array(generated_outputs, dtype=self.output_dtype),
                )
            ])
            responses.append(inference_response)
        return responses