|
INDIC_NLP_LIB_HOME = "indic_nlp_library" |
|
INDIC_NLP_RESOURCES = "indic_nlp_resources" |
|
import sys |
|
|
|
from indicnlp import transliterate |
|
|
|
sys.path.append(r"{}".format(INDIC_NLP_LIB_HOME)) |
|
from indicnlp import common |
|
|
|
common.set_resources_path(INDIC_NLP_RESOURCES) |
|
from indicnlp import loader |
|
|
|
loader.load() |
|
from sacremoses import MosesPunctNormalizer |
|
from sacremoses import MosesTokenizer |
|
from sacremoses import MosesDetokenizer |
|
from collections import defaultdict |
|
|
|
import indicnlp |
|
from indicnlp.tokenize import indic_tokenize |
|
from indicnlp.tokenize import indic_detokenize |
|
from indicnlp.normalize import indic_normalize |
|
from indicnlp.transliterate import unicode_transliterate |
|
|
|
from flores_codes_map_indic import flores_codes |
|
import sentencepiece as spm |
|
|
|
import re |
|
|
|
en_detok = MosesDetokenizer(lang="en") |
|
|
|
|
|
def postprocess( |
|
infname: str, |
|
outfname: str, |
|
input_size: int, |
|
lang: str, |
|
transliterate: bool = False, |
|
spm_model_path: str = None, |
|
): |
|
""" |
|
Postprocess the output of a machine translation model in the following order: |
|
- parse fairseq interactive output |
|
- convert script back to native Indic script (in case of Indic languages) |
|
- detokenize |
|
|
|
Args: |
|
infname (str): path to the input file containing the machine translation output. |
|
outfname (str): path to the output file where the postprocessed output will be written. |
|
input_size (int): number of sentences in the input file. |
|
lang (str): language code of the output language. |
|
transliterate (bool, optional): whether to transliterate the output text to devanagari (default: False). |
|
spm_model_path (str): path of the sentence piece model. |
|
""" |
|
if spm_model_path is None: |
|
raise Exception("Please provide sentence piece model path for decoding") |
|
|
|
sp = spm.SentencePieceProcessor(model_file=spm_model_path) |
|
|
|
iso_lang = flores_codes[lang] |
|
|
|
consolidated_testoutput = [] |
|
consolidated_testoutput = [(x, 0.0, "") for x in range(input_size)] |
|
|
|
temp_testoutput = [] |
|
with open(infname, "r", encoding="utf-8") as infile: |
|
temp_testoutput = list( |
|
map( |
|
lambda x: x.strip().split("\t"), |
|
filter(lambda x: x.startswith("H-"), infile), |
|
) |
|
) |
|
temp_testoutput = list( |
|
map(lambda x: (int(x[0].split("-")[1]), float(x[1]), x[2]), temp_testoutput) |
|
) |
|
for sid, score, hyp in temp_testoutput: |
|
consolidated_testoutput[sid] = (sid, score, hyp) |
|
consolidated_testoutput = [x[2] for x in consolidated_testoutput] |
|
consolidated_testoutput = [sp.decode(x.split(" ")) for x in consolidated_testoutput] |
|
|
|
if iso_lang == "en": |
|
with open(outfname, "w", encoding="utf-8") as outfile: |
|
for sent in consolidated_testoutput: |
|
outfile.write(en_detok.detokenize(sent.split(" ")) + "\n") |
|
else: |
|
xliterator = unicode_transliterate.UnicodeIndicTransliterator() |
|
with open(outfname, "w", encoding="utf-8") as outfile: |
|
for sent in consolidated_testoutput: |
|
if transliterate: |
|
outstr = indic_detokenize.trivial_detokenize( |
|
xliterator.transliterate(sent, "hi", iso_lang), iso_lang |
|
) |
|
else: |
|
outstr = indic_detokenize.trivial_detokenize(sent, iso_lang) |
|
outfile.write(outstr + "\n") |
|
|
|
|
|
if __name__ == "__main__": |
|
infname = sys.argv[1] |
|
outfname = sys.argv[2] |
|
input_size = int(sys.argv[3]) |
|
lang = sys.argv[4] |
|
transliterate = sys.argv[5] |
|
spm_model_path = sys.argv[6] |
|
|
|
postprocess(infname, outfname, input_size, lang, transliterate, spm_model_path) |
|
|