|
import gradio as gr |
|
import torch |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, AutoModelForSeq2SeqLM, AutoTokenizer |
|
from IndicTransToolkit import IndicProcessor |
|
import librosa |
|
import numpy as np |
|
|
|
|
|
BATCH_SIZE = 4 |
|
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
def initialize_wav2vec2_model(model_name): |
|
processor = Wav2Vec2Processor.from_pretrained(model_name) |
|
model = Wav2Vec2ForCTC.from_pretrained(model_name).to(DEVICE) |
|
model.eval() |
|
return processor, model |
|
|
|
wav2vec2_model_name = "addy88/wav2vec2-malayalam-stt" |
|
wav2vec2_processor, wav2vec2_model = initialize_wav2vec2_model(wav2vec2_model_name) |
|
|
|
|
|
def initialize_translation_model_and_tokenizer(ckpt_dir): |
|
tokenizer = AutoTokenizer.from_pretrained(ckpt_dir, trust_remote_code=True) |
|
model = AutoModelForSeq2SeqLM.from_pretrained( |
|
ckpt_dir, |
|
trust_remote_code=True, |
|
low_cpu_mem_usage=True, |
|
).to(DEVICE) |
|
model.eval() |
|
return tokenizer, model |
|
|
|
en_indic_ckpt_dir = "ai4bharat/indictrans2-indic-en-1B" |
|
en_indic_tokenizer, en_indic_model = initialize_translation_model_and_tokenizer(en_indic_ckpt_dir) |
|
ip = IndicProcessor(inference=True) |
|
|
|
|
|
def batch_translate(input_sentences, src_lang, tgt_lang, model, tokenizer, ip): |
|
translations = [] |
|
for i in range(0, len(input_sentences), BATCH_SIZE): |
|
batch = input_sentences[i : i + BATCH_SIZE] |
|
batch = ip.preprocess_batch(batch, src_lang=src_lang, tgt_lang=tgt_lang) |
|
inputs = tokenizer( |
|
batch, |
|
truncation=True, |
|
padding="longest", |
|
return_tensors="pt", |
|
return_attention_mask=True, |
|
).to(DEVICE) |
|
|
|
with torch.no_grad(): |
|
generated_tokens = model.generate( |
|
**inputs, |
|
use_cache=True, |
|
min_length=0, |
|
max_length=256, |
|
num_beams=5, |
|
num_return_sequences=1, |
|
) |
|
|
|
with tokenizer.as_target_tokenizer(): |
|
generated_tokens = tokenizer.batch_decode( |
|
generated_tokens.detach().cpu().tolist(), |
|
skip_special_tokens=True, |
|
clean_up_tokenization_spaces=True, |
|
) |
|
|
|
translations += ip.postprocess_batch(generated_tokens, lang=tgt_lang) |
|
del inputs |
|
torch.cuda.empty_cache() |
|
|
|
return translations |
|
|
|
|
|
def transcribe_and_translate(audio): |
|
try: |
|
|
|
audio_input, sample_rate = librosa.load(audio, sr=16000) |
|
|
|
|
|
if np.max(np.abs(audio_input)) != 0: |
|
audio_input = audio_input / np.max(np.abs(audio_input)) |
|
|
|
except Exception as e: |
|
return f"Error reading audio: {e}", "" |
|
|
|
|
|
input_values = wav2vec2_processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values.to(DEVICE) |
|
|
|
|
|
with torch.no_grad(): |
|
logits = wav2vec2_model(input_values).logits |
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
|
|
|
|
malayalam_text = wav2vec2_processor.decode(predicted_ids[0].cpu(), skip_special_tokens=True) |
|
|
|
|
|
en_sents = [malayalam_text] |
|
src_lang, tgt_lang = "mal_Mlym", "eng_Latn" |
|
translations = batch_translate(en_sents, src_lang, tgt_lang, en_indic_model, en_indic_tokenizer, ip) |
|
|
|
return malayalam_text, translations[0] |
|
|
|
|
|
iface = gr.Interface( |
|
fn=transcribe_and_translate, |
|
inputs=gr.Audio(sources=["microphone", "upload"], type="filepath"), |
|
outputs=[ |
|
gr.Textbox(label="Malayalam Transcription"), |
|
gr.Textbox(label="English Translation") |
|
], |
|
title="Malayalam Speech Recognition & Translation", |
|
description="Speak in Malayalam β Transcribe using Wav2Vec2 β Translate to English using IndicTrans2." |
|
) |
|
|
|
iface.launch(debug=True, share=True) |
|
|